
Efficient Processing Regular Queries In
Shared-Nothing Parallel Database Systems

Using Tree- And Structural Indexes ?

Vu Le Anh, Attila Kiss

Department of Information Systems, ELTE University, Hungary
leanhvu@inf.elte.hu, kiss@ullman.inf.elte.hu

Abstract. In this paper, we introduce and study an efficient regular
queries processing algorithm on a very large XML data set which is frag-
mented and stored on different machines. The machines are connected by
the high speed interconnection. In this system the efficiency of a query
processing algorithm depends on two main factors: the waiting time for
the answer and the total query processing and communication cost over
all machines of the system. In the partial processing approach, the query
is sent to and partially evaluated at each server in parallel. The paral-
lelism reduces the waiting time, but there are several redundant oper-
ations as it has to compute all possible cases for each fragment. In the
stream processing approach, the query processing cost is minimized by
parsing the data graph with the query. A fragment is visited if it is neces-
sary, but there is no parallelism and the communication cost is high. To
take the advantages of the shared-nothing parallel system, our algorithm
is based on the partial evaluation. We describe two types of redundant
operations. They are rejected by pre-computing the query on our tree-
and structural indexes. The sizes of the indexes and the processing costs
over them are considered as constants. Our algorithm overcomes two
above algorithms according both the waiting time and the total query
processing and communication cost criteria both in theory and in exper-
iment.

1 Introduction

There are two motivational factors in the causation of the environment described
in this paper: Shared-nothing Parallel Database System [1] and XML [13]. Our
concept of shared-nothing parallel database system is the system of machines
connected by high speed interconnection. The parallel database systems are be-
ing used in a wide variety of systems as they are extensible and are powered
by the growth of RAM volumes and the speed of local network nowadays. On
the other hand, XML has become the dominant standard for exchanging and
querying documents over the Internet. XML offers its users many advantages,

? The authors thank the (partial) support of the Hungarian National Office for Re-
search and Technology under grant no.: RET14/2005.

Y. Ioannidis, B. Novikov and B. Rachev (Eds.): Local Proceedings of ADBIS 2007, pp. 70-85
© Technical University of Varna, 2007

2

//a/b//a

q0 q1 q2 q3

a b a

* * 1 a

2 b 3 a 4 a

5 a 6 c 7 c 8 b 9 a 10 b

11 b 12 c 13 a 14 b 15 b 16 a

17 a 18 b 19 a 20 e 21 f

22 a 23 b24 b

25 a

F0

F1

F2

F3

F4

F5

(a) Regular query Q

(b) XML Tree T

Fig. 1. An Example of fragmented XML tree and regular query

especially in self-describing, extendibility and inter-operability. XML is a good
choice for representing various types, dynamic schema or open data sets. In
this paper, we work with the shared-nothing parallel database system which is
considered as a very large XML data set stored and fragmented over machines.

To retrieve XML and semi-structured data, several query languages have been
proposed (XML-QL [10], UnSQL [9], XPath [11], and XQuery [12]). The common
feature of these languages are the use of regular path expressions. A data node
is an element of the answer of a regular query, if the path from the root to this
node matching the corresponding regular path expression. This paper introduces
and analyzes efficient techniques for processing regular queries in shared-nothing
parallel database system using tree and structural indexes. The criteria of the
efficiency are: the waiting time for the answer and the total query processing and
communication cost over all machines of the system. There are two approaches
for processing regular queries in distributed environment: stream processing and
partial processing. We will study and compare our algorithm with the partial
parallel processing algorithm represented for partial processing approach [5, 4]
and the tree traversal algorithm represented for stream processing approach [5,
4].

As an example, we consider the regular query E = //a/b//a (written in
XPath syntax) over the XML tree T depicted in Fig.1(b). T is fragmented by
F0, . . . , F5. E can be represented by the nondeterministic finite automata Q
depicted in Fig. 1(a). The answer of E over T is the set of data nodes A =
{5, 13, 16, 19, 22, 25}. A is determined by traversing T and Q with following rules:
(1) beginning at (1, q0) (the pair of the roots of T and Q) ; (2) From (u, q) we
visit (v, p) for each v is a child of u and there exists a transition from state q to
state p with the label of u. (3) u is an element of A if some (u, q) is visited and
there exists a transition from state q to final state p with the label of u.

In fragmented environment, the above algorithms works differently as follows:

71 Vu Le Anh and Attila Kiss

3

Tree traversal. The traversal algorithm is modified as follows. In rule (2), if
u is the root of another fragment then we jump to and continue processing over
the sub-fragment. After finishing the process the sub-fragment will give back
the control and the result to the parent fragment and the parent fragment will
continue processing. In the example, with the depth-first traversal the the list of
visited fragments sorted by time is F0F1F0F1F0F2F5F2F5F2F0F3F4F3F4F3F0.

Partial Parallel Processing. The basic processing operation (F, q) is to process
over a fragment F beginning at the root of F with state q without communi-
cating other sites or operations. If the operation (F2, q3) is processed, there is
no communication with the operations over F0 or F5 and the result is {17}. We
process each site in parallel. At each site, we compute all possible processing
operations and find out the relationship of the operations. The relationship of
operations tells us about which operations are processed over the child-fragment
if some operation is processed over the parent-fragment. In the example, in the
site containing F2 we process four operations (F2, q0), . . . , (F2, q3) over F2 and
we will find out following facts of relationship of the operations:

if (F2, q0) is processed, (F5, q0) and (F5, q1) will be processed
if (F2, q1) is processed, (F5, q2) will be processed
if (F2, q2) is processed, (F5, q2) and (F5, q2) will be processed
Based on all map of operations from the sites the chosen master site will

decide which operations are reachable if the operation (Froot, qroot) is processed
(Froot : the fragment containing the root of the tree; qroot: is the start state of
the query graph). The reachable operations in the example are: (F0, q0), (F1, q0),
(F1, q2), (F2, q0), (F5, q0), (F5, q1), (F3, q0), (F3, q1), (F4, q0), (F4, q3). Finally,
each site only sends the sub-results of reachable operations, which has been
computed in previous phases, to the master site. The result of the query is the
union of them.

There is no parallelism in the tree traversal algorithm so the waiting time
is not reduced. Moreover the communication cost is high as each fragment and
each site may be visited by many times (F0 is visited 5 times, F1 is visited 2
times, etc). With the partial parallel processing algorithm, the waiting time is
reduced by the parallelism. The communication cost is also reduced as each site
is visited only one time, and the total network traffic is independent from the
size of the XML tree [4]. However, the total processing cost may be high as for
each fragment we process for all possible operations. This is not good in case
the system serves many clients in the same times.

Our first contribution is to introduce the indexes. The tree-index stores in-
formation of the paths connecting the roots of fragments. The DL-tree-indexes
coming from the DL-indexes [7] summarize the fragment structure. The total size
of the indexes depends only on the number of fragments, which is considered as
constant in shared-nothing parallel database system. Our second contribution is
an efficient algorithm for processing regular queries over shared-nothing parallel
database system. We define two types of redundant operations in the partial pro-
cessing approach. The redundant operations of type 1 are the operations which
are not reachable from the operation (Froot, qroot). The redundant operations

72Efficient Processing Regular Queries In Shared-Nothing Parallel Database Systems ...

4

type 2 are the operations which do not find out any matching nodes. The re-
dundant operations type 1 are determined by processing the query over the tree
index . The redundant operations type 2 are restrained by processing over some
structural index of the fragment. Our algorithm firstly processes on the indexes
to reject redundant operations. The processing cost is considered as constant in
case the total size of the index is considered constant. The pre-computing on
the indexes not only decreases the total query processing in the partial evalua-
tion phrase but also minimizes the communication cost and the waiting time as
sites communicate only one time with the master site and processing with mini-
mal number of redundant operations. Our third contribution is an experimental
study evaluating our algorithm versus other approaches. Our experimental re-
sults show that our algorithm overcomes the other algorithms according both
the waiting time and the total query processing and communication cost.

The remainder of the paper is organized as follows. Section 2 is the prelimi-
nary. We introduce the concepts of the data model and the regular queries and
a template for processing over a fragment using in this paper. Section 3 is about
stream processing vs. partial processing approaches. We study two algorithm:
tree traversal algorithm represented for stream processing approach and par-
tial parallel processing algorithm represented for partial processing approach. In
section 4, we introduce and describe the technics to using tree- and structural
indexes to processing regular queries over share-nothing parallel database sys-
tem. In section 5, we present our experiments. Section 6 is the related works.
Section 7 concludes the paper.

2 Preliminaries

2.1 Data Model

The data set is modelled as a labelled tree T . Σ is an alphabet. Each node v of
T is labelled by a label value label(v) ∈ Σ. T is fragmented by a collection F of
disjoint trees, or fragments Fi. The fragments are stored in different sites (or ma-
chines). The sites are connected with each others by high speed interconnection.
The numbers of sites and fragments are considered as constants.

The fragment containing the root of the tree T , is called the root fragment
denoted by Froot. In Fig. 1, this is fragment F0. Given two fragments F and F ′,
we say that F is a child-fragment of F ′ and F ′ is the parent-fragment of F if there
exists node v ∈ F ′ such that the root w of F is a child of v in the original tree T .
In Fig. 1, fragment F5 is a child-fragment of F2 and F0 is a parent-fragment of
F1 . site(F) denotes the site containing fragment F . Naturally, we assume that
site(F) 6= site(F ′) if F is a child-fragment of F ′.

2.2 Regular Queries

A regular expression over Σ alphabet is defined as follows:

R = ε| a | R1.R2 | R1|R2 | R∗1

73 Vu Le Anh and Attila Kiss

5

where ε is the empty word; a ∈ Σ is a letter; R1, R2, R are regular expressions;
(.), (|), (∗) are the concatenation-, the alternation-, and the iteration operations
respectively. Each regular query is defined by a regular expression, and each reg-
ular expression also defines a regular language over Σ, which contains all words
over Σ marching the regular expression. We call the rooted labelled directed
graph of the finite nondeterministic automata, which computes the regular lan-
guage defined by the regular expression, the query graph of the query. The start
state of the automata is denoted by qroot. A data node u is an element of the
result of regular query Q over tree T , if the label of the path from the root to u
matches the according path expression. You can see the example of query graph
in Fig. 1. We just remark our readers that the formula writing the query in the
example is in XPath syntax [11], which is converted easily to our defined syntax.

2.3 Processing Over Fragment

We introduce and study basic operation processing a fragment begin at the root
with some state of the query graph. The template of the operation processing
fragment F with state q is as follows:

Fragment-Process(F ,q) Scan(u,q)
begin begin
1. FragResult ← ∅ 1. if u is stored in another fragment then
2. Pre-Process(F ,q) 2. Working-Link-Node(u,q)
3. Scan(root(F),q) 3. else
4. Post-Process(F ,q) 4. for each state p ∈ Matching(q, label(u)) do
5. return FragResult 5. if p is final state then
end 6. FragResult= FragResult ∪ {u}

7. for each edge (u, v) do
Matching(q,label) 8. Scan(v,p)
begin end
1. S ← ∅
2. for each transition (q, label, p) do
3. S ← S ∪ {p}
4. return S
end

In the generalized fragment processing algorithm, the Matching(q,label)
procedure returns the set of states p where there exists a transition from state
q to state p labelled by label. We traverse the data graph with the Scan pro-
cedure. If a pair (u, q) is visited by calling Scan(u,q), these pairs (v, p) are
also visited for each edge (u, v) and p ∈ Matching(q,label(u)). Each pair (u, q)
is visited maximum one time as T is a tree. Therefore, the Scan procedure
is never in infinity loop. The Working-Link-Node procedure is called when
we meet a node stored in another fragment. The main differences between the
query processing algorithms over distributed environment are presented by the
implementation of Working-Link-Node, Pre-Process and Post-Process
virtual procedures for working with nodes stored in another fragment, doing
before or after processing fragment respectively.

74Efficient Processing Regular Queries In Shared-Nothing Parallel Database Systems ...

6

3 Stream Processing vs. Partial Processing Approaches

We study two most popular approaches for processing regular queries in dis-
tributed environment: stream processing and partial processing. We study tree
traversal algorithm represented for stream processing algorithm approach in sub-
section 3.1 and partial parallel processing algorithm represented for partial pro-
cessing approach in subsection 3.2.

3.1 Tree Traversal Algorithm

The main behavior of stream processing approach when we meet a node stored
in another fragment is to jump to the new fragment for continuing processing.
The parent process waits until the process operation over the child-fragment
finishes, then it receives the result of the operation from the child-fragment and
continue processing. Therefore, the Post-Process and Working-Link-Node
procedures are implemented as follows:

Post-Process(F ,q) Working-Link-Node(u,q)
begin begin
1. if F 6= Froot then 1. Let F be the remote fragment containing u
2. Send-Result(Result) 2. Fragment-Process(F ,q) (Calling from remote)
end 3. subResult ←Receive-Result(F)

4. FragResult ← subResult ∪ FragResult
end

The Send-Result procedure is used for sending the result to the parent-
fragment. The Receive-Result(F) procedure is used for receiving the result
from the operation over child fragment F . A Receive-Result procedure call-
ing synchronizes with some Send-Result procedure calling. Finally, the re-
sult of the query on tree T is the result of the fragment processing operation
(Froot, qroot). It is determined by calling the Spider procedure.

Spider(Q)
begin
1. return Fragment-Process(Froot,qroot)
end

The example of the tree traversal algorithm is shown in section 1. The tree
traversal algorithm can be considered as a sequence of calling the Fragment-
Process procedure. There is no parallelism. Moreover each site and fragment
can be visited many times and the number of the communication between sites
is not constant, it depends on the query graph. Therefore, the waiting time for
the answer is very high, and it does not take the advantages of the share-nothing
parallel database systems.

75 Vu Le Anh and Attila Kiss

7

3.2 Partial Parallel Processing Algorithm

The main behavior of the partial processing approach is to process each operation
independently. There is no communication with other operation while processing.
When we meet some node stored in another fragment, we just write down the
relationship between the current operation and the corresponding operation over
the child fragment. Therefore, the Pre-Process and Working-Link-Node
procedures are implemented as follows:

Pre-Process(F ,q) Working-Link-Node(u,q)
begin begin
1. bF ← F 1. Let F be the remote fragment containing u
2. bQ ← q 2. Map ← Map ∪ ((bF, bQ), (F, q))
end end

The fact ”if operation (bF, bQ) is processed then (F, q) will be processed” is
coded by ((bF, bQ), (F, q)). (bF, bQ) is current operation. bF and bQ variables are
initialized in the Pre-Process procedure. Map is the global variable storing all
relationships of operations we find out when processing over the site. The query
processes over sites are independent and in parallel. At each site, all possible
operations are processed firstly. After that the map of operations is sent to the
chosen master site. Then each site waits until the master site sends the set of
operations, which are reachable when we process the operation (Froot, qroot). Fi-
nally, all sites just send the reachable results to the master site and the union of
these result is the result of the answer. Master(Q) procedure is run in the mas-
ter site to control the sites processing query graph Q. The partial result of query
graph Q is computed in site S by using the Site-Process(S,Q) procedure. The
reachable operations are determined by the Compute-Reachable-Results
procedure on the master site. In the Master procedure, Map[S] is the map of
the operations we receive from site S and RO[S] is the set of reachable operations
of site S.

Master(Q) Compute-Reachable-Operations()
begin begin
1. for each site S do in parallel 1. for each site S do
2. Site-Process(S,Q) (Calling from remote) 2. RO[S] ← ∅
3. Map[S]← Receive-Map(S) 3. Stack ← ∅
4. joint: waiting until receiving all map result 4. Stack.push((Froot, qroot))

from every site 5. while Stack 6= ∅ do
5. Compute-Reachable-Operations() 6. (F, q) ← Stack.pop()
6. for each site S do in parallel 7. Let S be the site containing F
7. Send-Reachable-Operations(S,RO[S]) 8. RO[S] ← RO[S] ∪ (F, q)
8. subResult[S] ←Receive-Result(S) 9. for each ((F, q), (F ′, q′)) ∈ Map[S] do
9. joint: waiting until receiving all result 10. Stack.push((F ′, q′))

from every site end
10. Result ← ∅
11. for each site S do
12. Result ← Result ∪ subResult[S]
end

76Efficient Processing Regular Queries In Shared-Nothing Parallel Database Systems ...

8

Site-Process(S,Q)
begin
1. Map ← ∅
2. for each fragment F of S do
3. for each state q of Q do
4. result[F, q]←Fragment-Process(F ,q)
5. Send-Map(Map)
6. RO←Receive-Reachable-Operations()
7. Result ← ∅
8. for each (F, q) ∈ RO do
9. Result ← Result ∪ result[F, q]
10.Send-Result(Result)
end

The sequence of the activities ordered by time when processing a query graph
Q is:

1. Activating the query process over each site (line 1-2 of the Master procedure).
2. Computing the partial result at each site (line 1-4 of the Site-Process procedure).
3. Synchronization: Sending the map of the result from some site to the master site

(line 5 in the Site-Process procedure, line 3 in the Master procedure).
4. The master waits until receiving all map results (line 4 in the Master procedure).
5. Determining reachable operations(line 5 in the Master procedure).
6. Synchronization: Sending the reachable results to each site (line 6 in the Site-

Process procedure, line 7 in the Master procedure).
7. Each site determines the site result (line 7-9 in the Site-Process procedure).
8. Synchronization: Sending the result from some site to the master site (line 10 in

the Site-Process procedure, line 8 in the Master procedure).
9. The master waits until receiving all site results (line 9 in the Master procedure).

10. Determining the final result (line 10-12 in the Master procedure).

The waiting time for the answer is reduced by the parallelism. Each site and
fragment is visited only one time. Moreover the number of the communication
between sites is constant, and the size of communicated data is only depend
on the size of the query and the result [4]. We can reduce the waiting time by
expanding the system with more machines (sites). The total processing cost is
higher than the necessity as we process for each fragment with all possible states.

4 Processing Queries with Tree- and Structural Indexes

We begin this section by defining two types of redundant fragment processing
operations in partial processing approach.

Definition 1. (F, q) is redundant type 1 if it is not reachable when we process
the operation (Froot, qroot). (F, q) is redundant type 2 if there is no data node in
the fragment F matching the query when we process the operation.

In the example in Fig. 1, (F2, q2) is a redundant operation type 1 but not a
redundant operation type 2 as if from all operations over F2, (F2, q0) is the only

77 Vu Le Anh and Attila Kiss

9

F0

F1 F2 F3

F5 F4

a

a b a

b a

b ac ε

a b

(a)

a

*

*

a

e,f

a,b

a

e,f

(b) F4 Fragment

0-depth 1-depth 2-depth

Fig. 2. Tree and structural indexes of the tree T in Fig. 1(b)

operation which is reachable from (F0, q0). Furthermore, if (F2, q2) is processed,
node 18 matches the query. In another case (F4,q0) is a redundant operation
type 2 but not a redundant operation type 1. Obviously, we do not need to carry
out an operation if it is redundant type 1 or 2.

4.1 Tree Index

Definition 2. Tree TI = (VI , EI) is the tree index of the XML tree T fragmented
by F, in which:
(i) VI =F and each index node F ∈ VI is labelled by the root of fragment F
(ii) (F, F ′) is an index edge if F is parent fragment of F ′. (F, F ′) is labelled by
the label path of path p, which is the path connecting from the root of F to the
root of F ′ but we reject two roots.

The tree index stores the information about the paths connecting the roots of
the fragments. The index tree of the fragmented tree T in Fig 1 is depicted in
Fig 2(a). In this tree, (F0, F2) is labelled by a.c which is the label path of the
path < 3, 7 >; (F0, F3) is labelled by ε as the root of F0 is the parent of the root
of F3. The size of the index tree can be considered constant as the number of
fragments is considered constant.

The (F, q) operations which are not redundant type 1 are determined by the
Process-Index-I procedure as follows:

Process-Index-I(TI ,Q) Matching-II((F, F ′),q)
begin begin
1. RO ← ∅ 1. S ← Matching(q, label(Root(F)))
2. Stack ← ∅ 2. Let < l1, . . . , lk > be the label of (F, F ′)
3. Stack.push((Froot, Root(Q))) 3. for i = 1 to k do
4. while Stack 6= ∅ do 4. S′ ← ∅
5. (F, q) ← Stack.pop() 5. for each state q ∈ S do
6. RO ← RO ∪ (F, q) 6. S′ ← S′∪ Matching(q,li)
7. for each index edge (F, F ′) do 7. S ← S′

8. for each q′ ∈Matching-II((F, F ′), q) do 8. return S
9. Stack.push((F ′, q′)) end
10.return RO
end

78Efficient Processing Regular Queries In Shared-Nothing Parallel Database Systems ...

10

The structure of Process-Index-I procedure is similar to the Compute-
Reachable-Results procedure’s in the partial parallel processing algorithm.
The difference between two procedures is the way expanding new reachable oper-
ations. We use the Matching-II procedure (at line 8) in the first procedure and
Map[S] (at line 9) and in the second. Both of them give the same information
that ”Which operations over the child-fragment are reachable if some operation
over parent-fragment is reachable.”. The correctness of the Matching-II can
be proven easily as it is considered as a sequence of applying the Matching
procedure. Therefore, the Process-Index-I procedure will return the set of op-
erations which are reachable when we process (Froot, qroot). These operations
are not redundant type 1. The processing cost over tree index is considered as
constant as the size of the tree index is considered as constant.

4.2 Structural Indexes

We restrain redundant operations type 2 by processing the query graph over
structural indexes of the fragments. In general, a structural index IG of the
graph G is built by the following general procedure: (1) partitioning the data
nodes into classes according to some equivalence relation, (2) making an index
node for each equivalence class and the index node is labelled by the union of
the labels of the data node elements, and (3) adding an index edge from index
node I to index node J if there exists an edge from data node u to data node
v, where u is an element of I and v is an element of J . In the case G is a rooted
graph, the index node root(IG) containing the root of G is defined as the root of
IG .

The traversal rules for processing operation (IG ,q) over the rooted index
graph IG beginning with state q as follows: (1)We begin at (root(IG),q) .(2) From
(I, p) we visit (J, p′) for each index edge (I, J) and there exists a transition from
state p to state p′ with the label l ∈ label(I). (3) I matches the query if some
(I, p) is visited and there exists a transition from state p to final state p′ with
label l ∈ label(I).

Proposition 1. Let I be a structural index of fragment F . (F, q) is a redundant
operation type 2, if there is no index node matching the query when we process
(I,q) operation.

Proof. We use indirect method. We assume (F, q) is not a redundant operation
type 2. It implies that there exists a path u1u2 . . . un and a sequence of states
q0q1 . . . qn such that (i) u1 is the root of F and q0 = q (ii) ui are data nodes of
F (iii) qn is final state (iv) there is a transition from state qi−1 to state qi with
label label(ui) (i = 1, . . . , n). Let U1, . . . , Un be the index nodes of I containing
u1, . . . , un respectively. The construction of the index implies that (v) U1 is
the root of I (vi) (Ui, Ui+1) are index edges (i = 1, . . . , n − 1). label(ui−1) ∈
label(Ui−1) and there exists a transition from state qi−1 to state qi with label
label(ui) so we can traverse from (Ui−1, qi−1) to (Ui, qi). It implies that Un

matching the query we traverse the query graph beginning at the root of I, U1,
and state q0 = q (conflict).

79 Vu Le Anh and Attila Kiss

11

The proposition gives us a necessary condition to check if (F, q) is a redundant
type 2. The cost for checking the condition depends on the size of the structural
index, which is not bigger than the fragment. The condition is sufficient if the
structural index is the 1-index [14]. However, the size of the 1-index is big in
most cases. The size of the structural index should be constant. Based on the
DL-indexes [7] we introduce and study the DL-tree-indexes using for checking
redundant operations type 2.

The processing cost over a structural index depends on the number of the
labels of the data nodes in each index nodes. We define special label ′∗′ (∗ /∈ Σ)
for matching any label of Σ. If the label of an index node I is ′∗′, we can jump
from (I, q) to any (J, p) where (I, J) is an index edge and there exists a transition
from state q to state p.

Definition 3. Let F be the fragment, h be the depth of F and k be an integer
1 ≤ k ≤ h. The k-depth DL-tree-index of F , Ik, is a structural index in which
the partition of nodes is as follows:

(i) For each 0 ≤ l ≤ k we group the data nodes in the same depth l in the
same index node Il.

(ii) In the case k < h we group the data nodes whose depth is more than k
in the same index node and the index node Ik+1 labelled by ′∗′.
The DL-tree-indexes of fragment F4 of tree T in Fig. 1(b) is shown in Fig. 2(b).
The root of Ik is I0. The Ik has k index nodes in the case k = h otherwise
k + 1 index nodes. We can choose k value as bigger as the size of Ik can be
considered as constant. The process over a structural index Ik of the fragment
F to determine if (F, q) is a redundant type 2 is as follows:

Process-Index-II(Ik,q) Exists-Final-State(S)
begin begin
1. S ← {q} 1. for each state p ∈ S do
2. for i = 0 to k do 2. if p is final state then
3. S′ ← ∅ 3. return true
4. for each state p ∈ S do 4. return false
5. for each label l ∈ label(Ii) do end
6. S′ ← S′ ∪ Matching(p,l)
7. if Exists-Final-State(S′) then Matching-III(I, S)
8. return true begin
9. S ← S′ 1. if ∃ index edge (I, I) then
10.if ∃ Ik+1 ∧ S 6= ∅ then 2. return true
11. if Matching-III (Ik+1, S) then 3. for each state p ∈ S do
12. return true 4. if ∃ transition (p, p′) and p′ is final state then
13. return false 5. return true
end 6. return false

end

Proposition 2. If the Process-Index-II(Ik,q) returns false value, (F, q) is
a redundant operation type 2.

80Efficient Processing Regular Queries In Shared-Nothing Parallel Database Systems ...

12

Proof. Let S0, . . . , Sk be the values of S at the beginning of the loop at line 2
for each i = 0, . . . , k respectively. We will show that ”Si (i = 0, . . . , k) is the
set of states pi, in which (Ii, pi) is visited if (Ik, q) is processed” (1). Obviously
(1) is true for i = 0 as S0 = {0}. The Si+1 computation based on Si at line 4-6
guarantees for the correctness of the proof for (1) by induction.

The return value is false so the condition we check at line 7 and line 11
must be false. Exists-Final-State(Si) returning true value (at line 7) implies
that Si (i = 1, . . . , k) not containing any final state. Therefore, (1) implies that
Ii (i = 0, . . . , k) not matching the query. Matching-III (Ik+1, S) returning
false value (at line 11) implies that Ik+1 does not match the query either. No
index node matches the query when we process (IG , q), so (F, q) is a redundant
operation type 2.

The DL-indexes [7] are quite dynamic and flexible. We can use a DL-tree-index
as the initial index graph and then refining the index so that the size is fit with
the system or the index supports a set of frequently queries [7]. The processing
index over the refining index should be modified so that avoiding the circles in
the index graph. However, the processing cost is constant if the size of the index
is considered as constant.

4.3 Processing Queries with Tree- and Structural Indexes

We store the tree index TI of the system and for each fragment F we also store
Index(F) which is a k-depth DL-tree-index of F on the chosen master site.
The Eff-Master(Q) procedure is run in the master site to control the sites
processing query graph Q. The partial result of query graph Q is computed in
site S by using the Eff-Site-Process(S,Q) procedure.

Eff-Master(Q) Eff-Site-Process(S,Q)
begin begin
1. States ← Process-Tree-I(TI ,Q) 1. RO←Receive-Required-Operations()
2. for each site S do 2. Result ← ∅
3. RO[S] ← ∅ 3. for each (F, q) ∈ RO do
4. for each (F, q) ∈ States do 4. Result ← Result ∪Fragment-Process(F, q)
5. if Process-Index-II(Index(F),q) then 5. Send-Site-Result(SiteResult)
6. Let S be the site containing F end
7. RO[S] ← RO[S] ∪ (F, q)
8. for each site S do in parallel
9. Eff-Site-Process(S,Q) (Calling from remote)
10. Send-Required-Operations(S,RO[S])
11. subResult[S] ←Receive-Site-Result(S)
12.joint: waiting until receiving all result from every site
13.Result ← ∅
14.for each site S do
15. Result ← Result ∪ subResult[S]
end

The sequence of the activities of the query process ordered by time is:

81 Vu Le Anh and Attila Kiss

13

1. Rejecting the redundant operations at master site: (line 1-7 of the Master proce-
dure).

2. Activating the query process at each site (line 9 in the Eff-Master procedure)
3. Synchronization: Sending the required operations to each site (line 10 in the Eff-

Master procedure, line 1 in the Eff-Site-Process procedure).
4. Computing the required operations at each site. (Line 3-4 in the Eff-Site-Process

procedure)
5. Synchronization: Sending the site result from some site to the master site (line 5

in the Eff-Site-Process procedure, line 11 in the Eff-Master procedure).
6. The master waits until receiving all site results (line 12 in the Eff-Master pro-

cedure).
7. Determining the result (line 13-15 in the Eff-Master procedure).

Obviously, the number and the cost of communication in our algorithm is
smaller than two algorithm in section 3. The total cost of query processing in
each site is also smaller as the number of processing operations is fewer. If the
number of fragments is considered constant we can ignore the cost of processing
over tree- and structural indexes. In this case our algorithm overcomes two above
algorithms according both the waiting time and the total query processing and
communication cost criteria.

5 Experiments

We compared the performance of our efficient algorithm using tree and structural
indexes (EPP for short), the partial processing algorithm (PP for short) and
the tree traversal algorithm (TP for short) in the waiting time and the total
processing and communication criteria. We implemented the algorithms in C++
programming language.

Data set and fragmentation. We used the XMark data set containing the
activities of an auction Web site is generated by using the Benchmark Data
Generator [18]. The size of our data set is about 500 Mb. The number of nodes
is 10 267 360 and the number of labels is 77. We uses 19 Linux machines over a
local LAN. We use a program splitting the XML tree into 76 fragments. Each
fragment has about 150 000 nodes. The fragments are chosen randomly to be
stored in the sites.

Queries. We proposed 10 regular path queries representing for different con-
ditions of the environment for our experiments. They are:

1. Q1: //keyword.
2. Q2: //listitem/text/keyword/bold.
3. Q3: //asia/item//keyword/bold.
4. Q4: //listitem//keyword
5. Q5: //people/*/profile/income
6. Q6: //bold | //emph
7. Q7: //asia//bold | //asia//emph
8. Q8: //person//name
9. Q9://item/mailbox/mail

10. Q10://namerica//description//keyword

82Efficient Processing Regular Queries In Shared-Nothing Parallel Database Systems ...

14

We processed these queries with our algorithms many times and measured the
average values of the waiting time and the cost of processing and communication
for each query and each algorithm. Here are the results:

Waiting time(ms) Pro. & Com. time(ms)
Queries TP PP EPP TP PP EPP

Q1 138662 4590 3845 33990 10843 10823
Q2 128900 1987 1765 8760 8780 4529
Q3 83516 2638 1781 7993 16111 7812
Q4 13731 3969 2682 13490 18153 10326
Q5 85461 2093 1910 9780 8677 8360
Q6 136715 6921 6192 59970 14459 14321
Q7 87661 12673 2045 12081 25519 8660
Q8 88925 3208 1843 52560 18380 13209
Q9 117297 7942 1641 40773 14893 5132
Q10 91085 4174 2204 15420 28183 9518

Waiting time. The ratio of the waiting time of three algorithms, EPP : PP
: TP, is 1 : 1.94 : 37.52. Our experiments shows that the partial processing
approach absolutely overcomes the stream processing approach according to the
waiting time criterion. There are two reasons for this explanation: (1) TP does
not use the parallelism like PP and EPP; (2) there are many communication
between sites. In cases Q3, Q7 and Q10, although the processing and commu-
nication cost of TP is lower than PP’s but the waiting time is still higher. EPP
overcomes PP according the waiting time criterion as the ratio is about 50%
and being better in all test cases. Especially in cases Q7 and Q10, there are
a lot of redundant operations for PP but they are restrained by preprocessing
over indexes in EPP.

Processing and Communication Cost. The ratio of the processing and com-
munication cost of three algorithms, EPP : PP : TP, is 1 : 1.77 : 2.75. The
communication cost makes the cost of TP is higher than PP in general. However
the redundant operations types 1 make the total cost of PP is higher than TP
in several cases (Q3, Q7 and Q10). By restraining redundant operations, the
cost of EPP is always the lowest in all test cases among three algorithms.

Our experiments shows that our EPP algorithm is the best among the in-
troduced algorithms according the waiting time and the processing and commu-
nication cost criteria.

6 Related Works

The fundamental concepts of parallel database systems have been found in [1].
Architecture, data placement and query optimization are the focuses of interest.
We use the shared-nothing architecture for our system with no data replace-
ment. Some ideas and suggestions about the fragmentation (data placement)
are introduced in [8].

83 Vu Le Anh and Attila Kiss

15

The problem of optimizing, processing regular path expressions in the context
of navigating semi-structured data in web sites has been introduced and studied
in [2, 3]. The focus of [2] is on the use of local information expressed in the
form of path constraints in the optimization of path expression queries. In [3]
two query optimization techniques is proposed to rewrite a given regular path
expression into another query that reduces the scope of navigation. [4, 5] are
closely related to our work as they studied the distributed query evaluation on
semi-structured data using partial evaluation. The boolean XPath queries [5]
and the structural recursion queries [4] are introduced and studied. The main
difference between these works and our work is the context of the system. All of
them [2–5] assume that the data set is distributed in different machines in ”weak”
relationship and the communication cost may be very expensive. In their context
the fragmentation is not manageable and the indexes describing the relationship
between sites are not suggested. The spirit of the processing algorithms described
in [4, 5] is similar to our partial parallel processing algorithm.

The structural indexes [6, 7, 14–17] are introduced to speed up the query
evaluation over semi-structured data by simulating the data graph by an index
graph. An index graph is equivalent with the data graph over a given query if
the processing the query over the index graph and the query graph bring the
same result. The 1-index [14, 6] is equivalent with the data graph over all regular
queries. The A(k)-index [15] is equivalent with the data graph over all primary
queries not longer than k. The D(k)-index [16], the M(k)-index [17] and DL-
indexes [7] are equivalent with the data graph over a given set of primary queries.
In our context, the size of the structural indexes simulating the fragments are
considered constant so the chosen indexes must be dynamics and adaptive. Our
DL-tree-index are improved from the DL-indexes, which are the most adaptive
and dynamics indexes.

7 Conclusion

We have shown an efficient algorithm processing regular queries in shared-
nothing parallel database systems based on partial evaluation. We define two
types of redundant operations. The redundant operation type 1, which are not
reachable, are determined by the tree structural. The redundant operations type
2, which have no matching node, are restrained by processing over structural
indexes. The DL-tree-indexes are introduced and proposed for this purpose. The
size of the tree index and the DL-tree indexes are considered as constants. The
partial evaluation becomes more effective by restraining redundant operations.
Our experimental study has verified the effectiveness of our techniques.

We plan to extend the current work in a number of directions. First, the
effectiveness of our algorithm depends on the fragmentation. An effective frag-
mentation algorithm concerns with the statics system and the set of frequency
queries. Some ideas are introduced in our work [8]. Second, we plan to extend
our algorithms to handle more general queries in XPath and XQuery. The partial
evaluation, indexes for these queries are open problems.

84Efficient Processing Regular Queries In Shared-Nothing Parallel Database Systems ...

16

References

1. Ameet S. Talwadker 2003. Survey of performance issues in parallel database sys-
tems. In Journal of Computing Sciences in Colleges archive Volume 18, Issue 6.

2. S. Abiteboul, V. Vianu 1997. Regular path queries with constraints. In Proceedings
of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems.

3. M. Fernandez and D. Suciu 1998. Optimizing regular path expressions using graph
schemas. In Proceedings of the 14th Inter. Conference on Data Engineering.

4. D. Suciu 2002. Distributed query evaluation on semistructured data. ACM Trans-
actions on Database Systems Volume 27 , Issue 1.

5. P. Buneman,G. Cong, W. Fan, A. Kementsietsidis 2006. Using partial evaluation in
distributed query evaluation. In Proceedings of the 32nd international conference
on Very large data bases Volume 32, VLDB 2006.

6. A. Kiss, V. L. Anh 2005. Combining Tree Structure Indexes With Structural In-
dexes. In Proceedings of 9th East-European Conference on Advances in Databases
and Information Systems, LNCS 3631.

7. A. Kiss, V. L. Anh 2006. Efficient Processing SAPE Queries Using The Dynamic
Labelling Structural Indexes. In Proceedings of 10th East-European Conference
on Advances in Databases and Information Systems, LNCS 4512.

8. V. L. Anh, A. Kiss, Z. Vinceller 2007. Parallel Processing Search Engine For Very
Large XML Data Sets. In ICAI 2007.

9. P. Buneman,M. Fernandez, and D. Suciu 2000. UNQL: A query language and
algebra for semi-structured data based on structural recursion. In VLDB J.9, Issue
1.

10. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu 1999. A query
language for XML. In Proceedings of the Eights International World Wide Web
Conference (WWW8), Toronto.

11. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay, J. Robie, and
J. Simeon. XML path language (xpath) 2.0. In http://www.w3.org/TR/xpath20,
August 2002.

12. S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Simeon.
XQuery 1.0: An XML Query Language. In http://www.w3.org/TR/xquery/,
November 2006.

13. Extensible Markup Language (XML). In http://www.w3.org/XML/.
14. T. Milo and D.Suciu 1999. Index Structures for Path Expressions. In ICDT, 1999.
15. R. Kaushik, P. Shenoy, P. Bohannon and Ehud Gudes 2002. Exploiting Local

Similarity for Efficient Indexing of Paths in Graph Structured Data. In ICDE,2002.
16. Q. Chen, A. Lim, K. W. Ong 2003. D(K)-Index: An Adaptive structural Summary

for Graph-Structured Data. In ACM SIGMOD 2003, June 9-12.
17. Hao He, Jun Yang 2004. Multiresolution Indexing of XML for Frequent Queries.

In Proceedings of the 20th International Conference on Data Engineering.
18. XMark: The XML benchmark project. http://monetdb.cwi.nl/xml/index.html.

85 Vu Le Anh and Attila Kiss

