
Aggregating Multiple Instances in Relational Database
Using Semi-Supervised Genetic Algorithm-based

Clustering Technique

Rayner Alfred1,2 and Dimitar Kazakov1

1 York University, Computer Science Department, Heslington
YO105DD York, England

2 On Study Leave from Universiti Malaysia Sabah,
School of Engineering and Information Technology,

88999, Kota Kinabalu, Sabah, Malaysia
{ralfred, kazakov}@cs.york.ac.uk

Abstract. In solving the classification problem in relational data mining,
traditional methods, for example, the C4.5 and its variants, usually require data
transformations from datasets stored in multiple tables into a single table.
Unfortunately, we may loss some information when we join tables with a high
degree of one-to-many association. Therefore, data transformation becomes a
tedious trial-and-error work and the classification result is often not very
promising especially when the number of tables and the degree of one-to-many
association are large. In this paper, we propose a genetic semi-supervised
clustering technique as a means of aggregating data in multiple tables for the
classification problem in relational database. This algorithm is suitable for
classification of datasets with a high degree of one-to-many associations. It can
be used in two ways. One is user-controlled clustering, where the user may
control the result of clustering by varying the compactness of the spherical
cluster. The other is automatic clustering, where a non-overlap clustering
strategy is applied. In this paper, we use the latter method to dynamically
cluster multiple instances, as a means of aggregating them, and illustrate the
effectiveness of this method using the semi-supervised genetic algorithm-based
clustering technique.

Keywords: Aggregation, Clustering, Semi-supervised clustering, Genetic
Algorithm, Relational data Mining.

1 Introduction

Relational database requires effective and efficient ways of extracting pattern based
on content stored in multiple tables. In this process, significant features must be
extracted from datasets stored in multiple tables with one-to-many relationships
format. In relational database, a record stored in a target table can be associated to one
or more records stored in another table due to the one-to-many association constraint.
Traditional data mining tools require data in relational databases to be transformed
into an attribute-value format by joining multiple tables. However, with the large

Y. Ioannidis, B. Novikov and B. Rachev (Eds.): Local Proceedings of ADBIS 2007, pp. 136-147
© Technical University of Varna, 2007

volume of relational data with a high degree of one-to-many associations, this process
is not efficient as the joined table can be too large to be processed and we may lose
some information during the join operation. In fact, most data mining tools ignore the
multiple-instance problem and treated all of the positive instances as positive
examples. For example, suppose we have a multi-instance problem as shown in Fig.
1.

ID F1 F2 F3 Class
1 A1 B2 C4 A
1 A1 B2 C3 A
1 A1 B2 C3 A
1 A1 B2 C3 A
1 A1 B1 C3 A
2 A2 B1 C4 B
2 A2 B1 C5 B
2 A2 B2 C5 B
2 A2 B1 C5 B
3 A1 B2 C3 A
3 A2 B2 C3 A
3 A1 B2 C2 A
3 A1 B1 C2 A

Fig. 1. Multi-Instances Problem

Using a traditional data mining tool, all rows in Fig. 1 are treated as positive and
negative examples. The multiple-instance problem is ignored. The multiple-instance
problem arises due to the fact that, relational databases are designed to handle records
with one-to-many association. The 10-fold cross-validation accuracy of the J48
classifier, WEKA [20], for the above sample data is 92% with extracted rules as
follows; A1 → A and A2 → B. On the other hand, one may also cluster these multiple
instances that exist for an individual object and get higher percentage of accuracy in
predicting the class membership of unseen bag of instances of an individual object.

The most common pattern extracted from relational database is association rules
[3,4,5,6]. However, to extract classification rules from relational database with more
effectively and efficiently, taking into consideration of multiple-instance problem, we
need to aggregate these multiple instances. In this paper, we use genetic algorithm-
based clustering technique to aggregate multiple instances of a single record in
relational database as a means of data reduction. Before a clustering technique can be
applied, we transform the data to a suitable form.

In relational database, a record stored in the target table is often associated with
one or more records stored in another table. We can treat these multiple instances of a
record, stored in a non-target table, as a bag of terms. There are a few ways of
transforming these multiple instances into bag of terms, which will be described and
explained in section 2. Once we have transformed the data representation applicable
to clustering operations [10,11,12,21], we can use any clustering techniques to
aggregate these multiple instances.

In this paper, we use semi-supervised genetic algorithm-based clustering technique
to improve the aggregation of multiple instances in relational database. In section 2,
we describe the DARA [7,8] transformation process converting these multiple
instances into a bag of terms, and, effectively, a vector space model, before any
clustering operations can be used to aggregate them. Section 3 describes genetic
algorithm-based clustering technique. Experimental results comparing varieties of
cluster algorithms, as a means of aggregating multiple instances, that include the

137 Rayner Alfred and Dimitar Kazakov

semi-supervised GA-clustering DARA-based algorithm (SSGA-DARA), GA-
clustering DARA-based algorithm (GA-DARA) and the k-means DARA-based
clustering algorithm (K-DARA) are provided in section 4. In addition to that, we also
compare the result of performance accuracy of SSGA-DARA with other previously
published results from propositional algorithms, in section 4. Finally, the paper is
concluded in Section 5.

2 Data Transformation

In relational database, records are stored separately in different tables and they are
associated through the match of primary and foreign keys. When a high degree of
one-to-many associations is present, a single record, R, stored in a main table can be
associated with a large volume of records stored in another table, as shown in Fig. 2.

Fig. 2. A one-to-many association between target and non-target relations

Let R denote a set of m records stored in the target table and let S denote a set of n
records (T1, T2, T3 , … , Tn), stored in the non-target table. Let Si is in the subset of S,
SiS, and associated with a single record Ra stored in the target table, RaR. Thus,
the association of these records can be described as Ra → Si. Since a record can be
characterized by the bag of term/records that are associated with it, we use the vector
space model to cluster these records, as described in the work of Salton et al. [9]. In a
vector space model, a record is represented as a vector or ‘bag of terms’, i.e., by the
terms it contains and their frequency, regardless of their order. These terms are
encoded and represent instances stored in the non-target table referred by a record
stored in the target table. The non-target table may have a single attribute or multiple
attributes and the process of encoding the terms is as follows:

Case I: Non-target table with a single attribute

 Step 1) Compute the cardinality of the attribute’s domain in the non-target table.
For continuous and discrete values, discretizes these values first and take the
number of bins as the cardinality of the attribute’s domain

 Step 2) To encode values, find the appropriate number of bits, n, that can represent
these values, where 2n-1 < |Attribute’s Domain| ≤2n . For example, if the attribute
has 5 different values (London, New York, Chicago, Paris, Kuala Lumpur), then

138Aggregating Multiple Instances in Relational Database Using Semi-Supervised Genet ...

we just need 3 (5 < 23) bits to represent each of these values (001, 010, 011, 100,
101).

 Step 3) For each encoded term, add this term to the bag of terms that describes the
characteristics of a record associated with them.

Case II: Non-target table with multiple attributes

 Step 1) Repeat step 1) and step 2) in Case I, for all attributes
 Step 2) For each instance of a record stored in the non-target table, concatenate p-

number of columns’ values, where p is less than or equal to the total number of
attributes. For example, let F = (F1 , F2, F3,…, Fk) denote k field columns or
attributes in the non-target table. Let F1 = (F1,1, F1,2, F1,3, …, F1,n) denote n values
that are allowed to be used by field/column F1 . So, we can have instances of
record in the non-target table with these values (F1,a, F2,b, F3,c, F4,d ,… , Fk-1,b, Fk,n),
where a ≤|F1|, b ≤|F2 |, c ≤|F3|, d ≤|F4|,…, b ≤|Fk-1 |, n ≤|F k|. If p = 1, we have a
bag of a single attribute’s values, F1a, F2,b, F3,c, F4,d,…, Fk-1,b, Fk,n, as the produced
terms. If p = 2, then we have a bag of paired attribute’s values, F1,aF2,b, F3,cF4,d,…,
F k- 1,bFk,n (provided we have an even number of fields). Finally, if we have p = k,
then we have F1,aF2,bF3,cF4,d…Fk-1,bFk,n as a single term produced.

 Step 3) For each encoded term, add this term to the bag of terms that describes the
characteristics of a record associated with them.

The encoding processes transform relational datasets into data represented in a vector-
space model [9], had been implemented in DARA [7,8]. Given this data
representation in a vector space model, we can use clustering techniques [10,11,12] to
cluster these datasets as a means of aggregating them.

3 Genetic Algorithm-Based Clustering Technique

3.1. Genetic Algorithm (GA)

A Genetic Algorithm (GA) is a computational abstraction of biological evolution that
can be used to some optimisation problems [13,14]. In its simplest form, a GA is an
iterative process applying a series of genetic operators such as selection, crossover
and mutation to a population of elements. These elements, called chromosomes,
represent possible solutions to the problem. Initially, a random population is created,
which represents different points in the search space. An objective and fitness function
is associated with each chromosome that represents the degree of goodness of the
chromosome. Based on the principle of the survival of the fittest, a few of the
chromosomes are selected and each is assigned a number of copies that go into the
mating pool. Biologically inspired operators like crossover and mutation are applied
to these strings to yield a new generation of strings. The process of selection,
crossover and mutation continues for a fixed number of generations or till a
termination condition is satisfied. More detailed surveys of GAs can be found in [15].

139 Rayner Alfred and Dimitar Kazakov

3.2. Clustering Algorithm

Clustering [10,11,12,21] is an important unsupervised classification technique where
a set of patterns, usually vectors in a multi-dimensional space, are grouped into
clusters in such a way that patterns in the same cluster are similar in some sense and
patterns in different clusters are dissimilar in the same sense. The clustering algorithm
that we apply in this experiment uses the vector-space model [9] to represent each
record. In this model, each record Ra is considered to be a vector in the term-space or
pattern-space. In particular, we employed the tf-idf term weighting model, in which
each record can be represented as

(tf1 log(n/df1), tf2 log(n/df2), . . . , tfm log(n/dfm))

where tfi is the frequency of the i-th term in the record, dfi is the number of records
that contain the i-th term and n is the number of records. To account for records of
different length, the length of each record vector is normalized so that it is of unit
length (||dtfidf||= 1), that is each record is a vector on the unit hypersphere. In this
experiment, we will assume that the vector representation for each record has been
weighted using tf-idf and it has been normalized so that it is of unit length. In the
vector-space model, the cosine similarity is the most commonly used method to
compute the similarity between two records Ri and Rj , which is defined to be
cos(Ri,Rj) = R i

tRj/(||Ri||·|||Rj||). The cosine formula can be simplified to cos(Ri,R j) =
Ri

tRj, when the record vectors are of unit length. This measure becomes one if the
records are identical, and zero if there is nothing in common between them.

Since clustering works in an unsupervised fashion, The user has no control on
the result. In this experiment, we introduce supervision to the learning scheme
through some measure of cluster impurity. The basic idea is to find a set of clusters
that minimize a linear combination of the cluster dispersion and cluster impurity
measures.

3.3. Semi-Supervised Clustering Algorithm

As a base to our semi-supervised algorithm, we use an unsupervised clustering
method optimized with a genetic algorithm incorporating a measure of classification
accuracy used in decision tree algorithm, the GINI index [1]. Here, we examine the
clustering algorithm that minimizes some objective function applied to k-cluster
centers. Each point is assigned to the nearest cluster center by Euclidean distance. The
main objective is to choose the number of clusters that minimize some measure of
cluster quality. Typically cluster dispersion metric is used, such as the Davies-Bouldin
Index (DBI) [2]. DBI uses both the within-cluster and between clusters distances to
measure the cluster quality. Let dcentroid(Qk), defined in (1), denote the centroid
distances within-cluster Qk, where x iQk, Nk is the number of samples in cluster Qk,
ck is the center of the cluster and k ≤K clusters. Let dbetween(Qk, Ql), defined in (3),
denote the distances between-clusters Qk and Ql, where ck is the centroid of cluster Qk
and c l is the centroid of cluster Ql.

140Aggregating Multiple Instances in Relational Database Using Semi-Supervised Genet ...

dcentroid(Qk) =
k

i

N

cx ki
(1)

ck = 1/Nk(ki Q
ix x) (2)

dbetween(Qk, Q l) = lk cc (3)

DBI =

K

k lkbetween

lcentroidkcentroid

QQd
QdQd

K
kl

1),(
)()(

max
1

(4)

Therefore, given a partition of the N points into K-clusters, DBI is defined in (4).
This cluster dispersion measure can be incorporated into any clustering algorithm to
evaluate a particular segmentation of data. The Gini index (GI) has been used
extensively in the literature to determine the impurity of a certain split in decision
trees [1]. Clustering using K cluster centers partitions the input space into K regions.
Therefore clustering can be considered as a K-nary partition at a particular node in a
decision tree, and GI can be applied to determine the impurity of such partition. In
this case, GI of a certain cluster, k, is computed, as defined in (5), where n is the
number of class, Pkc is the number of points belong to cth class in cluster k and Nk is
the total number of points in cluster k.

GiniCk =

n

c k

kc

N

P

1

2

0.1 (5)

The purity of a particular partitioning into K clusters is (6) where N is the number
of points in the dataset and kCT is the number of points in cluster k. In order to get
better quality of cluster, we have to minimize the measure of purity.

purity =
N

GiniCTK
k kCk1 *

(6)

By minimizing the objective function that minimizes a linear combination of the
cluster dipersion measure (DBI) and the cluster impurity measure (GI), the algorithm
becomes semi-supervised. More specifically, given N points and K-clusters, select K
cluster centers that minimize the following objective function:

f(N,K) = Cluster Dispersion + Cluster Impurity

f(N,K) =

K

k lkbetween

lcentroidkcentroid

QQd
QdQd

K
kl

1),(
)()(

max
1

+
N

GiniCTK
k kCk1 * (7)

141 Rayner Alfred and Dimitar Kazakov

3.4. Semi-Supervised GA Clustering Algorithm

There are two phases in our method for the semi-supervised Genetic Algorithm-based
Clustering algorithm. In the first phase, which is modified steps from [19], we reduce
the N points data by grouping all points to their nearest neighbour. The purpose of this
data reduction is to speed up the process of genetic clustering. In phase II, we use
genetic algorithm to cluster the m data points based on the objective function, defined
in (7), m < N.

Phase I: Data Reduction

1) For every object Oi, find the distance to its nearest neighbour, dNNj(Oi) = ||Oi–Oj||,
where O j is the nearest neighbour to Oi and i ≠j.

2) Compute the average distance of all objects to their nearest neighbour, dAVE =

N

i

Oi

N 1

1)(NNjd

3) Let d = scale·dAVE, where d is computed based on the scale’s value (Initial value
0.5 in this experiment). Now, view the n objects as nodes of a graph, and connect
all nodes that has distance less than or equal to d. Increment scale by 0.1.

4) Repeat step 3) as far as there is no overlapping of connected nodes. This is to
ensure that all the connected objects are close enough to one another without
overlapping cluster.

5) Find all the connected nodes and let the data sets represented by these connected
nodes be denoted by B1, B2 , B3, … , Bm-1 , Bm where m is the number of connected
nodes and m < N, since Bi consists of 1 or more connected nodes, i ≤m .

6) Compute m cluster centers z1, z2 , z3 , … , zm from all connected components B1 , B2,

B3, … , Bm-1 , Bm from 5), where zi =
 iji Bx

jx
N
1 , i = 1,2,3,…,m , where Ni is the

number of nodes connected in B i

Phase II: GA-Clustering Algorithm

Population Initialization Step. A population of X strings of length m is randomly
generated, where m is the number of the sets (connected components) obtained from
the first part (Phase I: data reduction). X strings are generated with the number of 1’s
in the strings uniformly distributes within [1,m]. Each string represents a subset of
{B1, B2, B3, … , Bm-1, Bm}. If Bi is in this subset S, the ith position of the string will be
1; otherwise, it will be 0, where i = 1,2,3,…,m. Each Bi in the subset S is used as a
seed to generate a cluster. If Bj is not in the subset, they will be merged to the nearest
Bk in the subset S, where j,k = 1,2,3,…,m and j ≠k. The merging of these two
components, Bj and Bk, is based on the distance between their centers, and this forms a
new cluster. After merging, the size and the center of the new cluster will be
recomputed. We will repeat the merging process for all components that are not listed
in the subset S.

142Aggregating Multiple Instances in Relational Database Using Semi-Supervised Genet ...

Fitness Computation. The computation of the objective or fitness function has two
parts; Cluster Dispersion and cluster impurity. In order to get the best number of
clusters, we need to minimize the DBI (4). On the other hand, in order to group the
same type of objects together in a cluster, we need to minimize the impurity function.
Since in GA, we want to maximize the objective and fitness function, the objective
fitness function (OFF) that we want to maximize will be as follows (8).

Selection Process. For the selection process, a rouleete wheel with slots sized
according to the fitness is used. The construction of such a roulette wheel is as
follows;
 Calculate the fitness value for each chromosome, fi and i ≤X, and get the total

overall fitness for X strings of chromosome, TFitness.
 Calculate the probability of a selection pi for each chromosome, i ≤X, pi =

fi/TFitness.

 Calculate the cumulative probability qi for each chromosome, qi
 i

j 1
pj.

The selection process is based on spinning the roulette wheel, X times; each time we
select a single chromosome for a new population in the following way:
 Generate a random (float) number r from the range of [0..1].
 Select the i-th chromosome such that qi-1 < r ≤qi

Crossover. A pair of chromosome, ci and cj, are chosen for applying the crossover
operator. One of the parameters of a genetic system is probability of crossover pc. In
this experiment, we set pc = 0.25. This probability gives us the expected number pc·X
of chromosomes, which undergo the crossover operation. We proceed by
 Generate a random (float) number of r from the range [0..1].
 Do crossover of if r < pc. For each pair of coupled chromosomes we generate a

random integer number pos from the range [1..m-1] (where m is the length of the
chromosome), which indicates the position of the crossing point.

Mutation. The mutation operator performs a bit-by-bit basis. Another parameter of
the genetic system, probability of permutation pm gives the expected number of
mutated bits pm·m ·X. In this experiment, we set pm = 0.01. In the mutation process, for
each chromosome and for each bit within the chromosome
 Generate a random (float) number of r from the range [0..1].
 Do mutation of each bit if r < pm.

Following selection, crossover and mutation, the new population is ready for its
next generation. This evaluation is used to build the probability distribution for a
construction of a roulette wheel with slots sized according to current fitness values.

OFF = 1/Cluster Dispersion + 1/Cluster Impurity

1 + 1OFF =

K

k lkbetween

lcentroidkcentroid

QQd
QdQd

K
kl

1),(
)()(

max
1

N
GiniCTK

k kCk1 *
(8)

143 Rayner Alfred and Dimitar Kazakov

The rest of the evolution is just a cyclic repetition of selection, crossover and mutation
until a number of specified generations or specific threshold has been achieved.

Once the generation of new chromosomes stops, clusters with few numbers of
objects will be removed and its members are moved to the nearest cluster (based on
the distance between centres of the clusters).

4 Experiment and Experimental Results

Our experiments are designed to demonstrate: 1) the performance gain of semi-
supervised genetic algorithm-based clustering technique (SSGA-DARA) over the K-
clusters clustering technique (K-DARA), genetic algorithm-based clustering (GA-
DARA) and 2) that our proposed Genetic Algorithm-based DARA method of data
transformation outperforms other relational data mining approach to relational data
mining. In this experiment, we chose two well-known datasets, the Mutagenesis [16],
Musk [17].

DARA transformation process is performed with three different settings, called
K-DARA, GA-DARA, SSGA-DARA. In K-DARA transformation, records are
clustered based on KK number of clusters, where KK is manually defined by user. We
ran this algorithm ten times with 10 different values of K and we took the average
accuracy of the J48 (C4.5) classifier implemented in WEKA [20]. Next, in GA-
DARA transformation, records are automatically clustered to KGA number of clusters,
using the genetic algorithm (GA) by taking the measure of cluster’s dispersion as the
objective fitness function. Other parameters were set to pc = 0.25 (crossover
probability), and pm = 0.01 (permutation probability). In contrast, in SSGA-DARA
transformation, records are automatically clustered to KSSGA number of clusters, using
the genetic algorithm (GA) by taking the measure of cluster’s dispersion and impurity
as the objective fitness function. Other parameters were set to pc = 0.25 (crossover
probability), and pm = 0.01 (permutation probability).

Table 3 shows the results of DARA-based performance accuracy, in which three
data transformation algorithms are compared; K-DARA, GA-DARA and SSGA-
DARA. The aggregation method that uses a semi-supervised genetic algorithm-based
clustering technique, done by transforming data first into vector space model using
DARA [7,8], proved particularly successful on large datasets.

The accuracy estimations, from leave-one-out performance result for the
classification of the transformed Musk and Mutagenesis datasets, using genetic
algorithm-based clustering technique (GA-DARA) is much lower compared to the
one with semi-supervised genetic algorithm-based clustering technique (SSGA-
DARA). It is not surprising that the K-DARA and GA-DARA algorithms did poorly,
since neither of these algorithms addresses the cluster impurity problem. However, it
is somewhat surprising that the GA-DARA algorithm performs virtually the same as
the K-DARA algorithm, since GA-DARA algorithm implicitly considers the best
number of clusters to minimize the DBI measure, without limiting the number of
clusters, as in K-DARA.

144Aggregating Multiple Instances in Relational Database Using Semi-Supervised Genet ...

Table 1. Leave-One-Out CV performance on Musk and Mutagenesis

MutagenesisData Transformation
and Algorithm Musk B1 B2 B3

K-DARA+C4.5 76% 77% 79% 82%
GA-DARA+C4.5 62% 77% 75% 78%
SSGA-DARA+C4.5 76% 90% 88% 87%

Table 2. Results of paired one-sided t-tests (p=0.0025): symbol ● indicates significant
improvement performance by method in row over method in column and symbol ○indicates no
significant improvement performance by method in row over method in column, on datasets
Musk and Mutagenesis (A = K-DARA, B = GA-DARA and C = SSGA-DARA)

MutagenesisMusk
B1 B2 B3

Method A B C A B C A B C A B C
A - ● ○ - ○ ○ - ● ○ - ○ ○
B ○ - ○ ○ - ○ ○ - ○ ○ - ○
C ○ ● - ● ● - ● ● - ● ● -

Table 2 shows the results of paired one-sided t-tests (p=0.0025), where the symbol ‘●’
indicates significant improvement performance by method in row over method in column and
symbol ‘○’ indicates no significant improvement performance by method in row over method
in column, on dataset Musk and Mutagenesis datasets, and A represents the K-DARA
algorithm, B represents the GA-DARA algorithm and C represents the SSGA-DARA
algorithm.

Table 3 shows the results of DARA-based (SSGA-DARA + C4.5) performance
accuracy compared to other previously published results, such as the C4.5 decision
tree algorithm, the back-propagation neural network algorithm, PROGOL, FOIL and
TILDE, all of which ignored the multiple-instance problem and treated all of the
positive instances as positive examples.

Based on Table 3, the accuracy estimations from leave-one-out cross-validation
performance result for the classifier J48 [20] on the transformed Musk and
Mutagenesis datasets using semi-supervised genetic algorithm-based clustering
technique (SSGA-DARA) is at least better than the other published results.

Table 3. Comparison of performance accuracy on Musk and Mutagenesis

MutagenesisData Transformation
and Algorithm Musk B1 B2 B3

PROGOL - 76% 81% 83%
FOIL - 61% 61% 83%
TILDE 87% 75% 79% 85%
SSGA-DARA+C4.5 76% 90% 88% 87%
C4.5 67% - - -
Back Propagation 75% - - -

145 Rayner Alfred and Dimitar Kazakov

5 Conclusions

The multiple instances problem is an important problem that arises in real-world tasks
where the training examples are ambiguous: a single record may have many
associations with feature vectors that describe it, and yet only a few of those vectors
may be relevant for the observed classification of the record. In this paper, we have
presented an algorithm to transform multiple instances problem into a vector space
model that is suitable to clustering operations. A novel method for semi-supervised
learning that combines supervised and unsupervised learning techniques has been also
introduced to extract patterns from multiple tables with a high degree of one-to-many
association. The basic idea is to treat a series of records, associated with a single
record in the target table, as a bag of terms, and take an unsupervised clustering
method and simultaneously optimize the misclassification error of the resulting
clusters. Experimental results show that using DBI for cluster dispersion and GI for
cluster impurity finds solutions with much greater accuracy. The basic ideas in this
paper: incorporating classification information into an unsupervised algorithm to
aggregate records with multiple instances in relational datasets are promising areas for
future research.

References

1. Breiman, L., Friedman, J., Olshen, T., Stone, C., Classification and Regression Trees.
Wadsworth International, California, 1984.

2. Davies, D.L., Bouldin, D.W., A cluster separation measure. IEEE Transactions and Pattern
Analysis and Machine Intelligence, 1979, 1(2):224-227.

3. Agrawal, R., Imieliński, T., Swami, A., Mining association rules between sets of items in
large databases, Proceedings of the 1993 ACM SIGMOD international conference on
Management of data, Washington, D.C., United States, May 25-28, 1993, 207-216.

4. Agrawal, R., Srikant, R., Fast Algorithms for Mining Association Rules in Large
Databases, Proceedings of the 20th International Conference on Very Large Data Bases,
September 12-15, 1994, 487-499.

5. Han, J., Fu, Y., Discovery of Multiple-Level Association Rules from Large Databases,
Proceedings of the 21th International Conference on Very Large Data Bases, September 11-
15, 1995, 420-431.

6. Maurice, A., Houtsma, W., Arun, N., Swami, A., Set-Oriented Mining for Association
Rules in Relational Databases, Proceedings of the Eleventh International Conference on
Data Engineering, March 06-10, 1995, 25-33.

7. Alfred, R., Kazakov, D., Data Summarization Approach to Relational Domain Learning
Based on Frequent Pattern to Support the Development of Decision Making. In the
Proceedings of The Second International Conference of Advanced Data Mining and
Applications, (ADMA 2006), 14-16 August, Xi'An, China, 2006. LNAI 4093, eds. X. Li,
O.R. Zaiane, and Z. Li, 2006, 889-898.

8. Alfred, R., Kazakov, D., Pattern-Based Transformation Approach to Relational Domain
Learning Using DARA. In the Proceedings of The 2006 International Conference on Data
Mining (DMIN 2006), LAS VEGAS, Nevada, USA, CSREA Press, eds. S.F.Crone, S.
Lessmann, R. Stahlbock, ISBN. 1-60132-004-3, June 25-29, 2006, 296-302.

146Aggregating Multiple Instances in Relational Database Using Semi-Supervised Genet ...

9. Salton, G., Wong, A., Yang, C.S., A vector space model for automatic indexing.
Communications of the ACM, 1975, 18:613–620.

10. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P., Automatic subspace clustering of
high dimensional data for data mining applications. Proceedings of the 1998 ACM
SIGMOD International Conference on Management of Data, ACM Press, 1998, 94-105.

11. Hofmann, T., Buhnmann, J.M., Active data clustering. In Advance in Neural Information
Processing System 10, 1998.

12. Hartigan, J.A., Clustering Algorithms, Wiley, New York, 1975.
13. Holland, J., Adaption in Natural and Artificial Systems. Univeristy of Michigan Press,

1975.
14. Goldberg, D.E., Genetic Algorithms –in Search, Optimization and Machine Learning.

Addison-Wesley Publishing Company, Inc, 1989.
15. Filho, J.L.R., Treleaven, P.C., Alippi, C., Genetic algorithm programming environments,

IEEE Compu. 1994, 27: 28-43.
16. Srinivasan, A., Muggleton, S.H., Sternberg, M.J.E., King, R.D., Theories for mutagenicity:

A study in first -order and feature-based induction. Artificial Intelligence, 85, 1996.
17. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T., Solving the multiple-instance problem

with axis-parallel rectangles, Artificial Intelligence, 1997, 89(1-2) p. 31-71.
18. Workshop notes on Discovery Challenge PKDD ’99, 1999.
19. Tseng, L.Y., Yang, S.B., A genetic approach to the automatic clustering problem. Pattern

Recognition 34, 2001, 415-424.
20. Witten, I., Frank, E., Data Mining: Practical Machine Learning Tools and Techniques with

Java Implementations. Morgan Kaufman, 1999.
21. Zhao, Y., Karypis, G., Hierarchical Clustering Algorithms for Document Datasets.

Technical Report 03-027, Dept. of Computer Science, University of Minnesota, 2003.

147 Rayner Alfred and Dimitar Kazakov

