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Abstract
Time-series clustering-as-a-service is an innovative and promising research area. Its main goal is to
design Cloud-based platforms and services able to provide efficient and effective time-series clustering
directly to final users. This paper introduces T4C, an open-source Python-based framework for time-
series clustering-as-a-service. T4C integrates some of the most used time-series clustering models and
techniques, and it is able to generate on-the-fly websites where users can explore the result of the
clustering procedure on their previously uploaded time-series.
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1. Introduction

In recent years Machine Learning (ML) and Deep Learning (DL) have become important tools
in many fields, including the processing of time-series. The evolution of these tools resulted
in DL as-a-service (DLaaS) solutions, which made available many services directly to users.
Such services include text-to-speech and speech-to-text, as well as image recognition, to name
a few [1]. Nonetheless, among the “x-as-a-service” solutions present in the literature and in
the commercial field, a complete solution for managing time-series is still missing. Time-series
are becoming more and more important, as they are able to characterize a wide range of
phenomena. In particular, time-series clustering is a widely researched and rich topic in the
ML/DL community, with a lot of models and strategies available. The goal of this study is
to introduce “T4C”, a Python framework being a general and user-friendly solution to offer
“time-series clustering as-a-service”. T4C can be used in two modes: the first is through a
user-defined JSON file containing a set of parameters and a time-series dataset. T4C will use
this configuration file to automatically cluster the time-series dataset, creating either a web
dashboard directly accessible by users or a REST endpoint when the results can be downloaded.
The second modality is, instead, used to deploy T4C as a website where users can upload
their data, configure a set of options, and obtain the results of their computation through a
webpage generated on-the-fly. The difference w.r.t. the previous solution is that, in this case, no
code is required to users. T4C, which is released to the scientific community as a public code
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repository1, has been applied with promising results to the COVID-19 pandemic spread. The
paper is organized as follows. Section 2 presents the related literature, while Section 3 presents
the background on the topic. The T4C framework is presented in Section 4, with experiments
on the COVID-19 case study presented in Section 5. Conclusions are finally drawn in Section 6.

2. Related Literature

This Section presents the state-of-the-art in the field of time-series clustering, as well as some
insights into the more specific topic of time-series solutions as-a-service. The literature on
time-series clustering is very rich, considering the high interest of both the scientific and
industrial world on the topic. The works [2, 3, 4] present thorough introductions to this field.
Clustering time-series has many potential applications in financial engineering ([5]), anomaly
detection ([6]), energy consumption ([7]), just to name a few. For what concerns time-series
solutions which can be deployed according to the as-a-service approach, the literature is far
more limited. In particular, there exist some solutions for time-series forecasting as-a-service.
Two notable examples are TIMEX [8], on which this study is based, and AWS Forecast [9],
the latter being closed-source and proprietary. These two services are able to provide time-
series forecasts directly to end users, starting from a time-series dataset, both with univariate
(i.e., one input and one output) and multivariate (i.e., multiple inputs and one output) models.
Differently, [10] presents a “big-data as-a-service framework” which also supports some models
for data clustering, even though not being time-series specific. Lastly, there are various software
libraries which offer helper functions to use time-series clustering models in a simple way, like
tslearn [11]. Nonetheless, similar libraries are still not usable in a no-code fashion, and require
user intervention. This concludes the part on the available related works, while background
notions on time-series clustering are provided in the next Section.

3. Background

Time-series clustering is an unsupervised data mining technique whose goal is to organize
time-series into groups based on their similarity. The result of the clustering should maximize
data similarity within clusters and minimize it across clusters [12].

In general, the methods for time-series clustering may be grouped into three categories
according to the way in which they consider the input data. The first category, called shape
or observation based, deals directly with the raw time-series, either in the frequency, time, or
wavelet domain. The second approach, called feature based, deals with numerical features
extracted from the time-series. Such features may include the mean, variance, etc. Lastly, the
third approach is called model-based. In this case models are trained on the time-series and are
then used to find and cluster the incoming time-series.

Two aspects are fundamental for an effective time-series clustering, general for all the
presented approaches: the representation method, and the similarity measures. Representation
methods are used to reduce the dimensionality of input time-series. This is highly relevant in a
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scenario in which the time-series to cluster present important dimensionality, hence negatively
impacting the temporal and memory complexity of the clustering models. The most common
techniques work in the time or frequency domain (e.g., Discrete Fourier Transformation (DFT),
Single Value Decomposition (SVD), etc.).

A distance measure gives a numerical and quantifiable indicator on the similarity (in shape, be-
havior, etc.) of two time-series; notable examples include the Euclidean distance (ED), Dynamic
Time Warping (DTW), distance based on Longest Common Subsequence (LCSS), etc. Some
distance measures are specific to a certain representation method, while others are independent
from that aspect. A correct choice of a distance measure is critical, because it should take into
account the various aspects of a time-series (i.e., presence of noise, scaling, presence of drift,
etc.).

The presented T4C framework includes all these aspects in a single framework; it is detailed
in the next Section.

4. The Proposed T4C framework

This Section introduces the T4C framework presented in this study, explaining all its blocks. T4C
(TIMEX For Clustering) is a Python framework for automatic time-series clustering as-a-service.
It aims to give users an end-to-end pipeline, where only the input time-series are requested, with
the results of the clustering procedure directly accessible by users. It is inspired by TIMEX [13],
a framework for time-series forecasting as-a-service. T4C is meant to be used in two ways:

1. to create web dashboards which present the result of the clustering in a user-friendly
way, on a given dataset (like in the case presented in Section 5);

2. to build a website which allows users to upload their time-series, an optional set of
parameters to tune the clustering, and to get the results of the clustering directly online.

The framework only needs the input time-series to cluster. If not given, the configuration
parameters to tune the T4C pipeline are set on default values.

The pipeline of T4C is shown in Fig. 1, while details on all the intermediate blocks are given
as follows. Such pipeline comprises the following six steps: data ingestion, data pre-processing,
data description, data clustering and service delivery.

4.1. Data ingestion

The data ingestion phase is the entry point of the T4C framework. The goal of the data ingestion
step is to obtain a Python representation of the input dataset, contained in a CSV or JSON file.
In more details, a dataset is composed of N time-series, each one composed of 𝐿 data points.
T4C is able to recover a CSV or JSON file if its URL is specified, in case the dataset is available
online. Once the file is downloaded or obtained, T4C will obtain a Pandas [14] DataFrame out of
it, with a time index and 𝑀 columns, being 𝑀 the number of time-series present in the dataset.

Moreover, in this phase, the user may also specify a JSON configuration file. This file can
contain parameters used to modify the standard behavior of the clustering pipeline (e.g., consider
only a subset of models, etc.).
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Figure 1: The clustering pipeline of the proposed T4C framework.

4.2. Data pre-processing

Then, the data pre-processing step is activated. Its main goal is to fix eventual problems in the
input dataset, by means of some sub-steps.

Often, datasets contain missing values, for various reasons. However, clustering algorithms
generally require that input time-series have the same number of data points and that no
value is missing. A solution for this problem is to use data interpolation functions, or even to
re-sample the input time-series. T4C, in practice, relies on Pandas for the standardly used data
interpolation mechanisms (e.g., linear interpolation). Moreover, the estimated periodicity of the
time-series can be found by looking at the minimum sampling period in the whole dataset. If the
time-series have an irregular frequency, this can be fixed by enforcing the estimated frequency
and by interpolating the (eventually) missing values.

Once missing data have been handled, the data streams are modified through data transfor-
mation techniques to have a more canonical representation of the time-series. In particular,
three different data transformation techniques are available in T4C. The first is a scaler trans-
formation which modifies the time-series in order to have a mean of 0 and a variance of 1. The
other two transformations are considered to make the time-series stationary. A time-series is
stationary if its statistical properties do not vary over time [15]. Stationarity can be of benefit for
specific families of clustering models. For this purpose and to manage exponentially-increasing
time-series, T4C relies on a modified logarithmic transformation:

𝑙𝑜𝑔_𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑(𝑥) = 𝑠𝑖𝑔𝑛(𝑥) · 𝑙𝑜𝑔(|𝑥|+ 1).

4.3. Data description

The Data description phase is composed of two steps. The first is the automatic creation of plots
using the Python library Plotly. These are the plots which will be provided to users through
the web-console or the generated web-site. Then, the distance measurement part includes the



Table 1
Distance metrics used by T4C.

Approach Distance metric Description

Observation and
Feature based

Euclidean distance Useful to find time-series similar in time

Dynamic Time Warping (DTW)
Useful to find time-series similar in shape,
even if not synchronous; not always applicable.

Soft-DTW Similar to DTW, but always applicable.

Model based Gaussian mixture model Technically not a distance metric.

computation of various distance metrics between the time-series composing the dataset. The
distance metrics managed by T4C are shown in the following.

4.4. Data clustering

T4C can take advantage of three clustering models, taking from state-of-the-art literature on
time-series clustering. Namely, they are: K-Means (for the Observation and Feature based
approaches), and Gaussian Mixture model (for the model based approach). One of the key
points of the software development of T4C is to have a software architecture which allows easy
additions to the library of available models. It is again stressed that if the user does not specify
which models to use, T4C will try to use all the available models in order to find the one which
performs the best.

T4C evaluates the performance of the clustering, for each model, according to three different
internal index measures. The three indices available in T4C are: Silhouette index, Calinski-
Harabasz, and Davies-Bouldin. Given that, unfortunately, there is not a universally accepted
measure to assess the quality of a time-series clustering, the user may specify which of these
indices consider to suggest the best available clustering among the ones obtained.

4.5. Service delivery

The last part of the pipeline of T4C aims at providing the results of the clustering procedure to
users. For this goal, two different mechanisms are available: the first is a REST endpoint, and
the second is a website automatically generated by the framework.

The first option for users is to use the T4C REST service, built with Python Flask. The user
can use any client able to perform REST requests both to start the entire pipeline (in this case
the POST request should contain the dataset/configuration JSON), or to query the service when
the results are available. The final results are provided in the form of a ZIP file containing the
plots generated in the previous steps, in PNG format, and a JSON file which lists the found
clusters along with the cluster distributions.

The second option for users is to directly access, through a web browser, a website generated
on-the-fly by T4C. The website, built with the Dash Python library, allows users to see the
aforementioned plots and results of the clustering procedure. In this case, moreover, the various
graphical aids will be interactive thanks to the use of Python Plotly. There are two ways in which



the website can be generated. The former is useful when a user needs to set up a dashboard for
other users, about the clustering of a specific dataset. For instance, consider the case presented in
the experimental section (Section 5), where a data analyst wants to give policymakers access to
some data useful to control a certain phenomenon. In this case the clustering pipeline proceeds
offline, when the data analyst starts it, and the results are publicly available through the website.
This particular choice has been made for the COVID-19 experimental campaign presented
in Section 5. Instead, in the latter scenario, T4C is deployed completely in an as-a-service
manner. This means that all (or a subset of) users can access the website and provide a dataset
by themselves. In this case, the pipeline starts at that moment, and the webpage—different for
each user—will be provided to them at the end of the pipeline.

5. Experimental results

In this Section experiments on a representative case study for the T4C are presented. We
highlight that the webpage generated by T4C, which corresponds to the final part of the
time-series clustering pipeline, is publicly accessible on the web 2.

5.1. COVID-19 Dataset

The framework has been applied to the COVID-19 pandemic spread. In this context, using
clustering in a fully automatic way can provide useful information to decision makers. The used
dataset is composed of the Daily cases of COVID-19 time-series in 181 countries around the
world, starting from February 24, 2020, to February 20, 2022 [16]. The goal of this clustering task
is to group countries which present a similar evolution of their COVID-19 cases. An important
comment to make is that putting two countries in the same group can be extremely valuable for
decision makers, because it can help to understand which anti-COVID measures were effective
and which were not. T4C ingested the time-series given as input, producing the plot depicted
in Fig 2. This plot is automatically created by the framework, and is part of the service provided
to final users.

5.2. Results

T4C has been applied on the COVID-19 dataset using standard parameters. In detail, it means
that the three clustering approaches available in the framework are tried (i.e., observation based,
feature based, and model based). This allows the user to have a fair comparison between different
approaches. Two clustering algorithms are applied, namely K-Means (for the observation and
feature based approaches) and Gaussian Mixture model (for the model based approach). In
particular, the feature based approach will leverage DWT using Haar wavelet. Lastly, 3 to
6 clusters will be evaluated. It is stressed that, looking at the metrics, it will be possible to
automatically understand the number of clusters which produces the most effective clustering.
For what concerns the distance metrics, the Euclidean and DTW are used, while soft-DTW is not
used due to the large dimensionality of the dataset. Different data pre-processing transformations
are present.
2https://clustering.covid-timex.it
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Figure 2: COVID-19 Daily cases time-series in 181 countries. These are the time-series which will be
clustered by T4C.

Table 2
Numerical results of the T4C processing.

Clustering
approach

Model Transformation
Distance
metric

Feature
repr.

Best n. of
clusters

Silhouette
score

Observation
based

K-Means
None

Euclidean

N/A

3 0.908

DTW 3 0.870

Log-modified
Euclidean 3 0.295

DTW 3 0.332

Feature
based

K-Means
None

Euclidean

DTW

3 0.910

DTW 3 0.862

Log-modified
Euclidean 3 0.303

DTW 3 0.369

Model
based

Gaussian
Mixture

None
Log-likelihood N/A

3 0.886

Log-modified 3 0.279

As shown in Table 2, the framework produced results for all the considered clustering
approaches, models, transformations, etc. Notably, in all the cases, T4C concluded that 3 is the
number of clusters which offers the most effective clustering result. Even though the highest
Silhouette score (i.e., 0.910) is reached by the Feature based clustering with K-Means model,
no data transformation and Euclidean distance metric, a closer look at the produced clusters
highlighted something different.

Indeed, this clustering approach just divided USA and India in two separate clusters, to group
all the other countries in Cluster 2. This is mainly given to the fact that, by not applying any



Table 3
Distribution of the countries over the clusters obtained by T4C.

Cluster 1 Cluster 2 Cluster 3

Argentina Afghanistan Albania
Brazil Andorra Algeria
France Angola Armenia

Germany Antigua and Barbuda Australia
India Bahamas Austria
Italy Barbados Azerbaijan

Turkey Belize Bahrain
UK Benin Bangladesh

USA ... ...

pre-transformation on the data, it is not possible to consider similarities between countries
which—considering their population—have obviously different magnitudes of Daily cases of
COVID-19.

Interestingly, the Feature based approach, with K-Means model, a log-modified pre-
transformation on the input data, and with DTW distance metric, produced more convincing
results. In this case, even though the Silhouette score is 0.369, the clusters appear much more
compact.

In Table 3 the clusters which obtained the best results are shown. In Cluster 1, T4C grouped
countries that faced different infection peaks during the period considered, namely Italy, France,
Spain, USA, etc. The pandemic in these countries has been characterized by recurrent peaks of
cases. Interestingly, the peaks got worse and worse; this is explained by the fact that also the
number of tests incremented continuously during those months.

In Cluster 2 there are countries which did not suffer from those peaks in the Daily cases
time-series. It may matter either that they better controlled the pandemic, or that they did not
make enough tests—letting many COVID-19 cases go undetected. Establishing this is outside of
the scope of this paper.

In Cluster 3, lastly, there are countries which suffered from peaks in the Daily cases time-
series as well. The difference w.r.t. Cluster 1 is that the time-series did not show the exponential
growth which happened in countries in Cluster 1.

A final graphical representation of the clusters, automatically generated by T4C, is shown in
Fig. 3.

6. Conclusions

T4C is the second of a series of tools (after TIMEX) whose goal is to provide end-to-end pipelines
for time-series modeling, directly usable by end users. In particular, T4C provides an entire
time-series clustering pipeline by means of a Python package, released as an open-source
repository to the scientific community. Future works will consider the addition of different
clustering models and distance metrics, while—at a higher level—future works will also include
similar software frameworks for other time-series tasks.



Figure 3: Time-series distribution in the obtained clusters.
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