
Decomposition Without Regret (Poster)
Weixin Zhang1, Cristina David1 and Meng Wang1

1University of Bristol, United Kingdom

Abstract
Programming languages are embracing both functional and object-oriented paradigms. A key difference
between the two paradigms is the way of achieving data abstraction. That is, how to organize data with
associated operations. There are essential tradeoffs between functional and object-oriented decomposition
regarding extensibility and expressiveness. Unfortunately, programmers are usually forced to select a
particular decomposition style in the early stage of programming. Once the wrong design decision has
been made, the price for switching to the other decomposition style could be rather high since pervasive
manual refactoring is often needed.

In this talk, we show a bidirectional transformation system between functional and object-oriented
decomposition. We formalize the core of the system in the FOOD calculus, which captures the essence
of functional and object-oriented decomposition. We prove that the transformation preserves the type
and semantics of the original program. We further implement FOOD in Scala as a translation tool called
Cook and conduct several case studies to demonstrate the applicability and effectiveness of Cook.

Keywords
Bidirectional program transformation, Functional decomposition, Object-oriented decomposition

Programming languages are embracing multiple paradigms, in particular functional and
object-oriented paradigms. Modern languages are designed to support multi-paradigms. Well-
known examples include OCaml, Swift, Rust, TypeScript, Scala, F#, and Kotlin. Meanwhile,
mainstream object-oriented languages such as C++ and Java are gradually extended to sup-
port functional paradigms. When multiple paradigms are available within one programming
language, a natural question arises: which paradigm to choose when designing programs?

A fundamental difference between functional and object-oriented paradigms is the way of
achieving data abstraction [1, 2]. That is, how to organize data with associated operations. If
we view a program as a matrix, data variants and operations are then the rows and columns of
that matrix respectively. Object-oriented programming decomposes the program by row and
is operation first: we first declare an interface that describes the operations supported by the
data and then implement that interface with some classes. Conversely, functional programming
decomposes the program by column and is data first: we first represent the data using an
algebraic datatype and then define operations by pattern matching on that algebraic datatype.

There are important tradeoffs between functional and object-oriented decompositions in
terms of extensibility and expressiveness. As acknowledged by the notorious Expression
Problem [1, 3, 4], these two decomposition styles are complementary in terms of extensibility.
Object-oriented decomposition makes it easy to extend data variants through defining new
classes. On the other hand, functional decomposition makes it easy to add new operations on

STAF 2022 Workshop: Tenth International Workshop on Bidirectional Transformations (BX 2022)
$ weixin.zhang@bristol.ac.uk (W. Zhang); cristina.david@bristol.ac.uk (C. David); meng.wang@bristol.ac.uk
(M. Wang)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:weixin.zhang@bristol.ac.uk
mailto:cristina.david@bristol.ac.uk
mailto:meng.wang@bristol.ac.uk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


expressions. Besides extensibility, object-oriented and functional decomposition have different
expressive power. Object-oriented decomposition facilitates code reuse through inheritance
and enables interoperability between different implementations of the same interface whereas
functional decomposition allows inspection on the internal representation of data through
(nested) pattern matching, simplifying abstract syntax tree transformations.

Unfortunately, programmers are forced to decide a decomposition style in the early stage of
programming. A proper choice, however, requires predictions on the extensibility dimension
and kinds of operations to model, which may not be feasible in practice. Once the wrong design
decision was made, the price for switching to the other decomposition style could be rather
high since pervasive manual refactoring is often needed.

A better way, however, allows programmers to choose a decomposition style for prototyping
without regret. When the design choice becomes inappropriate, a tool automatically transforms
their code into another style without affecting the semantics. Even at later stages, such a
automatic translation tool could be used to make extensions of data variants or operations easier
by momentarily switching the decomposition, adding the extension, and then transforming
the program back to the original decomposition. Furthermore, studying the transformation
between the two styles can provide a theoretical foundation for compiling multi-paradigm
languages into single-paradigm ones. From an educational perspective, the tool can help novice
programmers to understand both decomposition styles better.

To address this issue, we propose a bidirectional transformation between functional and
object-oriented decomposition based on the observation that restricted forms of functional
and object-oriented decomposition are symmetric. We formalize an automatic, type-directed
transformation in the core calculus FOOD, which captures the essence of Functional and Object-
Oriented Decomposition. We prove that the transformation preserves the type and semantics of
the original program. We further implement FOOD in Scala as a translation tool called Cook

and conduct several case studies to demonstrate the applicability of Cook. Interested readers
may want to consult the full paper for more details [5].

References

[1] J. C. Reynolds, User defined types and procedural data structures as complementary
approaches to data abstraction, in: D. Gries (Ed.), Programming Methodology, A Collection
of Articles by IFIP WG2.3, Springer-Verlag, New York, 1978, pp. 309–317. Reprinted from
S. A. Schuman (ed.), New Advances in Algorithmic Languages 1975, Inst. de Recherche
d’Informatique et d’Automatique, Rocquencourt, 1975, pages 157-168. Also in taoop.

[2] W. R. Cook, On Understanding Data Abstraction, Revisited, in: Proceedings of the 24th
ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA ’09, 2009, pp. 557–572. doi:10.1145/1639949.1640133.

[3] W. R. Cook, Object-oriented programming versus abstract data types, in: Foundations of
Object-Oriented Languages, Springer, 1991, pp. 151–178. doi:10.1007/BFb0019443.

[4] P. Wadler, The Expression Problem, 1998. Note to Java Genericity mailing list.
[5] W. Zhang, C. David, M. Wang, Decomposition without regret, 2022. URL: https://arxiv.org/

abs/2204.10411. doi:10.48550/ARXIV.2204.10411.

http://dx.doi.org/10.1145/1639949.1640133
http://dx.doi.org/10.1007/BFb0019443
https://arxiv.org/abs/2204.10411
https://arxiv.org/abs/2204.10411
http://dx.doi.org/10.48550/ARXIV.2204.10411

