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Abstract
In the last few decades, the employment of machine learning (ML) models has been increasingly common

in the Artificial Intelligence community, with a particular focus on neural networks (NNs). However,

even though they are widely adopted, the lack of formal guarantees on their behavior still restrain their

use in safety-critical applications, such as avionics and self-driving vehicles. Formal Verification has

been proposed to tackle the reliability issues of NNs, but its complexity and the sheer size of the models

of interest have been proven to be hard challenges. In this paper we present an enhancement of our

verification algorithm based on counter-example guided abstraction refinement (CEGAR) and show how

it performs with respect to other approximate star-based methods.
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1. Introduction

Adoption and successful application of deep neural networks (DNNs) in various domains across

computer science have made them one of the most popular machine-learned models to date —

see, e.g., [1] on image classification, [2] on speech recognition, and [3] for the general principles

and a catalog of success stories. Despite the impressive progress that the learning community

has made with the adoption of DNNs, it is well known that their application in safety- or

security-sensitive applications is not yet hassle-free. From their well-known sensitivity to

adversarial perturbations [4, 5], i.e., minimal changes to correctly classified input data that cause

a network to respond in unexpected and incorrect ways, to other less-investigated, but possibly

significant properties — see, e.g., [6] for a catalog — the need for tools to analyze and possibly

repair DNNs is strong.

As witnessed by an extensive survey [7] of more than 200 recent papers, the response from the

scientific community has been equally strong. As a result, many algorithms have been proposed

for the verification of neural networks, as well as tools implementing them [8, 9, 10, 11, 12, 13, 14].

To the best of our knowledge, current state-of-the-art tools are restricted to verification/analysis

tasks, in some cases they are limited to specific network architectures and they might prove
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difficult to use for the non-initiated. Most of them work only for feed-forward fully-connected

neural networks with ReLU activation functions, with some of them featuring verification

algorithms for convolutional neural networks with different kinds of activation functions. Aside

from verification tools, a great deal of research involves the analysis on how to modify networks

to make them compliant to specifications, i.e., repair [15, 16, 17, 18] and how to learn networks

which respect specific constraints on their behavior, i.e., safe learning [19, 20, 21, 22, 23].

Our tool NeVer2 finds itself at the intersection of the issues explained above, and aims

to bridge the gap between learning and verification of DNNs. NeVer2 borrows its design

philosophy from NeVer [24], the first tool for automated learning, analysis and repair of

neural networks. NeVer2 relies on the pyNeVer API [25] and a first description of the system

is available in [26], where the verification capabilities were provided by external tools like

Marabou [11], ERAN [12] and MIPVerify [13]. The version of NeVer2 corresponding to this

work is available online [27] under the Commons Clause (GNU GPL v3.0) license.

The remainder of the paper is structured as follows: after an overview of the main concepts in

Section 2, we introduce the abstraction definitions and algorithms in Section 3. Our contribution,

i.e., the refinement step for the CEGAR [28] algorithm is presented in Section 4 and we discuss its

applicability in Sections 5 and 6. While in our experimental evaluation the CEGAR algorithm did

not show increased performances with respect to the original one, we believe that our approach

may be further enhanced leveraging the insight obtained by the experimental evaluation.

2. Preliminaries

Neural networks. Given a finite number 𝑝 of functions 𝑓1 : R𝑛 → R𝑛1 , . . . , 𝑓𝑝 : R𝑛𝑝−1 →
R𝑚

— also called layers — we define a feed forward neural network as a function 𝜈 : R𝑛 → R𝑚

obtained through the compositions of the layers, i.e., 𝜈(𝑥) = 𝑓𝑝(𝑓𝑝−1(. . . 𝑓1(𝑥) . . .)). The layer

𝑓1 is called input layer, the layer 𝑓𝑝 is called output layer, and the remaining layers are called

hidden. For 𝑥 ∈ R𝑛
, we consider only two types of layers:

• 𝑓(𝑥) = 𝐴𝑥+ 𝑏 with 𝐴 ∈ R𝑚×𝑛
and 𝑏 ∈ R𝑚

is an affine layer implementing the linear

mapping 𝑓 : R𝑛 → R𝑚
;

• 𝑓(𝑥) = (𝜎1(𝑥1), . . . , 𝜎𝑛(𝑥𝑛)) is a functional layer 𝑓 : R𝑛 → R𝑛
consisting of 𝑛 activation

functions — also called neurons; usually 𝜎𝑖 = 𝜎 for all 𝑖 ∈ [1, 𝑛], i.e., the function 𝜎 is

applied componentwise to the vector 𝑥.

We consider the most common activation function 𝜎 : R → R: the ReLU function defined

as 𝜎(𝑟) = 𝑚𝑎𝑥(0, 𝑟). For a neural network 𝜈 : R𝑛 → R𝑚
, the task of classification is about

assigning to every input vector 𝑥 ∈ R𝑛
one out of 𝑚 labels: an input 𝑥 is assigned to a class 𝑘

when 𝜈(𝑥)𝑘 > 𝜈(𝑥)𝑗 for all 𝑗 ∈ [1,𝑚] and 𝑗 ̸= 𝑘; the task of regression is about approximating

a functional mapping from R𝑛
to R𝑚

. In this regard, neural networks consisting of affine layers

coupled with ReLU layers offer universal approximation capabilities [29].

Verification task. Given a neural network 𝜈 : R𝑛 → R𝑚
we wish to verify algorithmically

that it complies to stated post-conditions on the output as long as it satisfies pre-conditions on



the input. Without loss of generality
1
, we assume that the input domain of 𝜈 is a bounded set

𝐼 ⊂ R𝑛
, i.e., there exists 𝑟 ∈ R, 𝑟 > 0 such that ∀𝑥, 𝑦 ∈ 𝑋 we have 𝑑(𝑥, 𝑦) < 𝑟 where 𝑑 is

the Euclidean norm 𝑑(𝑥, 𝑦) = ||𝑥 − 𝑦||. Therefore, the corresponding output domain is also

a bounded set 𝑂 ⊂ R𝑚
because (𝑖) affine transformations of bounded sets are still bounded

sets and (𝑖𝑖) ReLU is a piecewise affine transformation of its input. We require that the logic

formulas defining pre- and post-conditions are interpretable as finite unions of bounded sets

in the input and output domains. Formally, given 𝑝 bounded sets 𝑋1, . . . , 𝑋𝑝 in 𝐼 such that

Π =
⋃︀𝑝

𝑖=1𝑋𝑖 and 𝑠 bounded sets 𝑌1, . . . , 𝑌𝑠 in 𝑂 such that Σ =
⋃︀𝑠

𝑖=1 𝑌𝑖, we wish to prove

that

∀𝑥 ∈ Π → 𝜈(𝑥) ∈ Σ. (1)

While this query cannot express some problems regarding neural networks, e.g., invertibility or

equivalence [6], it can easily express, for example, the general problem of testing robustness

against adversarial perturbations [4]. For example, given a network 𝜈 : 𝐼 → 𝑂 with 𝐼 ⊂ R𝑛
and

𝑂 ⊂ R𝑚
performing a classification task, we have that separate regions of the input are assigned

to one out of 𝑚 labels by 𝜈. Let us assume that region 𝑋𝑗 ∈ 𝐼 is classified in the 𝑗-th class by

𝜈. We define an adversarial region as a set 𝑋̂𝑗 such that for all 𝑥̂ ∈ 𝑋̂ there exists at least one

𝑥 ∈ 𝑋 such that 𝑑(𝑥, 𝑥̂) ≤ 𝛿 for some positive constant 𝛿. The network 𝜈 is robust with respect

to 𝑋̂𝑗 ⊆ 𝐼 if, for all 𝑥̂ ∈ 𝑋̂𝑗 , it is still the case that 𝜈(𝑥)𝑗 > 𝜈(𝑥)𝑖 for all 𝑖 ∈ [1,𝑚] with 𝑖 ̸= 𝑗.

This can be stated in the notation of condition (1) by letting Π = {𝑋̂𝑗} and Σ = {𝑌𝑗} with

𝑌𝑗 = {𝑦 ∈ 𝑂 | 𝑦𝑗 ≥ 𝑦𝑖+𝜖, ∀𝑖 ∈ [1, 𝑛]∧𝑖 ̸= 𝑗, 𝜖 > 0}. Analogously, in a regression task we may

ask that points that are sufficiently close to any input vector in a set 𝑋 ⊆ 𝐼 are also sufficiently

close to the corresponding output vectors. To do this, given the positive constants 𝛿 and 𝜖, we let

𝑋̂ = {𝑥̂ ∈ 𝐼 | ∃𝑥.(𝑥 ∈ 𝑋 ∧ 𝑑(𝑥̂, 𝑥) ≤ 𝛿)} and 𝑌 = {𝑦 ∈ 𝑂 | ∃𝑥.(𝑥 ∈ 𝑋̂ ∧ 𝑑(𝑦, 𝜈(𝑥)) ≤ 𝜖)}
to obtain Π = {𝑋̂} and Σ = {𝑌 }.

3. Abstract methods

To enable algorithmic verification of neural networks, we consider a subclass of generalized star
sets, introduced in [30] and defined as follows — the notation is adapted from [31].

Definition 1. (Generalized star set) Given a basis matrix 𝑉 ∈ R𝑛×𝑚
obtained arranging a

set of 𝑚 basis vectors {𝑣1, . . . 𝑣𝑚} in columns, a point 𝑐 ∈ R𝑛
called center and a predicate

𝑅 : R𝑚 → {⊤,⊥}, a generalized star set is a tuple Θ = (𝑐, 𝑉,𝑅). The set of points represented

by the generalized star set is given by

[[Θ]] ≡ {𝑧 ∈ R𝑛 | 𝑧 = 𝑉 𝑥+ 𝑐 such that 𝑅(𝑥1, . . . , 𝑥𝑚) = ⊤} (2)

In the following we denote [[Θ]] also as Θ. We consider only star sets such that 𝑅(𝑥) :=
𝐶𝑥 ≤ 𝑑, where 𝐶 ∈ R𝑝×𝑚

and 𝑑 ∈ R𝑝
for 𝑝 ≥ 1, i.e., 𝑅 is a conjunction of 𝑝 linear constraints;

we further require that the set 𝑌 = {𝑦 ∈ R𝑚 | 𝐶𝑦 ≤ 𝑑} is bounded. In order to ensure the

convexity, we consider input sets which are either already convex or approximated by one. In

this case such sets are polytopes in R𝑛
whose set we represent as ⟨R𝑛⟩.

1

Input domains must be bounded to enable implementation of neural networks on digital hardware; therefore, also

data from physical processes, which are potentially ubounded, are normalized within small ranges in practical

applications.



Algorithm 1 Abstraction of the ReLU activation function.

1: function compute_layer(input = [Θ1, . . . ,Θ𝑁 ], refine = [𝑟1, . . . , 𝑟𝑛])
2: output = [ ]
3: for 𝑖 = 1 : 𝑁 do
4: stars = [Θ𝑖]
5: for 𝑗 = 1 : 𝑛 do stars = compute_relu(stars, 𝑗, refine[𝑗], 𝑛)

6: append(output, stars)

7: return output

8: function compute_relu(input = [Γ1, . . . ,Γ𝑀 ], 𝑗, level, 𝑛)

9: 𝑜𝑢𝑡𝑝𝑢𝑡 = [ ]
10: for 𝑘 = 1 : 𝑀 do
11: (𝑙𝑏𝑗 , 𝑢𝑏𝑗) = get_bounds(input[𝑘], 𝑗)

12: 𝑀 = [𝑒1 ... 𝑒𝑗−1 0 𝑒𝑗+1 ... 𝑒𝑛]
13: if 𝑙𝑏𝑗 ≥ 0 then 𝑆 = input[𝑘]
14: else if 𝑢𝑏𝑗 ≤ 0 then 𝑆 = 𝑀 * input[𝑘]
15: else
16: if level > 0 then
17: Θ𝑙𝑜𝑤 = input[𝑘] ∧ 𝑧[𝑗] < 0; Θ𝑢𝑝𝑝 = input[𝑘] ∧ 𝑧[𝑗] ≥ 0
18: 𝑆 = [𝑀 * Θ𝑙𝑜𝑤,Θ𝑢𝑝𝑝]
19: else
20: (𝑐, 𝑉, 𝐶𝑥 ≤ 𝑑) = input[𝑗]
21: 𝐶1 = [0 0 ... − 1] ∈ R1×𝑚+1

, 𝑑1 = 0
22: 𝐶2 = [𝑉 [𝑗, :] − 1] ∈ R1×𝑚+1

, 𝑑2 = −𝑐𝑘[𝑗]

23: 𝐶3 = [
−𝑢𝑏𝑗

𝑢𝑏𝑗−𝑙𝑏𝑗
· 𝑉 [𝑗, :] − 1] ∈ R1×𝑚+1

, 𝑑3 =
𝑢𝑏𝑗

𝑢𝑏𝑗−𝑙𝑏𝑗
(𝑐[𝑗]− 𝑙𝑏𝑗)

24: 𝐶0 = [𝐶 0𝑚×1], 𝑑0 = 𝑑

25: 𝐶̂ = [𝐶0; 𝐶1; 𝐶2; 𝐶3], 𝑑̂ = [𝑑0; 𝑑1; 𝑑2; 𝑑3]
26: 𝑉 = 𝑀𝑉 , 𝑉 = [𝑉 𝑒𝑗 ]

27: 𝑆 = (𝑀𝑐, 𝑉 , 𝐶̂𝑥̂ ≤ 𝑑̂)

28: append(𝑜𝑢𝑡𝑝𝑢𝑡, S)

29: return 𝑜𝑢𝑡𝑝𝑢𝑡

Definition 2. (Abstract affine mapping) Given a star set Θ = (𝑐, 𝑉,𝑅) and an affine mapping

𝑓 : 𝑅𝑛 → 𝑅𝑚
with 𝑓 = 𝐴𝑥+ 𝑏, the abstract affine mapping 𝑓 : ⟨𝑅𝑛⟩ → ⟨𝑅𝑚⟩ of 𝑓 is defined

as 𝑓(Θ) = (𝑐̂, 𝑉 , 𝑅) where

𝑐̂ = 𝐴𝑐+ 𝑏 𝑉 = 𝐴𝑉

Intuitively, the center and the basis vectors of the input star Θ are affected by the transfor-

mation of 𝑓 , while the predicates remain the same.

Algorithm 1 defines the abstract mapping of a functional layer with 𝑛 ReLU activation

functions. The function compute_layer takes as input an indexed list of 𝑁 stars Θ1, . . . ,Θ𝑁

and an indexed list of 𝑛 positive integers called refinement levels. For each neuron, the refinement

level tunes the grain of the abstraction: level 0 corresponds to the coarsest abstraction that

we consider — the greater the level, the finer the abstraction grain. In the case of ReLUs, all

non-zero levels map to the same (precise) refinement, i.e., a piecewise affine mapping. The
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Figure 1: Graphical representation of the ReLU function (left) and its over-approximation (right)

considering a single variable. The bounds for the triangle approximation are the bounds of the star

along the variable considered.

output of function compute_layer is still an indexed list of stars, that can be obtained by

independently processing the stars in the input list. For this reason, the for loop starting at line

3 can be parallelized to speed up actual implementations. Given a single input star Θ𝑖 ∈ ⟨𝑅𝑛⟩,
each of the 𝑛 dimensions is processed in turn by the for loop starting at line 5 and involing

the function compute_relu. Notice that the stars obtained processing the 𝑗-th dimension are

feeded again to compute_relu in order to process the 𝑗 + 1-th dimension. For each star given

as input, the function compute_relu first computes the lower and upper bounds of the star

along the 𝑗-th dimension by solving two linear-programming problems — function get_bounds

at line 11. Independently from the abstraction level, if 𝑙𝑏𝑗 ≥ 0 then the ReLU acts as an identity

function (line 13), whereas if 𝑢𝑏𝑗 ≤ 0 then the 𝑗-th dimension is zeroed (line 14). The * operator

takes a matrix 𝑀 , a star Γ = (𝑐, 𝑉,𝑅) and returns the star (𝑀𝑐,𝑀𝑉,𝑅). In this case, 𝑀 is

composed of the standard orthonormal basis in Rn arranged in columns, with the exception of

the 𝑗-th dimension which is zeroed.

When 𝑙𝑏𝑗 < 0 and 𝑢𝑏𝑗 > 0 we consider the refinement level. For any non-zero level, the

input star is “split” into two new stars, one considering all the points 𝑧 < 0 (Θ𝑙𝑜𝑤) and the

other considering points 𝑧 ≥ 0 (Θ𝑢𝑝𝑝) along dimension 𝑗. Both Θ𝑙𝑜𝑤 and Θ𝑢𝑝𝑝 are obtained by

adding to the input star input[k] the appropriate constraints. Notice that, if the analysis at lines

17–18 is applied throughout the network, and the input abstraction is precise, then the abstract

output range will also be precise, i.e., it will coincide with the concrete one: we call complete

the analysis of NeVer2 in this case. The number of resulting stars is worst-case exponential,

therefore the complete analysis may result computationally infeasible.

If the refinement level is 0, then the ReLU is abstracted using the over-approximation proposed

in [31] and depicted in Figure 1. This approach is much less conservative than others, i.e., based

on zonotopes or abstract domains, and provides a tighter abstraction. The computation of

the resulting star is carried out from line 21 to line 25. Intuitively, given the predicates of the

input star 𝐶𝑥 ≤ 𝑑, the matrix 𝐶 and the vector 𝑑 are modified to constrain the output star

within the points inside the triangle defining the abstraction, given the points of the input star.

If this analysis is carried out throughout the network, then the output star will be a (sound)

over-approximation of the concrete output range: we call over-approximate the analysis of



NeVer2 in this case. The number of star remains the same throughout the analysis, but at the

cost of a new predicate variable for each neuron which, in turn, increases the complexity of the

linear program required by get_bounds.

In [25] we propose a new approach that adopts different levels of abstraction during the

analysis: since each neuron features its own refinement level, algorithm 1 controls the ab-

straction down to the single neuron. This setting strikes a trade-off between complete and

over-approximate settings: using an heuristic detailed in [25], NeVer2 tries to concretize the

least number of stars that enable proving the property without blowing the computation time.

We call mixed the analysis of NeVer2 in this case.

4. Counter-example guided abstraction refinement

Our algorithm can be used to compute the complete or over-approximate reachable set of the

neural network of interest. Once the reachable set has been computed, the property of interest

can be verified by computing the intersection between the negation of such property and the

reachable set (which we call reachable counter set). If such intersection is the empty set, then the

network is compliant with the property of interest; otherwise, if the reachable set is complete,

we have shown that the network is unsafe. However, if the reachable set is over-approximated,

the concrete network may satisfy the property, and the over-approximation may be too coarse.

In both cases in which the reachable counter set is not the empty set, we are interested in

extracting concrete input points corresponding to the output contained in the reachable counter

set. In particular, when we have a complete counter reachable set we can leverage the following

theorem:

Theorem 1. Let 𝜈 be a feed-forward neural network, Θ = (𝑐, 𝑉,𝑅) be a star input set, 𝜈(Θ) =⋃︀𝑘
𝑖=1Θ𝑖, Θ𝑖 = (𝑐𝑖, 𝑉𝑖, 𝑅𝑖) be the reachable set of the neural network and S be a safety specification.

Denote Θ𝑖 = Θ𝑖∩¬S = (𝑐𝑖, 𝑉𝑖, 𝑃 𝑖), 𝑖 = 1, ..., 𝑘. The neural network is safe if and only if 𝑃 𝑖 = 0
for all i. If the neural network violates its safety property then the complete counter input set
containing all possible inputs in the input set that lead the neural network to unsafe states is
C =

⋃︀𝑘
𝑖=1(𝑐, 𝑉, 𝑃 𝑖), 𝑃 𝑖 ̸= 0.

For the proof of Theorem 1 we refer to [32]. Using Theorem 1 we can easily compute the

complete counter input set, so the problem of extracting concrete input points becomes the

problem of extracting points from a star-set which in itself can be considered as extracting points

from a single star. To do this, we consider the problem of extracting points from the predicate of

the star, which, under our pre-conditions, is always a polytope. We will then apply to the points

of the predicate (𝛼) the affine transformation 𝑥 = 𝑐+𝑉 𝛼 to obtain a corresponding point of the

star of interest. To extract the point from the polytope defined by the predicate, we leverage the

hit and run sampler [33]. It should be noted that while the hit and run algorithm produces an

approximation of a uniform distribution for the 𝛼 of the predicate, the application of the affine

transformation needed for the transformation to the point of the star skews such distribution.

A possible solution to this issue is to transform the predicate to its V-representation, apply the

affine transformation directly to the polytope, return to the H-representation and apply the

hit and run sampler. However, for our aims, the skew of the distribution is not that relevant.



Therefore, at least at this time, we do not need to transform between the two representations,

which is computationally expensive.

The problem is different when we are working with the over-approximate reachable counter

set: in this case, we do not have a way to compute the counter input set since the addition of

the new variables needed for the over-approximation to the predicate of the star invalidates

Theorem 1. Therefore an alternative solution is needed to compute inputs that allegedly are not

compliant with the property of interest. We define the abstract counter output set (ACOS) as

the intersection between the abstract reachable set and the negation of the property 𝑆. Our

algorithm extracts a point from the ACOS using hit and run sampling and then searches for the

corresponding input point. Formally the search problem of the corresponding input point can

be defined as:

Definition 3. Given a reference output point 𝑦, a starting input point 𝑥 and a feed forward
neural network 𝜈 we can define the search problem for the point 𝑥̂ which satisfies 𝜈(𝑥̂) = 𝑦 as the
following minimization problem:

𝑥̂ = min
𝑥

||𝑦 − 𝜈(𝑥)||2

However, the non-convexity and non-linearity of the function make the minimization problem

not easily solvable: the non-convexity and the presence of local minima make it extremely

difficult to apply gradient descent. Consequently, we developed a simple search-by-sampling

algorithm which, given a starting point in the input space, generates a “cloud" of points using a

normal distribution with the starting point as center and a given variance. Such points are then

compared, and the one whose corresponding output is nearest to the desired one is selected as

the center for another step of the algorithm. The search terminates when the euclidean distance

between the output found and the one we are searching for is less than a given threshold or when

a given number of steps is exceeded. If the algorithm finds an input point in the concrete input

set and whose corresponding output is in the ACOS, we have found a concrete counter-example,

and the network is proven unsafe. Otherwise, the point found is a point whose corresponding

output is reasonably close to the ACOS and can be leveraged for our refinement.

Once an adequate sample is found, we can use it to guide our refinement. The idea behind

the refinement algorithm is to rank the approximation error for each neuron by computing the

triangle areas of the approximate method — see, Section 3 — and enhance it with a measure of

the relevance of the neurons with respect to the sample found. To compute the relevance, we

leveraged the layer-wise relevance propagation algorithm [34] which, while traditionally used

by the explainability community for classification models, can provide an adequate relevance

measure even for regression tasks. It should be noted that our implementation of the algorithm

support, at present, only fully-connected layers and ReLU activation functions. For more details

on layer-wise relevance propagation we refer to [35].

The refinement procedure is detailed in Algorithm 2. As the first thing, it needs to apply our

verification methodology in its over-approximate form (line 2) to compute the over-approximate

reachable counter set and the triangle areas. If the network is proven to be safe (line 3) then

the verification algorithm terminates (line 4), otherwise we can search the counter-example

as shown before (line 5 and 6). If we found a concrete counter-example then the network is

proven to be unsafe and the procedure terminates (line 7 and 8), otherwise we use the spurious



Algorithm 2 CEGAR Algorithm.

1: function cegar_verification(input_set, unsafe_zone, network)

2: ref_levels = [0, ..., 0]
3: 𝐴𝐶𝑂𝑆, 𝑎𝑟𝑒𝑎𝑠, 𝑠𝑎𝑓𝑒 = starset_ver(input_set, unsafe_zone, network, ref_levels)

4: if is_empty(ACOS) then
5: return 𝐴𝐶𝑂𝑆, 𝑎𝑟𝑒𝑎𝑠, 𝑇𝑟𝑢𝑒

6: 𝑜𝑢𝑡𝑝𝑢𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = get_sample(ACOS)

7: 𝑖𝑛𝑝𝑢𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = input_search(network, output_counter)

8: if 𝑖𝑛𝑝𝑢𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ∈ 𝑖𝑛𝑝𝑢𝑡_𝑠𝑒𝑡 then
9: return 𝐴𝐶𝑂𝑆, 𝑎𝑟𝑒𝑎𝑠, 𝐹𝑎𝑙𝑠𝑒

10: 𝑛𝑒𝑢𝑟𝑜𝑛_𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑠 = compute_rel(input_counter, network)

11: 𝑟𝑒𝑓_𝑙𝑒𝑣𝑒𝑙𝑠 = compute_ref_levels(neuron_relevances, areas)

12: return starset_ver(input_set, unsafe_zone, network, ref_levels)

counter-example to find the relevances of the neurons of the network (line 9). At this point, the

relevances and the triangle areas can be used to evaluate the significance of each ReLU neuron

of the network. Once a measure of the significance is computed for each neuron of each ReLU

layer, we can choose a given number of neurons to refine for each layer (line 10), and we can

change the refinement levels of Algorithm 1 as needed. Then our verification methodology is

applied again using the new refinement levels (line 11).

5. Experimental evaluation

In this Section, we provide some empirical results about NeVer2
2
. Our experiments are focused

on the verification task. For the comparison, we considered networks and properties from

the ACAS Xu evaluation [36]. ACAS Xu is an airborne collision avoidance system based on

DNNs whose purpose is to issue advisory commands to an autonomous vehicle (ownship) about

evasive maneuvers to be performed if another vehicle (intruder) comes too close. In particular,

we selected Property 3 and 4 since they could be easily expressed as a single verification query

in our tool. In the words of [36], these safety properties “deal with situations where the intruder
is directly ahead of the ownship and state that the NN will never issue a COC (clear of conflict)
advisory”. Considering the analysis in [36], each property can be assessed on 42 different

networks depending on the choice of two parameters, i.e., the the previous advisory value and

the time to loss of vertical separation. Among the networks available, we selected those for

which our over-approximate analysis could not find a definitive answer, ending with a total of 9

networks. Notice that Property 3 and Property 4 are always satisfied in these networks.

In our experimental evaluation, we compare two different significance measures. Product
significance (PS) computes, for each neuron, the value of the multiplication between its relevance

2

All experiments ran on a laptop equipped with an Intel i7-8565 CPU (8 core at 1.8GHz) and 16 GB of memory with

Ubuntu 20 operating system.



Table 1
Performances of NeVer2 on a subset of ACAS Xu networks. Columns property and network report the

property and the network considered, respectively. The other columns report the verification time (time)

in seconds and result (verified) for MIXED, CEGAR-PS and CEGAR-mR analyses, respectively. Given

the randomic nature of the counter-example generator, we report the average time and the number of

results over 10 repetition of the experiment.

property network
MIXED CEGAR-PS CEGAR-mR

time verified time verified time verified

# 3

1_1 13 T 10 3/10 9 9/10

1_3 10 T 14 6/10 10 0/10

2_3 7 T 10 9/10 7 6/10

4_3 15 T 17 10/10 14 10/10

5_1 6 T 11 10/10 9 10/10

# 4

1_1 11 T 10 0/10 9 0/10

1_3 8 T 16 0/10 11 0/10

3_2 12 T 12 10/10 12 10/10

4_2 12 T 11 10/10 12 10/10

and the area of the triangle abstraction, whereas mixed-R (mR) uses the relevances as coefficients

for the ranking used in the standard mixed methodology. The PS refinement (CEGAR-PS) selects

six neurons in the whole network to refine, while the mR refinement (CEGAR-mR) refines one

single neuron for each layer. In Table 1 we show the performance of the two versions of the

refinement algorithm, and we compare them with our mixed abstraction methodology. Note

that, by design, the number of neurons refined is the same for every methodology: six in the

whole network. The difference between the three algorithms is which neurons are selected and

how.

As can be seen, the performances of the two refinement algorithms are comparable; however,

they seem to be less effective than our mixed methodology and CEGAR-PS seems to be slightly

more accurate than CEGAR-mR at the cost of a small increase in the time needed to solve the

query. We believe that the difference in performance is mainly attributable to the fact that,

while the measurements of relevance we used are valid, they do not capture how the coarseness

of the abstraction changes dynamically when a particular neuron is refined. On the contrary,

the mixed methodology chooses in each layer the neuron to refine based on the values of the

areas of the triangles given the previous layer output. As a consequence, the choice of which

neurons to refine is guided by the coarseness of the abstraction after the refinement is already

applied in the previous layers.

6. Conclusions

In this paper we tried to enhance our verification methodology, leveraging a novel counter-

example guided abstraction refinement algorithm. The refinement algorithm computes the

over-approximate reachable set, searches for a spurious counterexample and then uses it to



compute the relevance measures for all neurons in the network. Then, a specific heuristic is

used to select which neurons must be refined in computing the new reachable set. Although our

experimental results showed that our refinement methodology performances do not present an

enhancement with respect to the ones of the algorithms presented in Section 3, we believe that

with further investigations we will be able to further enhance this technique.
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