
Fast and efficient log file compression

Przemysław Skibiński1 and Jakub Swacha2

1 University of Wrocław, Institute of Computer Science,
Joliot-Curie 15, 50-383 Wrocław, Poland

inikep@ii.uni.wroc.pl
2 The Szczecin University, Institute of Information Technology in Management,

Mickiewicza 64, 71-101 Szczecin, Poland
jakubs@uoo.univ.szczecin.pl

Abstract. Contemporary information systems are replete with log files, created
in multiple places (e.g., network servers, database management systems, user
monitoring applications, system services and utilities) for multiple purposes
(e.g., maintenance, security issues, traffic analysis, legal requirements, software
debugging, customer management, user interface usability studies).
Log files in complex systems may quickly grow to huge sizes. Often, they must
be kept for long periods of time. For reasons of convenience and storage
economy, log files should be compressed. However, most of the available log
file compression tools use general-purpose algorithms (e.g., Deflate) which do
not take advantage of redundancy specific for log files.
In this paper a specialized log file compression scheme is described in five
variants, differing in complexity and attained compression ratios. The proposed
scheme introduces a log file transform whose output is much better
compressible with general-purpose algorithms than original data. Using the fast
Deflate algorithm, the transformed log files were, on average, 36.6% shorter
than the original files compressed with gzip (employing the same algorithm).
Using the slower PPMVC algorithm, the transformed files were 62% shorter
than the original files compressed with gzip, and 41% shorter than the original
files compressed with bzip2.

Keywords: log files, log file storage, text compression, compression algorithms

1 Introduction

1.1 Motivation

Many of the actions performed in computer-based information systems leave a track.
Users may not like it at all, but there are plenty of reasons for which such records are
valuable for system administrators or vendors – such as maintenance, security issues,

Y. Ioannidis, B. Novikov and B. Rachev (Eds.): Local Proceedings of ADBIS 2007, pp. 56-69
© Technical University of Varna, 2007

traffic analysis, legal requirements, software debugging, customer management, or
user interface usability studies.

Relevant data can be collected in multiple places (e.g., network servers, database
management systems, user monitoring applications, system services and utilities). In
many environments, tracked events can happen very often. As a result, there is a huge
amount of data produced this way every day. And often it is necessary to store them
for a long period of time.

Regardless of the type of recorded events, for reasons of simplicity and
convenience, they are usually stored in plain text log files. Both the content type and
the storage format suggest that it is possible to significantly reduce the size of log files
through lossless data compression, especially if specialized algorithm was used. The
smaller, compressed files have the advantages of being easier to handle and saving
storage space.

1.2 Problem setting

There is plenty of redundancy to be exploited in typical log files. Log files are
composed of lines, and the lines are composed of tokens. The lines are separated by
end-of-line marks, whereas the tokens are separated by spaces.

Some tokens repeat frequently, whereas in case of others (e.g., dates, times, URL
or IP addresses) only the token format is globally repetitive. However, even in this
case there is high correlation between tokens in adjoining lines (e.g., the same date
appears in multiple lines).

In most log files, lines have fixed structure, a repeatable sequence of token types
and separators. Some line structure elements may be in relationship with same or
different elements of another line (e.g., increasing index number).

1.3 Approach

We propose a multi-tiered log file compression solution. Every of the three tiers
addresses one notion of redundancy. The first tier handles the resemblance between
neighboring lines. The second tier handles the global repetitiveness of tokens and
token formats. The third tier is general-purpose compressor which handles all the
redundancy left after the previous stages.

The tiers are not only optional, but each of them is designed in several variants
differing in required processing time and obtained compression ratio. This way users
with different requirements can find combinations which suit them best. We propose
five processing schemes for reasonable ratios of compression time to log file size
reduction.

1.4 Contributions

Our main contribution is the log file transform aimed at producing output which is
much better compressible with general-purpose algorithms than the original data. The
transform can be used to compress any kind of textual log files, regardless of their

57 Przemyslaw Skibinski and Jakub Swacha

size and source. The core transform supports streamed compression. It is extended
with an adaptation of our word replacement transform for additional improvement of
compression ratio. The transform algorithm has low computational requirements. We
investigate several variants of log compression schemes looking for the best trade-off
between attained compression ratios and required processing time.

2 Related work

As with the growth of log file sizes their management and storage has become
burdensome, many commercial and open-source utilities were developed to fix this
issue. Most of them were aimed at compression of web server logs, e.g., logrotate,
rotatelogs, httplog, IIS Log Archiver, Web Log Mixer, SafeLog, and almost each of
them (with the exception of SafeLog) uses general-purpose compression algorithm
(mostly gzip, rarely bzip2).

In 2004 Rácz and Lukács presented DSLC (Differentiated Semantic Log
Compression), a generalized scheme for web log files compression. The scheme
features parsing log lines into separate fields, and a set of pipelined transformations
chosen for every kind of data field, including calculation of computed fields, stripping
unnecessary information, replacement of strings with dictionary indexes, semantic-
specific encoding, and, finally, general-purpose compression [7]. The DSLC is
claimed to improve general-purpose compression algorithms efficiency on web logs
up to a factor of ten. Still, it works well only on huge log files (over 1 GB) and it
requires human assistance before the compression, on average about two weeks for a
specific log file [8].

In 2006 Balakrishnan and Sahoo proposed a scheme for compression of system
logs of the IBM Blue Gene /L supercomputer. The scheme consists of preprocessing
stage (featuring differential coding) and general-purpose compression [1]. The
measured improvement of compression ratio was 28.3%. Of course, the application of
this scheme is very limited.

Recently, Kulpa, Swacha, and Budzowski developed a scheme for encoding the
user activity logs generated by monitoring system [4]. It features string substitution
and differential date and time encoding. On average, a 71.9% gain in log size has
been measured. This scheme is intended for small log chunks, it has very low
complexity and it is implemented client-side in JavaScript, as its sole purpose is to
limit the network bandwidth required to transmit user logs from client to server.
Therefore, its results are much inferior to those of complex server-side log
compressors.

58Fast and efficient log file compression

3 Log file transform for improved compression

3.1 The core transform

Log files are plain text files in which every line corresponds to a single logged event
description. The lines are separated by end-of-line marks. Each event description
consists of at least several tokens, separated by spaces. A token may be a date, hour,
IP address, or any string of characters being a part of event description.

In typical log files the neighboring lines are very similar, not only in their structure,
but also in their content. The proposed transform takes advantage of this fact by
replacing the tokens of a new line with references to the previous line. There may be a
row of more than one token that appears in two successive lines, and the tokens in the
neighboring lines can have common prefixes but different suffixes (the opposite is
possible, but far less frequent in typical log files). For this two reasons, the
replacement is done on byte level, not token level.

The actual algorithm works as follows: starting from the beginning of new line, its
contents are compared to those of the previous line. The sequence of matching
characters is replaced with a single value denoting the length of the sequence. Then,
starting with the first unmatched character, until the next space (or an end-of-line
mark, if there are no more spaces in the line), the characters are simply copied to the
output. The match position in the previous line is also moved to the next space. The
matching/replacement is repeated as long as there are characters in the line.

The length l of the matching sequence of characters is encoded as a single byte
with value 128+l, for every l smaller than 127, or a sequence of m bytes with value
255 followed by a single byte with value 128+n, for every l not smaller than 127,
where l = 127*m + n. The byte value range of 128-255 is often unused in logs,
however, if such a value is encountered, it is simply preceded with an escape flag
(127). This way the transform is fully reversible.

Consider the following input example:

12.222.17.217 - - [03/Feb/2003:03:08:13 +0100] "GET /jettop.htm HTTP/1.1"
12.222.17.217 - - [03/Feb/2003:03:08:14 +0100] "GET /jetstart.htm HTTP/1.1"

Actually, these are beginnings of two neighboring lines from the fp.log test file.
Assume the upper line is the previously compressed line, and the lower line is the one
to be compressed now. The algorithm starts matching characters from the line
beginning, there are 38 consecutive characters which appear in both lines, so they are
replaced with value 166 (128+38). Then we look for the next space, storing the single
unmatched character that precedes it (‘4’). Now the data to process and reference line
looks as follows:

+0100] "GET /jettop.htm HTTP/1.1"
+0100] "GET /jetstart.htm HTTP/1.1"

59 Przemyslaw Skibinski and Jakub Swacha

This time we have 16 consecutive characters which appear in both lines, so they
are replaced with value 144 (128+16). Again, we look for the next space, storing the
string of unmatched characters that precede it (‘start.htm’, notice that matching
suffixes are not exploited at this stage). Now the data to process and reference line
looks as follows:

HTTP/1.1"
HTTP/1.1"

This time we have 9 consecutive characters which appear in both lines, so they are
replaced with value 137 (128+9). The full line has been processed. The input was:

12.222.17.217 - - [03/Feb/2003:03:08:14 +0100] "GET /jetstart.htm HTTP/1.1"

And the output is (round brackets represent bytes with specified values):

(166)4(144)start.htm(137)

Notice that single spaces are not existent in the output as they can be automatically

reinserted on decompression.
The processed output can then be passed to a back-end general-purpose

compressor, such as gzip, LZMA, or PPMVC.
We shall refer to the aforedescribed algorithm as the variant 1 of the proposed

transform, the one which is the simplest and fastest, but also the least effective.

3.2 Transform variant 2

In practice, a single log often records events generated by different actors (users,
services, clients). Also, log lines may belong to more than one structural type. As a
result, similar lines are not always blocked, but they are intermixed with lines
differing in content or structure.

The second variant of the transform fixes this issue by using as a reference not a
single previous line, but a block of them (16 lines by default; smaller value hurts the
compression ratio, higher value hurts the compression time). For a new line, the block
is searched for the line that returns the longest initial match (i.e., starting from the line
beginning). This line is then used a reference line instead of the previous one. The
search affects the compression time, but the decompression time is almost unaffected.
The index of the line selected from the block is encoded as a single byte at the
beginning of every line (128 for the previous line, 129 for the line before previous,
and so on).

Consider the following input example:

12.222.17.217 - - [03/Feb/2003:03:08:52 +0100] "GET /thumbn/f8f_r.jpg
172.159.188.78 - - [03/Feb/2003:03:08:52 +0100] "GET /favicon.ico
12.222.17.217 - - [03/Feb/2003:03:08:52 +0100] "GET /thumbn/mig15_r.jpg

60Fast and efficient log file compression

Again, these are beginnings of three neighboring lines from the fp.log test file.
Assume the two upper lines are the previously compressed lines, and the lower line is
the one to be compressed now.

Notice that the middle line is an ‘intruder’ which precludes replacement of IP
address and directory name using variant 1 of the transform, which would produce
following output (round brackets represent bytes with specified values):

12.222.17.217(167)thumbn/mig15_r.jpg

But variant 2 handles the line better, producing following output:

(129)(188)mig15_r.jpg

3.3 Transform variant 3

Sometimes a buffer of 16 lines may be not enough, i.e., the same pattern may
reappear after a long period of different lines. As similar lines tend to appear together,
it is possible that only few tokens appear at beginning of all the ‘intruder’ lines.
Transform variant 3 makes use of this fact by storing the recent 16 lines with different
beginning tokens. If a line starting with a token already on the list is encountered, it is
appended, but the old line with the same token has to be removed from the list. This
way, a line separated by thousands others can be referenced only provided the other
lines have no more than 15 types of tokens at their beginnings.

Compared to variant 2, instead of a block of previous lines there is a move-to-front
list of lines with different initial tokens. Therefore, the selected line index addresses
the list, not the input log file. As a result, the list has to be managed by both the
encoder and decoder. In case of compression, the list management time is very close
to the variant 2’s time of searching the block for the best match. But in case of
decompression, it noticeably slows down the processing.

3.4 Transform variant 4

The three variants described so far are on-line schemes, i.e., they do not require the
log to be complete before the start of its compression, and they accept a stream as an
input. The following two variants are off-line schemes, i.e., they require the log to be
complete before the start of its compression, and they only accept a file as an input.
This drawback is compensated with significantly improved compression ratio.

Variants 1/2/3 addressed the local redundancy, whereas variant 4 handles words
which repeat frequently throughout the entire log. It features word dictionary
containing the most frequent words in the log. As it is impossible to have such
dictionary predefined for any kind of log file (though it is possible to create a single
dictionary for a set of files of the same type), the dictionary has to be formed in an
additional pass. This is what makes the variant off-line.

The first stage of variant 4 consists of performing transform variant 3, parsing its
output into words, and calculating the frequency of each word. Notice that the words

61 Przemyslaw Skibinski and Jakub Swacha

are not the same as the tokens of variants 1/2/3, as a word can only be either a single
byte or a sequence of bytes from value range 65..90, 97..122, 128..255 (all ASCII
letters and non-7-bit ASCII characters). Only the words whose frequency exceeds a
threshold value fmin are included in the dictionary. The optimal value of fmin depends
on the back-end general-purpose compressor used. Based on many experiments, it has
been estimated at 64 for the highly effective PPMVC algorithm, and 6 for the
remaining, less effective algorithms (including gzip and LZMA).

The dictionary has an upper limit of size (by default, 2 MB of memory). If the
dictionary reaches that limit, it is frozen, i.e., the counters of already included words
can be incremented but new words cannot be added (though this is a rare case in
practice).

During the second pass, the words included in the dictionary are replaced with their
respective indexes. The dictionary is sorted in descending order based on word
frequency, therefore frequent words have smaller index values than the rare ones.
Every index is encoded on 1, 2, 3 or 4 bytes. The indexes are encoded using byte
values unused in the original input file. The related work of the first author on natural
language text compression [10] shows that different index encoding schemes should
be used for different back-end compression algorithms. Variant 4 uses following
encodings:
1. For gzip, three disjoint byte value ranges are used: x, y, and z. The first byte of the

codeword belongs either to x, y, or z depending on the codeword length
(respectively 1, 2, or 3 bytes). The remaining bytes (if any) may have any value
(from 0 to 255). Thus the are x + y*256 + z*256*256 available codewords.

2. For LZMA, two disjoint byte value ranges are used: x and y. A byte belonging to x
denotes codeword beginning, and a byte belonging to y denotes codeword
continuation. Thus the are x + x*y + x*y*y available codewords.

3. For PPMVC, four disjoint byte value ranges are used: w, x, y, and z. A byte
belonging to w denotes codeword beginning, x – first continuation, y – second
continuation, z – third continuation. Thus there are w + w*x + w*x*y + w*x*y*z
available codewords.

3.5 Transform variant 5

There are types of tokens which can be encoded shorter using binary instead of text
encoding typical for log files. These include numbers, dates, times, and IP addresses.
Variant 5 is variant 4 extended with special handling of this kind of tokens. They are
replaced with flags denoting their type, whereas their actual value is encoded densely
in a separate container. Every data type has its own container. The containers are
appended to the main output file at the end of compression or when their size exceeds
upper memory usage limit.

Numbers are replaced with a byte denoting the length of the number (1, 2, 3, or 4
bytes) encoded in binary in respective container. As only 2564 integers can be stored
on four bytes, digit sequences representing larger numbers are simply split into
several shorter ones (a rare case in practice). If the digit sequence starts with one or
more zeroes, the initial zeroes are left intact.

62Fast and efficient log file compression

Dates in YYYY-MM-DD (e.g. “2007-03-31”, Y for year, M for month, and D for
day) and DD/MMM/YYYY (e.g. “31/Mar/2007”) formats are replaced with a byte
denoting date format and encoded as a two bytes long integer whose value is the
difference in days from 1977-01-01. To simplify the calculations we assume each
month to have 31 days. If the difference with the previous date is smaller than 256,
another flag is used and the date is encoded as a single byte whose value is the
difference in days from the previous date.

Times in HH:MM:SS (e.g. “23:30:59”, H for hour, M for minute, and S for
second) format are replaced with a flag and encoded as sequence of three bytes
representing respectively: hours, minutes, and seconds.

IP addresses are replaced with a flag and encoded as sequence of four bytes
representing IP octets. Non-standard IP addresses (with initial zeroes, or spaces
between octets) are not replaced.

4 Experimental evaluation

4.1 Tested compression schemes

The main object of the evaluation is the proposed transform implemented by the first
author in the LogPack program, written in C++ and compiled with Microsoft Visual
C++ 6.0. LogPack offers five modes of operation corresponding to five transform
variants; we shall denote them as LPx, where x is the transform variant, e.g., LP1
stands for the first (simplest) variant.

LogPack has embedded three back-end compression algorithms: gzip, LZMA, and
PPMVC. Of these, only gzip is aimed at on-line compression, as it is the simplest and
fastest scheme [2]. The remaining two are for highly effective off-line compression.

LZMA (better known as the default mode of the 7zip utility [6]) features improved
parsing and larger dictionary buffer. It offers high compression ratio, but the cost is
very slow compression (decompression is only slightly slower than gzip’s).

PPMVC is a sophisticated prediction-based algorithm [11]. It offers compression
ratio even higher than LZMA, and faster compression time. The PPMVC’s drawback
is that its decompression time is very close to its compression time, which means it is
several times longer than gzip’s or LZMA’s decompression times. In the tests,
PPMVC was used with prediction model order 8, and 64 MB of model size.

The back-end compression algorithms were tested with default compression
options which generally give a reasonable trade-off between obtained compression
ratio and required compression time.

All the five transform variants were tested with gzip. LZMA and PPMVC were
tested only with the most complex, fifth variant. The log files were also compressed
with the three back-end algorithms alone to show the improvement from applying the
proposed transform. For a comparison, results for popular compression tools lrzip [3]
and bzip2 [9] were also included.

63 Przemyslaw Skibinski and Jakub Swacha

4.2 Test files and environment

The proposed transform was not designed for a specific kind of log file, therefore
different log files were included in the test suite. The only well-known file is FP, an
Apache server log from the Maximum Compression corpus [5]. Three files were
downloaded from public servers: 2005access, RMAccess (web logs) and Cernlib2005
(build log). The remaining three files were obtained from the first author’s personal
computer: Mail (from the Exim program), Syslog (Linux system log) and MYSQL
(database log). File sizes vary from 3 MB (Mail) to 111 MB (RMAccess). Snippets of
the contents of each test file can be found in the appendix.

The test machine was an AMD Sempron 2200+ system with 512 MB memory and
Seagate 160 GB ATA drive, running Microsoft Windows 98.

4.3 Experimental results and their discussion

Tables 1 and 2 show the measured experimental results. Table 1 contains compression
results of the test files using gzip only, and the five variants of the proposed transform
combined with gzip. For each program and file a bitrate is given in output bits per
input character, hence the smaller the values, the better. Below there is an average
bitrate computed for all the seven test files, and the average improvement compared
to the general purpose algorithm result (gzip in Table 1). At the bottom, the measured
compression and decompression times are given in seconds.

Table 1. Log file compression using gzip as back-end algorithm

 gzip LP1+gzip LP2+gzip LP3+gzip LP4+gzip LP5+gzip
2005access 0.445 0.209 0.215 0.215 0.212 0.171
Cernlib2005 0.276 0.218 0.172 0.171 0.185 0.182
FP 0.563 0.409 0.358 0.352 0.340 0.332
Mail 1.065 0.853 0.859 0.859 0.741 0.720
MYSQL 0.639 0.641 0.435 0.434 0.402 0.298
RMAccess 0.960 0.829 0.819 0.818 0.819 0.819
Syslog 0.386 0.317 0.318 0.318 0.275 0.225
Average 0.619 0.497 0.454 0.452 0.425 0.392
Improvement – 19.79% 26.71% 26.92% 31.38% 36.61%
Comp. time (s) 16.7 17.1 21.5 22.2 42.1 41.5
Decomp. time (s) 5.8 9.8 11.3 14.3 18.0 18.8

Log files are quite well compressible with gzip. The attained bitrates vary between

1.065 bpc for Mail (about 1:8 compression ratio) and 0.276 bpc for Cernlib2005
(about 1:29 compression ratio).

The effect of applying the first variant of the transform is positive (up to 53%
improvement in case of 2005access) with the sole exception of MYSQL (very slight
loss). The second variant brings improvement for four test files, the highest for
MYSQL (32% vs. variant 1). The measured third variant improvement is very small. It
may be so that the test suite lacks a file with characteristics allowing LP3 to shine.
These three variants allow streamed compression, and they are suited for on-line
compression of current log files. One of them can be chosen, depending on processing

64Fast and efficient log file compression

time requirements and the type of log file – sometimes LP1 may be the best, but LP2
(or LP3) is suggested as a better scheme on average.

Variants 4 and 5 were designed for efficient long-term storage of log archives.
Table 1 shows the results of combining them with gzip: compared to variant 3, the
average improvement is 6% for LP4 and 13% for LP5. Two results were not
improved: Cernlib2005 and RMAccess. The highest improvement was measured for
Syslog (about 14% for LP4, and 29% for LP5) and Mail (about 14% for LP4, and
16% for LP5). LP5 was better than LP4 for 6 of 7 files (the results for RMAccess were
the same).

As log rotation and archiving is usually done when user activity in the system is
low, the time requirements are not so tight as for on-line log compression. Therefore,
slower but more effective back-end compression algorithms can be used instead of
gzip. Table 2 shows compression results of the test files using variant 5 of the
transform combined with LZMA and PPMVC. For comparison, the results of using
only the general-purpose algorithms were included. Besides LZMA and PPMVC,
bzip2 and lrzip were also tested. For the latter, the times are not listed, as lrzip had to
be tested on a different system platform.

Table 2. Log file compression using other back-end algorithms

 lrzip bzip2 LZMA LP5+LZMA PPMVC LP5+PPMVC
2005access 0.272 0.246 0.215 0.119 0.191 0.104
Cernlib2005 0.171 0.181 0.182 0.136 0.139 0.133
FP 0.397 0.281 0.317 0.246 0.222 0.163
Mail 0.686 0.645 0.543 0.499 0.447 0.354
MYSQL 0.425 0.463 0.326 0.207 0.325 0.199
RMccess 0.734 0.736 0.626 0.577 0.588 0.534
Syslog 0.315 0.245 0.279 0.186 0.191 0.158
Average 0.428 0.400 0.355 0.281 0.300 0.235
Improvement – – – 20.82% – 21.77%
Comp. time (s) – 246.8 660.4 194.1 79.3 95.6
Decomp. time (s) – 27.2 6.4 15.1 76.4 79.5

The proposed transform improves the effectiveness of baseline algorithms in both
cases (i.e., LZMA and PPMVC). The result of LP5+PPMVC is on average over 41%
better than bzip2’s. The only drawback of LP5+PPMVC is the relatively long
decompression time. In cases where log archive has to be decompressed often (e.g.,
for data mining purposes), LP5+LZMA should be used instead, as it is over five times
faster in decompression, though more than two times slower in compression. Notice
that LP5+LZMA is more than three times faster in compression than LZMA alone. In
case when both compression and decompression must be fast, LP5+gzip remains the
best solution.

To ease the comparison, Figure 1 shows the compression ratio (as original file
length to compressed file length) attained by the tested schemes.

65 Przemyslaw Skibinski and Jakub Swacha

0

5

10

15

20

25

30

35

gz
ip

LP
1+g

zip

LP
2+g

zip

LP
3+g

zip

LP
4+g

zip

LP
5+g

zip lrz
ip

bz
ip2

LZ
MA

LP
5+L

ZMA

PPMVC

LP
5+P

PMVC

Fig. 1. Comparison of compression ratio

Conclusions

Contemporary information systems are replete with log files, often taking a
considerable amount of storage space. It is reasonable to have them compressed, yet
the general-purpose algorithms do not take full advantage of log files redundancy.

The existing specialized log compression schemes are either focused on very
narrow applications, or require a lot of human assistance making them impractical for
the general use.

In this paper we have described a fully reversible log file transform capable of
significantly reducing the amount of space required to store the compressed log. The
transform has been presented in five variants aimed at a wide range of possible
applications, starting from a fast variant for on-line compression of current logs
(allowing incremental extension of the compressed file) to a highly effective variant
for off-line compression of archival logs.

The transform was not tuned for any particular type of logs, its set of features was
designed for different types of logs, and the obtained test results show it manages to
improve compression of different types of log files. It is lossless, fully automatic (it
requires no human assistance before or during the compression process), and it does
not impose any constraints on the log file size.

The transform definitely does not exploit all the redundancy of log files, so there is
an open space for future work aimed at further improvement of the transform
effectiveness.

66Fast and efficient log file compression

References

1. Balakrishnan, R., Sahoo R. K.: Lossless Compression for Large Scale Cluster Logs.
IBM Research Report RC23902 (W0603-038), March 3, (2006).

2. Gailly, J.-L.: gzip 1.2.4 compression utility. http://www.gzip.org. (1993).
3. Kolivas, C.: lrzip 0.18 compression utility. http://ck.kolivas.org/apps/lrzip. (2006).
4. Kulpa A., Swacha, J, Budzowski R.: Script-based system for monitoring client-side

activity. In: Abramowicz, W., Mayr, H. (eds.): Technologies for Business Information
Systems. Springer (2007).

5. Maximum Compression (lossless data compression software benchmarks).
http://www.maximumcompression.com. (2007).

6. Pavlov, I.: 7-zip 4.42 compression utility. http://www.7-zip.org. (2006).
7. Rácz, B., Lukács, A.: High density compression of log files. In: Proceedings of the

IEEE Data Compression Conference, Snowbird, UT, USA, (2004), p. 557.
8. Rácz, B., private correspondence, (2007).
9. Seward, J.: bzip2 1.0.2 compression utility. http://sources.redhat.com/bzip2. (2002).
10. Skibiński, P., Grabowski, Sz., and Deorowicz, S.: Revisiting dictionary-based

compression. Software – Practice and Experience, 35(15), (2005), pp. 1455–1476.
11. Skibiński, P., Grabowski, Sz.: Variable-length contexts for PPM. In: Proceedings of

the IEEE Data Compression Conference, Snowbird, UT, USA, (2004), pp. 409–418.

Appendix

Example snippets of the contents of the files used in the tests:

2005access

65.65.89.58 - - [24/Jan/2005:07:58:47 -0700] "GET
/dods/fsl/01hr/2005024/20050241400_01hr.nc HTTP/1.0" 200 376472

209.153.165.34 - - [24/Jan/2005:08:04:44 -0700] "GET
/dods/fsl/01hr/2005024/20050241500_01hr.nc HTTP/1.0" 404 311

128.117.15.119 - - [24/Jan/2005:08:08:42 -0700] "GET /dods/uniCat-model.xml HTTP/1.0"
404 291

128.117.15.119 - - [24/Jan/2005:08:08:50 -0700] "GET /dods/model/ HTTP/1.0" 200 31307
204.62.251.81 - - [24/Jan/2005:08:08:51 -0700] "GET /cgi-bin/dods/nph-nc/dods/model/

HTTP/1.1" 200 -

Cernlib2005

g77 -c -O -funroll-loops -fomit-frame-pointer -fno-second-underscore -fno-automatic
 -fno-f90 -fugly-complex -fno-globals
 -fugly-init -Wno-globals -I/Volumes/SandBox/fink/sw/src/fink.build/cernlib2005-
2005-11/2005/src/mclibs/pdf -I/Volumes/SandBox/fink/sw/src/fink.build/cernlib2005-
2005-11/2005/src/mclibs/pdf -I/Volumes/SandBox/fink/sw/src/fink.build/cernlib2005-
2005-11/2005/src/mclibs/pdf/spdf -
I/Volumes/SandBox/fink/sw/src/fink.build/cernlib2005-2005-11/2005/src/include -
DCERNLIB_LINUX -DCERNLIB_UNIX -DCERNLIB_LNX

67 Przemyslaw Skibinski and Jakub Swacha

 -DCERNLIB_PPC -DCERNLIB_QMGLIBC
 -DCERNLIB_MACOSX -o archive/sfkbmr2.o sfkbmr2.F

rm -f archive/sfkbmr5.o

FP

172.159.188.78 - - [03/Feb/2003:03:07:44 +0100] "GET /info/f4u.htm HTTP/1.1" 200 41011
"http://www.fighter-planes.com/data4050.htm" "Mozilla/4.0 (compatible; MSIE 6.0;
Windows 98)"

202.156.2.170 - - [03/Feb/2003:03:07:45 +0100] "GET /thumbn/jsf35_r.jpg HTTP/1.1" 304 -
"http://www.martiworkshop.com/lf2forum/viewtopic.php?t=5832&highlight=firzen"
"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.0.1) Gecko/20020823
Netscape/7.0"

152.163.188.167 - - [03/Feb/2003:03:08:00 +0100] "GET /full/buccan.jpg HTTP/1.0" 200
32618 "http://www.fighter-planes.com/data6070.htm" "Mozilla/4.0 (compatible; MSIE
6.0; AOL 7.0; Windows NT 5.1; .NET CLR 1.0.3705)"

Mail

2007-01-14 06:26:01 cwd=/root 5 args: /usr/sbin/sendmail -i -FCronDaemon -oem root
2007-01-14 06:26:03 1H5xsX-0005PU-QT SA: Debug: SAEximRunCond expand returned: '0'
2007-01-14 06:26:03 1H5xsX-0005PU-QT SA: Action: Not running SA because

SAEximRunCond expanded to false (Message-Id: 1H5xsX-0005PU-QT). From
<root@research.pl> (local) for root@research.pl

2007-01-14 06:26:05 1H5xsX-0005PU-QT <= root@research.pl U=root P=local S=632
T="Cron <root@server> php /home/www/research.pl/query/query.php" from
<root@research.pl> for root

MYSQL

at 818
#070105 11:53:30 server id 1 end_log_pos 975 Query thread_id=4533 exec_time=0

 error_code=0
SET TIMESTAMP=1167994410;
INSERT INTO LC1003421.lc_eventlog (client_id, op_id, event_id, value) VALUES('', '',

'207', '0');
at 975
#070105 11:53:31 server id 1 end_log_pos 1131 Query thread_id=4533

 exec_time=0 error_code=0

RMAccess

207.46.98.113 - - [21/Mar/2006:10:28:35 -0500] "GET robots.txt HTTP/1.0" 404 213
[msnbot/1.0 (+http://search.msn.com/msnbot.htm)] [] [UNKNOWN] 0 0 0 0 0 9001

207.46.98.113 - - [21/Mar/2006:10:28:35 -0500] "GET ramgen/ferc/120905/ferc120905.smi
HTTP/1.0" 200 359 [msnbot/1.0 (+http://search.msn.com/msnbot.htm)] []
[UNKNOWN] 162 0 0 0 0 9002

68Fast and efficient log file compression

65.216.119.102 - - [21/Mar/2006:10:49:48 -0500] "GET wm/revnine.wmv HTTP/1.0" 404 213
[contype] [] [UNKNOWN] 0 0 0 0 0 9003

198.40.41.250 - - [21/Mar/2006:10:55:05 -0500] "GET ramgen/ferc/031606/ferc031606.smi
HTTP/1.0" 200 359 [Mozilla/4.0 (compatible;MSIE 6.0;Windows NT 5.1)] []
[UNKNOWN] 162 0 0 0 0 9005

Syslog

Jan 19 06:30:01 server /USR/SBIN/CRON[11013]: (root) CMD (lynx --source

http://www.research.pl/index1.html > /home/www/research.pl/index.html)
Jan 19 06:30:02 server kernel: IN-world:IN=eth0 OUT=

MAC=ff:ff:ff:ff:ff:ff:00:e0:81:27:d1:87:08:00 SRC=64.34.174.198
DST=64.34.174.255 LEN=78 TOS=0x00 PREC=0x00 TTL=128 ID=12552
PROTO=UDP SPT=137 DPT=137 LEN=58

Jan 19 06:30:02 server apache: PHP Warning: mysql_num_rows(): supplied argument is not a
valid MySQL result resource in /home/www/research.pl/ktokto/index.phtml on line 11

Jan 19 06:30:07 server kernel: IN-world:IN=eth0 OUT=
MAC=ff:ff:ff:ff:ff:ff:00:e0:81:27:d1:87:08:00 SRC=64.34.174.198
DST=64.34.174.255 LEN=78 TOS=0x00 PREC=0x00 TTL=128 ID=12566
PROTO=UDP SPT=137 DPT=137 LEN=58

69 Przemyslaw Skibinski and Jakub Swacha

