
Bidirectional Transformations in Practice: An
Automotive Perspective on Traceability Maintenance
(Short Paper)
Anthony Anjorin1, Nils Weidmann2 and Katharina Artic1

1IAV GmbH, Germany
2Paderborn University, Germany

Abstract
Bidirectional transformations (bx) are used to maintain the consistency of two or more artefacts as they
are concurrently updated, typically by different people, often using different tools. While there has
been active research on bx for some time with numerous examples and industrial case studies from
research projects, it is still a valid question if bx is absolutely necessary in practice. Indeed, if productivity
and simplicity are most important, perhaps processes and tool chains can be chosen to avoid bx as
much as possible. In this experience report, we provide an automotive perspective on the need for and
application of bx to traceability maintenance. We share our experiences from relevant projects, focusing
on challenges and constraints in the problem domain, and discussing solution strategies we have applied
and evaluated. Our aim is to provide a concrete characterisation of bx-related solution strategies to
traceability maintenance in practice, which we hope serves as motivation and input for bx researchers.

Keywords
Bidirectional Transformations, Automotive Engineering, Traceability Maintenance

1. Introduction

Automotive projects require the concurrent engineering of multiple artefacts and involve
groups of experts working on multiple artefacts with different tools. The development of these
artefacts or models must often comply with process assessment and reference standards such as
Automotive SPICE (ASPICE) [1], with relevant emission laws, and with numerous regulations
concerning, e.g., functional safety and security. These standards typically demand a series of
systematic and documented reviews as a means of ensuring that all models are consistent and
that quality goals are met. In this context, mappings between semantically related elements of
different domain models are described by traceability links, which can be technically represented
in various forms [2] (e.g., in form of correspondences when describing a inter-model consistency
by means of triple graph grammars [3]). Traceability links between model elements play an
important role in supporting reviews and (manual) consistency checks, and are often stipulated
or at least suggested as a best practice by many standards. Maintaining traceability links
productively, i.e., letting users directly operate on them instead of just managing them in the

Tenth International Workshop on Bidirectional Transformations (BX 2022)
Envelope-Open tony@anjorin.de (A. Anjorin); nils.weidmann@upb.de (N. Weidmann); katharina.artic@iav.de (K. Artic)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:tony@anjorin.de
mailto:nils.weidmann@upb.de
mailto:katharina.artic@iav.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Qualification TestsRequirements

Architectural Design

Figure 1: Our focus in the automotive domain

background, is thus a relevant challenge in this context, especially as the connected models
co-evolve.

Bidirectional transformations (bx) have been actively researched for some time as a means
of maintaining the consistency of two or more artefacts [4]. While there is now a curated
collection of bx examples [5] as well as numerous reports on industrial case studies from
research projects [6, 7, 8, 9, 10], we claim that input from industrial practitioners on applying
bx in practice is still largely missing. As the research questions identified for research projects
aim to cover novel aspects and tend to be increasingly visionary, it is useful to have a reality
check with practical challenges in real-world projects as a means of possibly steering future
research questions and work. In this paper, therefore, we report on applying bx to traceability
maintenance [11] in the automotive domain. We share our experiences from relevant projects,
focusing on typical limitations and constraints in the problem domain, and discussing bx-related
solution strategies we have applied and evaluated, as well as open challenges.

As depicted in Figure 1, our primary focus in most projects has been in the upper-left corner of
the V-model often stipulated by automotive process reference standards for (software) systems
engineering. In the diagram, rectangles represent models, while the bidirectional black arrows
represent traceability links between model elements. The stacked rectangles for requirements
and architectural design indicate that the models we are interested in often comprise multiple
layers. E.g., stakeholder, system, and component for requirements, and functional, logical, and
physical for architectural design models. Qualification tests are expected to be on the same
abstraction level as requirements. Relevant traceability links are mostly between requirements
and architectural design, as well as between requirements and qualification tests, and are
typically required to be bidirectionally navigable. The goal is often to support a holistic system
view without committing prematurely to a purely software-based or hardware-based view of
the system. In a few projects, however, we have also addressed the problem of connecting
the conceptual, modelling world to the final executable code, especially when the latter is
not automatically generated. This focus of projects in the last 3-5 years shapes and limits the
automotive perspective we can report on, and does not necessarily reflect other parts of the
automotive domain.



2. A characterisation of the problem domain

To simplify the discussion, we focus in the rest of the paper on the traceability links between
requirements and architectural design models. Qualification tests can be handled similarly.

Although some requirements can be generated automatically from parts of the architecture in
a few cases, the norm in our projects is that both requirements and architectural design models
are created and maintained manually. Similarly, most traceability links between requirements
and architectural elements can only be created and checked manually, and represent an explicit
documentation of a relationship between the elements, e.g., “realised by”. There is typically
no chance to define a formal consistency relation from which, e.g., traceability links can be
created or checked automatically as correspondences. The need for some form of automation
comes more from the task of maintaining traceability links possibly across tool boundaries
while the involved models constantly change. According to our experience, the following
requirements for productive traceability maintenance are to be adequately addressed by an
acceptable solution, irrespective of the applied solution strategy:

R1 Traceability links between requirements and architectural elements can be created, navi-
gated, versioned, and generally used productively in either the requirements management
tool or the architectural modelling tool (or sometimes in both). Convincing end users to
use an additional tool solely for traceability maintenance is – in our experience – difficult.

R2 Traceability links that are clearly broken by changes that were made to one or both of
the models are marked but preserved in a way that they can be reviewed and handled
manually.

R3 A set of “suspect” traceability links can be determined for a manual review in some
configurable manner (e.g., links connected to elements that have changed). This point is
often optional as (R2) already requires a considerable amount of manual work.

The problem domain can be further characterised by the following constraints and limitations:

The underlying development process must first be clarified: In our experience, devel-
oping a feasible solution for traceability maintenance always requires a clear development
process defining who changes what when and with which tool. In most projects, however, the
development process is usually implicit, unclear, and not yet communicated to and accepted
by all relevant stakeholders. Some questions that we investigate include: Why are traceability
links required and by whom? Who is going to create and maintain these traceability links when
using which tool? What parts of which models can be changed by whom in which tool?

A complex combination of different concerns: A further challenge is that traceability
maintenance must be usually combined with the following intertwined concerns: (i) A flexible
versioning of all models is required as different engineers work concurrently on different
releases. This affects traceability as links might have to be created to elements from a particular
baseline. The problem here is that many modelling tools support versioning in their own unique
way, if they do at all. (ii) Variant management is also a concern as multiple, similar systems
are often planned and designed together to promote reuse of certain parts of models. This also



affects traceability, however, as a compatible strategy for variant management of traceability
links must also be established.

A restricted choice of available technology: Working for different clients on different
projects, the available technology in the solution domain tends to be fixed or at least severely
limited by numerous factors including the set of tools already in use at a company, the tools
for which the client’s IT is prepared to obtain and support licenses, and of course budgetary
constraints. While we sometimes provide consulting regarding the choice of tools, we also often
have to cope with the current tools in use.

No compiler or test suite to validate automated decisions: In contrast to working with
executable code or simulations, working with models on a high, conceptual level typically
means that one cannot rely on a powerful compiler or an extensive test suite to catch most
mistakes and inconsistencies. Indeed, while we strive to implement as many basic validation
rules as possible, automated decisions made by a tool, e.g., whether a link between a certain
requirement and an architectural model element is still valid after applying a change, must be
manually reviewed.

There are indeed factors that simplify the task of traceability maintenance: Com-
pared to working with code and parser-based systems, most requirements management tools
and architectural modelling tools provide unique identifiers for all models elements. While
this comes with its own set of challenges, unique identifiers generally simplify numerous tasks
including determining changes (deltas) and correspondences (corrs) by simply comparing two
models.

As the requirement and architectural models are on a relatively high-level of abstraction,
scalability is usually not an issue in this context. Indeed, as numerous manual reviews and
expert discussions must still be possible, clarity is more important than completeness.

3. Current solution strategies

We now discuss the solution domain describing the most common solution strategies we have
seen and applied ourselves in projects. We again restrict the following discussion to requirements
management (RM) and architectural modelling (AM).

3.1. A single tool for all models

A common solution strategy is to provide an all-in-one tool that supports both RM and AM
(and all else that is required) in an integrated manner. Such a tool has a better chance of sup-
porting versioning, variant management, and traceability maintenance in a compatible manner.
Traceability maintenance is typically supported by immediately checking all consequences of
a change, and if necessary rejecting it or at least prompting for a confirmation from the user.
Although this is attractive, it is also problematic. We have seen this one-size-fits-all strategy fail
in practice due to missing acceptance from a group of users. Such a tool tends to become quite



complex and unwieldy, e.g., for users only or primarily concerned with RM. Such tools often
have a primary focus and end up being, e.g., much better for AM than for RM even though both
are supported.

In general, this strategy eventually breaks down as new models are added and have to be
maintained using separate tools, resulting in an awkward mix of almost everything in one
complex tool and still a number of separate tools added ad-hoc to the mix. Nonetheless, many
tools on the market currently take this approach such as Enterprise Architect,1 Capella,2

PREEvision,3 and Cameo systems modeller.4 As points R1 – R3 can be fully addressed by such
an integrated solution, we believe this can be a viable solution strategy if the tool is crafted or
at least substantially tailored for a specific client and project with a stable set of models.

3.2. Separate tools with a bx to synchronise a common overlap

A flexible solution that still addresses R1 adequately, i.e., allows users to perform traceability
maintenance in their own tool, is to identify the parts of different models that are relevant for
traceability, and to keep this “overlap” synchronised using bx as all models co-evolve.

This strategy is depicted in Figure 2 using notation and terminology from the lens framework
for bx (we refer readers new to lenses to, e.g., Johnson et al. [12] for a unified overview and
comparison of the different lens formal frameworks for bx). Arrows with a white fill represent
applications of the functions indicated via the label of the arrow, unidirectional arrows with
a black fill represent changes (deltas) applied to the models, while bidirectional arrows with
a black fill represent traceability links. Grey circles/rectangles indicate parts of the models
representing requirements/architectural design. Dashed rectangles indicate the boundaries of
individual models in either tool.

An RM tool containing requirement models is to be used together with an AM tool containing
architectural design models. The decision has been made in this case to enable traceability
maintenance only in the AM tool. To support this, a relevant part of the requirement models
must be identified, and then propagated to the AM tool where it has to be represented in some
manner. Now users of the AM tool have representatives of relevant parts of the requirements
models in their own tool and can create and use traceability links. When the requirement
models are changed in the RM tool, however, consistency must be reestablished as follows (the
steps are indicated in Figure 2 in small black circles)

1. A user of the RM tool makes changes (Δ𝑅𝑀) to the requirement model.
2. The synchronisation starts by extracting the relevant parts of the changed requirements

model using the function 𝑔𝑒𝑡𝑅𝑀.
3. To determine what was changed, the same overlap is extracted from the current archi-

tectural design model in the AM tool using the function 𝑔𝑒𝑡𝐴𝑀. Assuming a consistent
starting point, this is expected to be identical to what 𝑔𝑒𝑡𝑅𝑀 would produce when applied
to the old requirements model (depicted as a greyed out white arrow in the figure).

1https://sparxsystems.com/products/ea/
2https://www.eclipse.org/capella/
3https://www.vector.com/de/de/produkte/produkte-a-z/software/preevision/
4https://www.3ds.com/products-services/catia/products/no-magic/cameo-systems-modeler/

https://sparxsystems.com/products/ea/
https://www.eclipse.org/capella/
https://www.vector.com/de/de/produkte/produkte-a-z/software/preevision/
https://www.3ds.com/products-services/catia/products/no-magic/cameo-systems-modeler/


RM-Tool AM-Tool

<latexit sha1_base64="+/4WGLZWMTVIac/QgwsUV0hTMnk=">AAAB/XicbVDJSgNBEO1xjXGLy81LYxA8hRkR9RjUgxchilkgGYaeTiVp0rPQXSPGYfBXvHhQxKv/4c2/sbMcNPFBweO9Kqrq+bEUGm3725qbX1hcWs6t5FfX1jc2C1vbNR0likOVRzJSDZ9pkCKEKgqU0IgVsMCXUPf7F0O/fg9Kiyi8w0EMbsC6oegIztBIXmG3dQkSmZe2EB5QBentdZZ5haJdskegs8SZkCKZoOIVvlrtiCcBhMgl07rp2DG6KVMouIQs30o0xIz3WReahoYsAO2mo+szemCUNu1EylSIdKT+nkhZoPUg8E1nwLCnp72h+J/XTLBz5qYijBOEkI8XdRJJMaLDKGhbKOAoB4YwroS5lfIeU4yjCSxvQnCmX54ltaOSc1Jybo6L5fNJHDmyR/bJIXHIKSmTK1IhVcLJI3kmr+TNerJerHfrY9w6Z01mdsgfWJ8/JCCVrQ==</latexit>

�RM
<latexit sha1_base64="r0MqrKjrSXurPBDr1eiiYj810M0=">AAAB/XicbVDJSgNBEO1xjXGLy83LYBA8hRkR9RiXgxchglkgGYaeTiVp0j0zdNeIcRj8FS8eFPHqf3jzb+wsB018UPB4r4qqekEsuEbH+bbm5hcWl5ZzK/nVtfWNzcLWdk1HiWJQZZGIVCOgGgQPoYocBTRiBVQGAupB/3Lo1+9BaR6FdziIwZO0G/IOZxSN5Bd2W1cgkPppC+EBlUzPb7LMLxSdkjOCPUvcCSmSCSp+4avVjlgiIUQmqNZN14nRS6lCzgRk+VaiIaasT7vQNDSkErSXjq7P7AOjtO1OpEyFaI/U3xMplVoPZGA6JcWenvaG4n9eM8HOmZfyME4QQjZe1EmEjZE9jMJucwUMxcAQyhQ3t9qsRxVlaALLmxDc6ZdnSe2o5J6U3NvjYvliEkeO7JF9ckhcckrK5JpUSJUw8kieySt5s56sF+vd+hi3zlmTmR3yB9bnDwoplZw=</latexit>

�AM

<latexit sha1_base64="2nZwYvJFPecT542SrHM5QTVrIC4=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRbBU0lE1GPRixehiv2ANoTNdtou3XywO1FLzE/x4kERr/4Sb/4bt20O2vpg4PHeDDPz/Fhwhbb9bRSWlldW14rrpY3Nre0ds7zbVFEiGTRYJCLZ9qkCwUNoIEcB7VgCDXwBLX90OfFb9yAVj8I7HMfgBnQQ8j5nFLXkmeUBoJd2ER5RBuntdZZ5ZsWu2lNYi8TJSYXkqHvmV7cXsSSAEJmgSnUcO0Y3pRI5E5CVuomCmLIRHUBH05AGoNx0enpmHWqlZ/UjqStEa6r+nkhpoNQ48HVnQHGo5r2J+J/XSbB/7qY8jBOEkM0W9RNhYWRNcrB6XAJDMdaEMsn1rRYbUkkZ6rRKOgRn/uVF0jyuOqdV5+akUrvI4yiSfXJAjohDzkiNXJE6aRBGHsgzeSVvxpPxYrwbH7PWgpHP7JE/MD5/ABUDlIk=</latexit>

getRM

<latexit sha1_base64="h3pkyECOqTTQZLCmeXWfgCzN9xI=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRbBU0lE1GPVixehgv2ANoTNdtou3XywO1FLzE/x4kERr/4Sb/4bt20O2vpg4PHeDDPz/Fhwhbb9bRSWlldW14rrpY3Nre0ds7zbVFEiGTRYJCLZ9qkCwUNoIEcB7VgCDXwBLX90NfFb9yAVj8I7HMfgBnQQ8j5nFLXkmeUBoJd2ER5RBunFTZZ5ZsWu2lNYi8TJSYXkqHvmV7cXsSSAEJmgSnUcO0Y3pRI5E5CVuomCmLIRHUBH05AGoNx0enpmHWqlZ/UjqStEa6r+nkhpoNQ48HVnQHGo5r2J+J/XSbB/7qY8jBOEkM0W9RNhYWRNcrB6XAJDMdaEMsn1rRYbUkkZ6rRKOgRn/uVF0jyuOqdV5/akUrvM4yiSfXJAjohDzkiNXJM6aRBGHsgzeSVvxpPxYrwbH7PWgpHP7JE/MD5/APr9lHg=</latexit>

getAM

<latexit sha1_base64="df75/Jmo2JSlvLt6ed7LehckcFE=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRbBU0lE1GPVixehgv2ANoTNdtsu3d2E3YlaYn6KFw+KePWXePPfuG1z0NYHA4/3ZpiZF8acaXDdb6uwtLyyulZcL21sbm3v2OXdpo4SRWiDRDxS7RBrypmkDWDAaTtWFIuQ01Y4upr4rXuqNIvkHYxj6gs8kKzPCAYjBXY5TiBIu0AfQYn04ibLArviVt0pnEXi5aSCctQD+6vbi0giqATCsdYdz43BT7ECRjjNSt1E0xiTER7QjqESC6r9dHp65hwapef0I2VKgjNVf0+kWGg9FqHpFBiGet6biP95nQT6537KpPmPSjJb1E+4A5EzycHpMUUJ8LEhmChmbnXIECtMwKRVMiF48y8vkuZx1TutercnldplHkcR7aMDdIQ8dIZq6BrVUQMR9ICe0St6s56sF+vd+pi1Fqx8Zg/9gfX5AyJwlJE=</latexit>

putAM

<latexit sha1_base64="2nZwYvJFPecT542SrHM5QTVrIC4=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRbBU0lE1GPRixehiv2ANoTNdtou3XywO1FLzE/x4kERr/4Sb/4bt20O2vpg4PHeDDPz/Fhwhbb9bRSWlldW14rrpY3Nre0ds7zbVFEiGTRYJCLZ9qkCwUNoIEcB7VgCDXwBLX90OfFb9yAVj8I7HMfgBnQQ8j5nFLXkmeUBoJd2ER5RBuntdZZ5ZsWu2lNYi8TJSYXkqHvmV7cXsSSAEJmgSnUcO0Y3pRI5E5CVuomCmLIRHUBH05AGoNx0enpmHWqlZ/UjqStEa6r+nkhpoNQ48HVnQHGo5r2J+J/XSbB/7qY8jBOEkM0W9RNhYWRNcrB6XAJDMdaEMsn1rRYbUkkZ6rRKOgRn/uVF0jyuOqdV5+akUrvI4yiSfXJAjohDzkiNXJE6aRBGHsgzeSVvxpPxYrwbH7PWgpHP7JE/MD5/ABUDlIk=</latexit>

getRM

<latexit sha1_base64="h3pkyECOqTTQZLCmeXWfgCzN9xI=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRbBU0lE1GPVixehgv2ANoTNdtou3XywO1FLzE/x4kERr/4Sb/4bt20O2vpg4PHeDDPz/Fhwhbb9bRSWlldW14rrpY3Nre0ds7zbVFEiGTRYJCLZ9qkCwUNoIEcB7VgCDXwBLX90NfFb9yAVj8I7HMfgBnQQ8j5nFLXkmeUBoJd2ER5RBunFTZZ5ZsWu2lNYi8TJSYXkqHvmV7cXsSSAEJmgSnUcO0Y3pRI5E5CVuomCmLIRHUBH05AGoNx0enpmHWqlZ/UjqStEa6r+nkhpoNQ48HVnQHGo5r2J+J/XSbB/7qY8jBOEkM0W9RNhYWRNcrB6XAJDMdaEMsn1rRYbUkkZ6rRKOgRn/uVF0jyuOqdV5/akUrvM4yiSfXJAjohDzkiNXJM6aRBGHsgzeSVvxpPxYrwbH7PWgpHP7JE/MD5/APr9lHg=</latexit>

getAM

<latexit sha1_base64="/ti/j2lZuJGz5rm5EeXDosdnhzs=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rGoB48V7Ae0oWy2m3btZjfsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLRzdRvPTFtuJIPOE5YEJOB5BGnBK3U7N4ygaRXrnhVbwZ3mfg5qUCOeq/81e0rmsZMIhXEmI7vJRhkRCOngk1K3dSwhNARGbCOpZLEzATZ7NqJe2KVvhspbUuiO1N/T2QkNmYch7YzJjg0i95U/M/rpBhdBRmXSYpM0vmiKBUuKnf6utvnmlEUY0sI1dze6tIh0YSiDahkQ/AXX14mzbOqf1H1788rtes8jiIcwTGcgg+XUIM7qEMDKDzCM7zCm6OcF+fd+Zi3Fpx85hD+wPn8AWKEjwI=</latexit>

�
1

2

3

4 5 6

Figure 2: Using bx to synchronise a common overlap for traceability maintenance

4. The set of relevant changes Δ can now be computed by comparing the unique identifiers
of the elements in the extracted overlaps (the source and target of the arrow Δ). For this
to be possible, note that the identifiers used in the RM tool must be saved as part of the
representation in the AM tool.

5. The set of relevant changes Δ can now be propagated to the AM tool using 𝑝𝑢𝑡𝐴𝑀 in
such a way that R2 and R3 are addressed adequately. This includes, e.g., conservative
strategies of handling deletions, so that the AM user can review and ultimately decide
how to handle broken traceability links.

6. The result of applying 𝑝𝑢𝑡𝐴𝑀 is represented as the induced change Δ𝐴𝑀 of the model in
the AM tool, typically only affecting the overlap from the requirements model and of
course traceability links to architectural model elements. If 𝑔𝑒𝑡𝐴𝑀 is now applied to the
resulting architectural model (depicted as a greyed out white arrow in the figure), the
result is expected to be identical to the overlap produced by 𝑔𝑒𝑡𝑅𝑀 in Step 2.

To simplify the required bx, process-based conventions can be established to limit which
parts of the models can be changed in which tools. To apply Figure 2, for instance, all users
must agree that (i) traceability links can only be created and maintained in the AM tool, (ii) the
representation of the relevant parts of the requirements models in the AM tool should only be
directly manipulated by 𝑝𝑢𝑡𝐴𝑀 and not by users of the AM tool.

To implement this solution strategy in practice, we therefore spend a substantial part of our
time performing a process analysis, i.e., suggesting and evaluating different processes, discussing
cost/effort vs. benefit in each case, and interviewing relevant stakeholders to determine what is
feasible/acceptable and what not.



In our experience, modern RM tools such as Codebeamer5 and Jama6 are well-suited for
applying this strategy as they (i) provide a relatively complete (REST-)API for flexible data
manipulation, and (ii) are flexible enough to allow new types of model elements to be introduced
to represent, e.g., architectural elements or test cases.

3.3. An extra (backend) tool for traceability maintenance

A final strategy involves using separate tools that support creating traceability links to proxies
in other tools. A proxy in this context is a model element that might or might not exist in
another tool. To ensure that R1 is adequately addressed the tool must support creating and
navigating such external links to proxies in a native manner.

A separate tool is responsible for resolving these proxies in the background, reporting links
that have become broken, and providing candidate elements of a certain type to support/simplify
link creation. OSLC7 can be used as a standard for connecting the tools as services via REST APIs.
Graph databases such as Neo4j8 can be used to check all proxies and resolve traceability links.
All modelling tools push/update periodically a part (basically the overlapping in Figure 2) of their
models to the graph database, which can then attempt to resolve proxies by connecting these
interface elements and reporting on success/failure. We have seen this strategy successfully
implemented for modern, domain-specific tools, which could be implemented from scratch.
Reusing current tools on the market, however, makes it difficult to address R1, i.e., to ensure
productive traceability maintenance for end users in their favourite tool.

4. How can future bx research help?

In our experience, it is currently difficult to directly (re)use a bx tool in practice. This is mainly
due to the effort involved in connecting the bx tool as required to the actual models and concrete
tools, especially when a project poses constraints on the choice of software technology. Usually,
bx tools that are developed in academia enforce a specific format for persisting models (e.g.,
Ecore-compliant XML Metadata Interchange (XMI) files), and do not allow for being used as an
all-in-one tool (as other tools are much more suitable for modelling purposes) or as a backend
for traceability maintenance (due to inappropriate interfaces). Using an existing bx tool for
synchronising a common overlap involves substantial additional implementation efforts, as the
bx must react to events that are triggered in one of the modelling tools.

It turns out, therefore, that bx foundations are what can be really transferred to industry and
used to investigate new application scenarios as well as organise and communicate implemented
solutions. As a consequence, bx could be further promoted by presenting established formal
foundations in an accessible manner for practitioners in the application area of (model-based)
systems engineering.

Concerning formal bx foundations, it would be helpful to clarify the relationship between bx,
version management, and variant management. To the best of our knowledge, there exists no

5https://codebeamer.com/cb
6https://www.jamasoftware.com/solutions/requirements-management/
7https://open-services.net
8https://neo4j.com

https://codebeamer.com/cb
https://www.jamasoftware.com/solutions/requirements-management/
https://open-services.net
https://neo4j.com


unified formal treatment of these three concerns together, even though they often have be to
handled in combination in practice. There are different ways of handling bx (state-based, delta-
based, different laws), different ways to support versioning (branch-based with a diff+merge,
locks, online vs. offline), and different approaches to variant management (composition-based
vs. annotation-based) – having a formal framework with unifying definitions and laws covering
all these concerns would help master the complexity and confusion in practice.

Concerning bx tooling, we suggest inspecting existing modelling tools that are currently
being used in practice by a community of practitioners in a respective ecosystem. To increase
the chance of actually using bx-related implementations, the bx community has to provide
tool-specific connectors that can be directly used and configured as required.

Finally, we believe it is particularly unrealistic to make too many assumptions about the data
stored in tools. Expecting the complete data to be exported to a certain format, manipulated
by a bx, and then imported back to the modelling tool is typically unwieldy if not infeasible
in practice. We suggest instead developing bx tooling that leaves all data in the respective
modelling tools, communicating with the tools via their respective APIs as required.

5. Conclusion

In this paper, we shared an automotive perspective on traceability maintenance with a primary
focus on the upper-left corner of the V-model.

We reported on the main requirements, challenges and constraints of this problem domain.
In our experience, the pivotal requirement is typically that end users want to create and

make use of traceability links directly in their modelling tool of choice without too much of a
distinction between these links and other “normal” links in the modelling tool.

This perhaps explains some of the solution strategies we discussed, especially the overly
ambitious attempt to build an all-in-one tool despite repeated failure in the past.

A viable, pragmatic solution strategy employs bx to propagate parts of models in one tool to
other tools, enabling traceability maintenance in the tools at the price of having to keep these
parts synchronised.

Finally, we suggested future directions of bx research which would help promote a transfer
of bx to industry, especially for model-based systems engineering.



References

[1] Automotive SPICE® Process Reference and Assessment Model - RELEASE 3.1 -
01 November 2017, https://www.automotivespice.com/fileadmin/software-download/
AutomotiveSPICE_PAM_31.pdf, 2017. Accessed: 2022-05-13.

[2] E. R. Batot, S. Gérard, J. Cabot, A survey-driven feature model for software traceability
approaches, in: E. B. Johnsen, M. Wimmer (Eds.), Fundamental Approaches to Software
Engineering - 25th International Conference, FASE 2022, Munich, Germany, April 2-7,
2022, Proceedings, volume 13241 of LNCS, Springer, 2022, pp. 23–48.

[3] A. Anjorin, E. Leblebici, A. Schürr, 20 years of triple graph grammars: A roadmap for
future research, Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 73 (2015).

[4] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, J. Terwilliger, Bidirectional
Transformations: A Cross-Discipline Perspective, in: R. F. Paige (Ed.), ICMT 2009, volume
5563 of LNCS, Springer, 2009, pp. 260–283.

[5] J. Cheney, J. McKinna, P. Stevens, J. Gibbons, Towards a Repository of Bx Examples, in:
K. S. Candan, S. Amer-Yahia, N. Schweikardt, V. Christophides, V. Leroy (Eds.), Proceedings
of the Workshops of EDBT/ICDT 2014, volume 1133 of CEUR Workshop Proceedings, CEUR-
WS.org, 2014, pp. 87–91.

[6] F. Hermann, S. Gottmann, N. Nachtigall, H. Ehrig, B. Braatz, G. Morelli, A. Pierre, T. Engel,
C. Ermel, Triple Graph Grammars in the Large for Translating Satellite Procedures, in:
D. D. Ruscio, D. Varró (Eds.), ICMT 2014, volume 8568 of LNCS, Springer, 2014, pp. 122–137.

[7] D. Blouin, A. Plantec, P. Dissaux, F. Singhoff, J. Diguet, Synchronization of Models of Rich
Languages with Triple Graph Grammars: An Experience Report, in: D. D. Ruscio, D. Varró
(Eds.), ICMT 2014, volume 8568 of LNCS, Springer, 2014, pp. 106–121.

[8] H. Giese, S. Hildebrandt, S. Neumann, Model Synchronization at Work : Keeping SysML
and AUTOSAR Models Consistent, Festschrift Nagl 5765 (2010) 555–579.

[9] J. Greenyer, J. Rieke, Applying Advanced TGG Concepts for a Complex Transformation
of Sequence Diagram Specifications to Timed Game Automata, in: A. Schürr, D. Varró,
G. Varró (Eds.), AGTIVE 2011, volume 7233 of LNCS, Springer, 2012, pp. 222–237.

[10] N. Weidmann, S. Salunkhe, A. Anjorin, E. Yigitbas, G. Engels, Automating Model Trans-
formations for Railway Systems Engineering, J. Object Technol. 20 (2021) 10:1–14.

[11] S. Maro, A. Anjorin, R. Wohlrab, J. Steghöfer, Traceability Maintenance: Factors and
Guidelines, in: D. Lo, S. Apel, S. Khurshid (Eds.), ASE 2016, ACM, 2016, pp. 414–425.

[12] M. Johnson, R. D. Rosebrugh, Unifying Set-Based, Delta-Based and Edit-Based Lenses,
in: A. Anjorin, J. Gibbons (Eds.), Bx 2016, volume 1571 of CEUR Workshop Proceedings,
CEUR-WS.org, 2016, pp. 1–13.

https://www.automotivespice.com/fileadmin/software-download/AutomotiveSPICE_PAM_31.pdf
https://www.automotivespice.com/fileadmin/software-download/AutomotiveSPICE_PAM_31.pdf

	1 Introduction
	2 A characterisation of the problem domain
	3 Current solution strategies
	3.1 A single tool for all models
	3.2 Separate tools with a bx to synchronise a common overlap
	3.3 An extra (backend) tool for traceability maintenance

	4 How can future bx research help?
	5 Conclusion

