
Model Slicing on Low-code Platforms
Ilirian Ibrahimi1,2,∗, Dimitris Moudilos2

1Johannes Kepler University, Institute of Software Engineering, Altenberger Straße 69, Linz, Austria
2CLMS UK. Battle House,1 East Barnet Road,New Barnet, Herts EN4 8RR, UK, and Andrea Papandreo 19, Athens, Greece

Abstract
Low-code platforms (LCP) use models as the main artifact during the software development process.
Typically, the modeling activity concerns both structural and behavioral aspects of the generated appli-
cation, like the underlying data model (DM), User Interface (UI), and business logic (BL), resulting in a
collection of interconnected models. Thus, reusing model fragments across different projects would be a
highly beneficial feature for LCPs and their users.

This paper presents a model slicing approach for LCP models that combines DM, UI, and BL modeling
concerns. A model slice consists of a DM class which serves as an input for the approach, its DM
constraint-related classes e.g., base classes, and its related UI entities as well as BL functions.

Themodel slicer operates on separatedmodel repositories which will be queried to find related entities
to the DM input class and integrate them automatically into the LCP. We conducted an experimental
evaluation with zAppDev models and concluded that 77.78% of the DM classes are cross-connected to
any entity among the zAppDev models. Hence all these connected entities can be extracted as model
slices and reused automatically.

Keywords
MDE, Low-code platfroms, Model slicing, Model reuse, Knowledge graphs

1. Introduction

Low-code platforms (LCP) are cloud-based applications that serve for building full-stack software
applications without necessarily requesting coding knowledge. One of the main capabilities of
an LCP is modeling the software application by designing its data models (DM), the user interface
- Form models, and business logic model(s) (BL), writing as less as possible domain-specific code
for implementing and deploying a complete software application.

Typical software engineering activities like coding in a general-purpose language, code
formatting, modularization, database configuration, deployment, etc, are automated [1, 2]. By
giving priority to modeling rather than coding, LCP enables so-called citizen developers, i.e.,
stakeholders with very limited or even no coding experience, the opportunity to create full-
stack software applications which makes the LCPs more popular and useful in the software
development industry [3].

LCPs leverage model-driven engineering techniques (MDE) so that models are the cornerstone
artifacts that drive the overall engineering process [4, 5]. Some of these models as a whole or

Staf 2022 Workshop - 2nd International Workshop on Foundations and Practice of Visual Modeling (FVPM)
∗Corresponding author.
Envelope-Open ibrahimi.ilirian@gmail.com (I. Ibrahimi); d.moudilos@clmsuk.com (D. Moudilos)
GLOBE https://github.com/iliriani (I. Ibrahimi); https://clmsuk.com/ (D. Moudilos)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:ibrahimi.ilirian@gmail.com
mailto:d.moudilos@clmsuk.com
https://github.com/iliriani
https://clmsuk.com/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

part of it (i.e., their elements) might be shared among different LCP systems. Thus, finding
any solution on how to reuse these models, which may be of different languages like XML,
JSON, etc., and different levels like DM, UI models, etc., and providing all this information
automatically to the user in the domain modeling stage would be a novel and highly on-demand
task.

Hence, this paper presents an approach for model reuse through model slicing on LCP. To get
the information on heterogeneous models, our approach converts all the heterogeneous models
to a homogeneous graph which will serve as a knowledge graph (KG). And to cope with the
different levels of models, we created two different repositories, one for the DM, and another for
the Form models. The two repositories persist the KG for the DM and the Forms respectively.
The model slicing approach gets as input a DM class and queries both repositories in order
to get related entities to it. The required entities within the DM repository like base class,
composition, etc. will constitute the horizontal slice since they belong to the same model level
(i.e., DM) as the input class. And the related entities from the Form repository will constitute
the vertical slice since they belong to a different level than the input class. Both slices will be
merged as a single model slice and provided to the developer1 in a JSON format.

As a proof of concept, we have tested our approach on the zAppDev2 LCP by using 5 different
zAppDev DM (in XML) with a total of 27 different domain classes, and 47 different Form models
related to these domain models. The evaluation revealed that 77.78% of the given DM classes
had any kind of cross-model relation i.e. we could extract successfully 21 distinct cross-language
and cross-level model slices from these zAppDev models. The approach has been developed on
Spring boot and is provided as a REST API.

In the rest of this paper, we present in Section 2 a running example in order to better
understand the aim of the model slicing approach. In Section 3 we outline and explain how
the model slicing approach works. In Section 4 we present an experimental evaluation of our
approach. Afterward, in Section 5 we present some related work to model slicing, and finally,
in Section 6 we provide the conclusion and the tentative future work.

2. Running Example

To clarify the concepts used throughout this paper, we will initially provide some background
information.

2.1. Background Information about the zAppDev LCP

zAppDev is a web-based, model-driven development environment, allowing developers of any
technology and proficiency level to easily create, edit and reuse models of software artifacts (e.g.
database models, business logic models, user interface models, and more), covering the complete
application development lifecycle while having total control of the process. As explained in [1]
an LCP typically consists of 4 different layers which are included as well on zAppDev and
are comprised of 1. The application layer is represented by the Form models, 2. The service

1For the sake of brevity, in this paper we will use the terms developer interchangeably for citizen developer
2https://zappdev.io/

integration layer by API adapters, 3. The data integration layer is represented by data models,
the service models, API Adapters, and finally 4. The deployment layer is represented by the
Cloud.

zAppDev
metalanguage

(C#)

Business Object
metamodel

Web Form UI
metamodel

BO Model

...

UI Form Model

...

conforms toconforms to

conforms toconforms to

n m
L1

L2

L3

Figure 1: Metamodeling layers on the zAppDev
LCP

The layers of interest for us are the appli-
cation and data integration layers and their
corresponding models since these are the only
models the developers have direct contact
with. Concretely, in this work, we will work
with zAppDev data models a.k.a business ob-
ject models (BOs), and Form models a.k.a
UI-Formmodels. The BO and UI-Formmod-
els belong to the zAppDev L1 level of the 3-
level meta-modeling architecture as depicted
in Fig. 1. Both, the BOs and the UI-Form mod-
els are instances of the Business Object meta-
model and Web Form UI metamodel respec-
tively (L2 level). Whereas both metamodels
conform to the zAppDev metalanguage writ-
ten in the c# programming language (L3 level).
The metamodels and the metalanguage are
embedded on zAppDev and the developers

have no access to them, they start the work directly by creating BO models as instances of
the BO metamodel and auto-generate the UI-Form models from the BO models or they can
initially design the UI-Form model and connect it afterwards to the relevant BO model. Lastly,
the developers define the business logic of any UI component within the UI-Form model by
using the Mamba language.

Now, by explaining a running example we will be trying to clarify how this approach will
extract model slices from LCP models.

2.2. Running example

Assume that in an LCP there is an Invoice software containing a BO, a UI-Form model named
”Invoice Form” auto-generated from the BO classes or manually constructed by the developer,
and the business logic functions related to the BO classes. The architecture of the Invoice
software is depicted in Fig. 2. In the zAppDev LCP, the BOs are presented in XML format, the
UI-Forms as JSON files, and the DSL functions are written in the Mamba3 language. As we
can see in Fig. 2 on the left part, the BO is constructed from the classes Invoice , Client , and
Company . We aim to get only the related cross-level and cross-language artifacts to the Client
BO class. As depicted in Fig. 2, the Client BO class is related to the Invoice Form with a label
with the text Client on it and a combo box. Further, we can see that the Client class has an
Edit function related to it. To emphasize the connection of all the Client related cross-level and
cross-language entities we rounded and connected them with a blue cycle and blue lines.

3https://docs.zappdev.com/MambaLanguage/About/

Invoice business model

*

1

1

*

Invoice Form

Date:

 Amount:
Details:

Client:

Save Preview Delete Exit

Company:

Invoice
number:

<<Select>>

<<Select>>

Uses

Generates

Mamba Functions

function void Edit(int id) {
Model.Client = Domain.Client.GetByKey(id);\n Model.Title =
LocalResources.RES_PAGETITLE_Edit;}

Repository

Mamba Functions

Business object class

function void Edit(int id) {
Model.Client =
Domain.Client.GetByKey(id);\n
Model.Title =
LocalResources.RES_PAGETITLE_Edit;}

Model slice

+ Id: int
+ VAT: string
+ Name: string
+ Individual: bool
+ Address: string
+ ContactEmail: string
+ ContactPhone: string

Client

Client: <<Select>>

UI-Form controlls

Model Slicer
input class: Client extracts+ Id: int

+ Date: DataTime
+ Amount: decimal
+ Details: string
+ InvoiceNumber: string
+ Template: InvoiceTemp

Invoice

+ Id: int
+ VAT: string
+ Name: string
+ Individual: bool
+ Address: string
+ ContactEmail: string
+ ContactPhone: string

Client

Company

+ Id: int
+ Name: string
+ VAT: string
+ Country: string
+ Address: string
+ ContactEmail: string
+ ContactPhone: string

function void Save() {\n Model.Invoice.Save();\n
CloseForm();\n}

Figure 2: Model reuse through model slicing - running example

Now the idea of a model slicer approach on an LCP as shown in Fig. 2 would be to provide to
the approach only the Client BO class as input and it would be capable to compute and extract
all the cross-related entities to the Client BO class and integrate those on an LCP. As shown
on the right side of Fig. 2 the extracted model slice from the approach is itself a model which
contains only the Client relevant entities across the LCP models.

Concluding, the model slicer tends to find connected entities to the BO input classes on
cross-level and cross-language models and presents these as a model slice to the developers so
everything that is connected within the entire production line on any LCP can be reused and
integrated automatically on an LCP. Inspired by this running example, we have created a model
slicing approach that will be explained in more detail in Section 3.

3. Approach

This section will be presenting in more detail how the model slicer extracts model slices from
cross-level models. The overview of the model slicer is presented in Fig. 3.

3.1. Repositories

The first step toward model slicing is persisting the models in a repository so they can be
reused for different business needs afterwards. Since all models in zAppDev are graph-based,
the repository of our approach is also graph-based. We selected the Resource Description
Framework (RDF) [6] as our model format since it is a graph-based model and the standard
format of W3C4, this is relevant to LCPs which are cloud-based. Thus, various models will be
converted and merged into a single RDF graph. We will use and refer to this RDF graph as the
knowledge graph (KG) of our approach.

Since developing any software on an LCP ones needs to create its’ DM, its’ UI in a Form
model, and the business logic which is persisted in any of these two (especially in zAppDev), we
have created two different repositories for the model slicer, one which persists the knowledge
graph for the DM, and another for the Form models. Thus, as explained in Fig. 3, step 1 of our
approach is creating the repositories which persist the knowledge graph for the DM and Form
models by converting them to RDF and merging them to their respective knowledge graphs.

3.2. Input Class

Step 2 of our approach is getting the input class. The input class is the core entity of any model
slice because any other entity of the model slice has to be related in a specific form to it. Hence,
the input class defines the slicing criterion for our approach. After having the input class, the
slice service - which is responsible for the business logic part of the model slicer - will query the
repositories to find relevant connections between the existing entities within the repositories
and the input class.

3.3. Horizontal Slice

The first check the input class will go through is if it has any constraints class that has to be
integrated with the input class. For instance, if the input class inherits a class within the BO
classes, or has a composition class, then the base/composition class has to be integrated as well
in the LCP in order to avoid model validation errors. Thus in step 3, our approach checks in the
DT (BO) repository if there is any such constraints class related to the input class, and if any
such class can be found it will be provided to the developers together with the input class. Since
the input class and the constraint classes are on the same level (within the business object) we
call this kind of relation as horizontal slicing. Since we are slicing only zAppDev models so far,
the horizontal slice is defined only by checking if the input class has any base class within the
BO repository.

3.4. Vertical Slice

Next, the model slicer service will check if there is any related entity within the Form KG to
the input class. In step 4 the model slicer will return all the relevant information about the
related entities to the input class. In our case, we query the information about UI components,
i.e., the UI component name, the UI component data source - which shows to which specific

4https://www.w3.org/TR/2004/REC-rdf-concepts-20040210

BOs

UIUIUI

Forms

Knowledge graph
of BOs

Knowledge
graph of Forms

convert toconvert to

Repositories

BO
class

input
Slice

service

Query the BO KG
for finding input
class constraint

classes

Query the Forms
KG for finding input

class related UI
components and

DSL code

Model
slice

combine results and
generate the slice

Step 1

Step 2

Step 3 Step 4

Step 5

Figure 3: Model slicing approach overview

attribute of the input class the UI component is related, and the type of the UI component, e.g.
TextBoxControll, CheckBox, etc. Although a lot of other relevant information can be retrieved
e.g. the cascade style sheet (CSS) information about the UI components, UI components layout
information, etc. Since in zAppDev the DSL functions a.k.a. Mamba functions are persisted
within the Form models, in step 4 the model slicer also queries for related Mamba functions to
the input class. Hence the UI components and DSL functions are not in the same model level as
the input class, we call this relation of connected cross-level models a vertical slice.

Finally, the extracted horizontal and vertical slices will be merged as a single model slice and
integrated into the LCP.

An example of model slicing is presented in Fig. 4. We see that the meta-class Class 1 is
connected to the UI components Comp. 1 and Comp. 2 and also to the DSL functions Func. 1 and
Func. 2, thus the connection of all these entities would give a single slice (Slice 1). Further in
Fig. 4, we can see that the meta-class Class 3 has a constraint class Class 2 within the BO, it
is also related to the component Comp 3 on the UI - Form model, and it has also a related DSL
function Func. 3. The connection of these related entities to Class 2 would produce another

Class 1

Class n

Class 2

Class 3

Comp. n

Comp. 1

Comp.2

Comp. 3

Func. 1

Func. 2

Func. 3

Func. n

Business Object models

UI - Form

DSL Code

Class 1

Func. 1 Func. 2

Comp. 1 Comp.2

Class 3

Func. 3

Comp.3

Generates

Slice 1

Horizontal
Slice

Class 2

Slice 2

Figure 4: Model reuse through model slicing

Model slices on zAppDev models
BO models BO classes UI-Form models Horizontal Slices Vertical Slices
1 CoreBO 10

47

0 9
2 DTOs 2 0 2
3 Expenses 5 0 4
4 ProjectBO 3 0 3
5 TaskBO 17 1 8
Total 48 (27 Distinct) 47 1 26 (21 Dis-

tinct)

Table 1
Model slices on zAppDev models

modeling slice (Slice 2).

4. Experimental evaluation

This section demonstrates how the model slicer extracts model slices on real LCP models.
As a proof of concept, we got 5 different BOs and 47 different UI-Form models generated

by these business objects. We have created two different knowledge graphs which contain all

the information about the BOs and the Form models respectively. Then we selected each class
iteratively from the BOs and gave this as an input class to the model slicer and checked the
extracted model slices. In Fig. 5 we have presented the information that will be extracted by the
model slicer. In this demo, the model slicer will try to extract a model slice related to the Client
class.

 <Class ModelName="CoreBO" Name="Client" ShadowModel="" ShadowClass="" Description="" Stereotype="Class" PK="Id"
ConcurencyControl="false" AutoAssignPrimaryKey="true" IdGeneratorType="HiLoGenerator" IsPersisted="true" IsStatic="false" BaseClass=""
TableName="" BaseClasses="" BaseModel="">
 <DiagramInfo IsExpanded="true" Width="220.16259765625" Height="310" Top="19.921142578125" Left="791.0921020507812" />
 <Attributes>
 <Attribute Name="Company" IsValueClass="false" Description="" DataType="string" BaseInfo="" Length="100" Precision="8" Scale="2"
InitValue="" IsRequired="false" IsInherited="false" Persisted="true" ColumnName="" IsEncrypted="false" IsStatic="false" ReadOnly="false"
IsExternal="false" CustomValidation="" IsCreditCard="false" IsURL="false" IsEmail="false" MinLength="0" MaxLength="100" MinValue=""
MaxValue="" Getter="" Setter="" />

 </Class>

....
"Actions": [{
"Code": "function void Edit(int id) { \n Model.Client =
Domain.Client.GetByKey(id);\n
 Model.Title = LocalResources.RES_PAGETITLE_Edit;\n}",
"Name": "Edit",
"Permissions": [],
"AllowAnonymous": false,
"AllowAllAuthenticatedUsers": true,
"AccessLog": false,
"IsEntryPoint": true,
"IsDefault": false,
"CausesValidation": false,
"DontPostViewModel": false,
"AllGroups": true,
"Groups": []....

"Controls": [{
"$type": "CLMS.AppDev.DomainModel.Models.TextBoxControl,
CLMS.AppDev.DomainModel",
"ReadOnly": false,
"Required": true,
"ChangeWhileTyping": false,
"ChangeDelay": 200,
"MaxLength": 100,
"Name": "txtCompany",
"CssStyle": "",
"CssClass": "",
"Datasource": "Client.Company",
"DoesNotMakeFormDirty": false,
"FontSizeRole": 0,
"ElementSizeRole": 3,
"ColorRole": 0,
"FilterOperator": 7,
"RowOperator": 1,
"Ovewrite": true,
"ApplyOnBlur": true,
"HiddenInMobileView": false,
"Ignored": false,
"Controls": []
}]

Form excerpts

Metamodel excerpt

"DataSets": [{
"Type": 1,
"Name": "ClientDataSet",
"Class": "Client",
"Operation": "GetAll",
"Filter": "function bool Filter(\n Domain.Client DataItem\n) {\n return
true;\n}",
"Sorting": [],
"OvewriteDefaultSecurity": false,
"AllowAnonymous": false,
"AllowAllAuthenticatedUsers": false,
"Permissions": [],
"ManualOptions": [],
"Arguments": [],

a) Metaclas constraints - horizontal slice

b) DSL functions

c) UI components

d) Data set

Cross-model metaclass
matching entities

Horizontal slicing

Vertical slicing

Figure 5: Model slicing in zAppDev

Initially, the model slicer will check within the BOs at the baseClass element to find any base
class so it can create the horizontal slice (a)). This check is presented with the red dashed arrow.
In this demo, the Client class hasn’t any base class, and since at the time of writing this paper this
is the only checked constraint for BO classes, will the model slicer not define any horizontal slice.
Next, the model slicer will check for extracting the relevant Mamba functions from the zAppDev
Form models (b)). The model slicer will check within the Code notation to find any related

function to the Client class. The found functions will be returned as part of the vertical slice.

Figure 6: Triggering the model slicer service for
the Client class

Next in c), the model slicer will extract the
required information about the relevant UI
components to the Client class. First, the
model slicer will check if there is any Data-
source notation that is related to the Client
class, if there is any, then it gets the informa-
tion about that Datasource related Name and
$type notation. These three notations: Name,
Datasource, and $type will be returned also as
part of the vertical slice.

Finally, the model slicer checks for any re-
lated dataset to the Client class (d)). It checks
the notation Class within theDataset notation
if it is Client. If there is a match, then will the
model slicer get the respective Name, Opera-

tion, and Filter information. All this information will also be returned as part of the vertical
slice.

Figure 7: Integration of the Client model slice
in zAppDev

In the end, all the information about the
horizontal and vertical slices will be merged
in a single JSON file and integrated into the
zAppDev LCP. This model slice is extracted af-
ter selecting the Client BO class and clicking
the ”Create forms from Slice” button located
in the menu bar as shown in Fig. 6. The model
slice is integrated on the zAppDev LCP as a
UI-Form model including the extracted infor-
mation for the Client BO class. A snapshot
of the integrated model slice on zAppDev is
depicted in Fig. 7.

In Table 1 we have outlined the results of
how many model slices could be extracted
from the zAppDev models. For the study, we
have used 5 different business object models
and 47 different UI-Form models. We listed
all the BO classes from all the 5 BO models
and counted 27 distinct classes. We iterated
through each of these BO classes and set each
of them successively as an input class to the
model slicer. Of all these BO classes only one
class had a base class (PMOUser had as base
class ApplicationUser) i.e., a horizontal slice.

Also from the set of 27 distinct BO classes, the model slicer could extract 21 vertical slices which

means that 21 BO classes have at least one related entity on the UI-Form models. From this
amount of data we got from zAppDev, we could conclude that 77.78% of the BO classes are
related at least to a base class or at least to one UI-Form model entity. This fact reveals the
emerging need for a cross-language and cross-level model reuse approach on LCP that can be
facilitated through the model slicer provided in this work.

The model slicer has been developed using Spring boot and is provided as a REST API for use
in the zAppDev LCP. The source and the repositories containing the KG used for the evaluation
are available on GitHub5

5. Related Work

Although to the best of our knowledge this is the first approach towards model ruse through
slicing on cross-level and cross-language LCP models, inspired by program slicing approaches [7,
8], we will show some related works to model slicing.

Salay et al. [9] present an algorithm for megamodels slicing. The algorithm gets as input
the megamodel and by using the traceability relation among the entities of the models that
construct the megamodel it extracts the model slice. Our approach is search-based and not
static based, i.e., it doesn’t iterate through the cross-level model entities of a megamodel, it
queries different repositories to find relevant matches to the input class.

Taenzer et al. [10] present a formal framework for creating model slicers that are capable
to change incrementally a model slice after performing any change on it. Our approach is
search-based and generates model slices from a single input class to support the LCP users
during the modeling process. It is not required that we implement the update of model slicing
since it can be updated directly by the LCP users based on their needs after being integrated.

Compare to the approaches that enable model slicing for a specific model type [11, 12, 13, 14,
15, 16] our approach checks for related entities among different models of different types and
extract them as a model slice.

6. Conclusion and Future work

In this work, we have presented an approach that enables the reuse of cross-related models on
an LCP through model slicing. The model slicing approach gets as input a data model class and
queries the data model for any constraint-related class, and also the Form model repositories to
get UI components and DSL functions. The current approach enables model slicing of zAppDev
models but conceptually it can be used for any LCP.

In future work, we plan to fine-grain the model slicer by proving UI component layout
information, slicing the class attributes, etc. We also aim to integrate the model slicer on a
model recommendation approach so that after selecting a suggested data model class, all its
cross-related model entities will be integrated automatically.

5https://github.com/iliriani/Model-slicer

Acknowledgments

This project has received funding from the EUHorizon 2020 research and innovation programme
under the Marie Skłodowska Curie grant agreement No 813884.

References

[1] A. Sahay, A. Indamutsa, D. Di Ruscio, A. Pierantonio, Supporting the understanding and
comparison of low-code development platforms, Proceedings - 46th Euromicro Conference
on Software Engineering and Advanced Applications, SEAA 2020 (2020) 171–178. doi:10.
1109/SEAA51224.2020.00036 .

[2] R. Waszkowski, Low-code platform for automating business processes in manufacturing,
IFAC-PapersOnLine 52 (2019) 376–381. URL: https://doi.org/10.1016/j.ifacol.2019.10.060.
doi:10.1016/j.ifacol.2019.10.060 .

[3] P. Vincent, K. Iijima, M. Driver, J. Wong, Y. Natis, Licensed for Distribution Magic Quadrant
for Enterprise Low-Code Application Platforms (2019) 1–34. URL: https://www.gartner.
com/doc/reprints?id=1-1ODOM46A{&}ct=190812{&}st=sb.

[4] D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, M. Wimmer, Low-code
development and model-driven engineering: Two sides of the same coin?, Software and
Systems Modeling (2022). URL: https://doi.org/10.1007/s10270-021-00970-2. doi:10.1007/
s10270- 021- 00970- 2 .

[5] A. Bucaioni, A. Cicchetti, F. Ciccozzi, Modelling in low-code development: a multi-vocal
systematic review, Software and Systems Modeling (2022). URL: https://doi.org/10.1007/
s10270-021-00964-0. doi:10.1007/s10270- 021- 00964- 0 .

[6] O. Lassila, R. R. Swick, Resource description framework (RDF) model and syntax specifica-
tion. World Wide Web Consortium Recommendation (1999). URL: http://www.w3.org/TR/
REC-rdf-syntax.

[7] H. V. Nguyen, C. Kästner, T. N. Nguyen, Cross-language program slicing for dynamic
web applications, in: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, Association for Computing Machinery, New York,
NY, USA, 2015, p. 369–380. URL: https://doi.org/10.1145/2786805.2786872. doi:10.1145/
2786805.2786872 .

[8] M. Weiser, Program slicing, in: Proceedings of the 5th International Conference on
Software Engineering, ICSE ’81, IEEE Press, 1981, p. 439–449.

[9] R. Salay, S. Kokaly, M. Chechik, T. S. E. Maibaum, Heterogeneous megamodel slicing for
model evolution, in: ME@MoDELS, 2016.

[10] G. Taentzer, T. Kehrer, C. Pietsch, U. Kelter, A formal framework for incremental model
slicing, in: FASE, 2018.

[11] R. Ahmadi, J. Dingel, E. Posse, Slicing uml-based models of real-time embedded systems,
2018. doi:10.1145/3239372.3239407 .

[12] S. Sen, N. Moha, B. Baudry, J.-M. Jézéquel, Meta-model Pruning, in: ACM/IEEE 12th Inter-
national Conference on Model Driven Engineering Languages and Systems (MODELS’09),
Denver, Colorado, USA, United States, 2009. URL: https://hal.inria.fr/inria-00468514.

http://dx.doi.org/10.1109/SEAA51224.2020.00036
http://dx.doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1016/j.ifacol.2019.10.060
http://dx.doi.org/10.1016/j.ifacol.2019.10.060
https://www.gartner.com/doc/reprints?id=1-1ODOM46A{&}ct=190812{&}st=sb
https://www.gartner.com/doc/reprints?id=1-1ODOM46A{&}ct=190812{&}st=sb
https://doi.org/10.1007/s10270-021-00970-2
http://dx.doi.org/10.1007/s10270-021-00970-2
http://dx.doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1007/s10270-021-00964-0
https://doi.org/10.1007/s10270-021-00964-0
http://dx.doi.org/10.1007/s10270-021-00964-0
http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/TR/REC-rdf-syntax
https://doi.org/10.1145/2786805.2786872
http://dx.doi.org/10.1145/2786805.2786872
http://dx.doi.org/10.1145/2786805.2786872
http://dx.doi.org/10.1145/3239372.3239407
https://hal.inria.fr/inria-00468514

[13] A. Bergmayr, M. Wimmer, W. Retschitzegger, U. Zdun, Taking the pick out of the bunch -
type-safe shrinking of metamodels, in: S. Kowalewski, B. Rumpe (Eds.), Software Engi-
neering 2013, Gesellschaft für Informatik e.V., Bonn, 2013, pp. 85–98.

[14] H. Kagdi, J. I. Maletic, A. Sutton, Context-free slicing of uml class models, in: Proceedings
of the 21st IEEE International Conference on Software Maintenance, ICSM ’05, IEEE
Computer Society, USA, 2005, p. 635–638. URL: https://doi.org/10.1109/ICSM.2005.34.
doi:10.1109/ICSM.2005.34 .

[15] P. Kelsen, Q. Ma, C. Glodt, Models within models: Taming model complexity using the
sub-model lattice, in: D. Giannakopoulou, F. Orejas (Eds.), Fundamental Approaches to
Software Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 171–185.

[16] A. Blouin, B. Combemale, B. Baudry, O. Beaudoux, Modeling model slicers, in: J. Whittle,
T. Clark, T. Kühne (Eds.), Model Driven Engineering Languages and Systems, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 62–76.

https://doi.org/10.1109/ICSM.2005.34
http://dx.doi.org/10.1109/ICSM.2005.34

	1 Introduction
	2 Running Example
	2.1 Background Information about the zAppDev LCP
	2.2 Running example

	3 Approach
	3.1 Repositories
	3.2 Input Class
	3.3 Horizontal Slice
	3.4 Vertical Slice

	4 Experimental evaluation
	5 Related Work
	6 Conclusion and Future work

