
CHAOS - Configurations Analysis of Swarms of
Cyber-Physical Systems⋆

Valeria Trombetta1,*, Maxime Cordy1, Enrico Tronci2 and Axel Legay3

1University of Luxembourg - SnT, 6 Rue Richard Coudenhove-Kalergi, 1359 Luxembourg
2Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Roma RM, Italia
3UCLouvain, Pl. de l’Université 1, 1348 Ottignies-Louvain-la-Neuve, Belgium

Abstract
Cyber-Physical Systems (CPS) are dynamic systems in which hardware and software components
are interconnected and currently they are one of the most fundamental element of the Industry 4.0.
Commonly, since the original CPS is not available for experiments, it is adopted a model of the CPS
under analysis in order to execute realistic simulations on it by means of particular tools and techniques.
Considering that the aim of such models and their simulation is to reproduce a real system having its
authentic behavior, it is pertinent to assume that various com- ponents may be impacted by various
type of uncertainties. It is relevant to take these latter into account as they may affect the system to
dif- ferent extents due to both the selected configuration and the simulation scenarios. The analysis of
CPS signals allows the comprehension of the relationships that determinate the behavior of the entire
system. When uncertainties occur, according to the chosen scenarios and context, the outcomes of
simulations may be very different numerical values from the ones obtained as results of simulations
without uncertainties. Nev- ertheless, in case of a CPS having high variability and configurability, the
simulations with additional uncertainties are particularly complex to be elaborated and analyzed. Given
a set of scenarios, the pursued pro- cedure inspects the validation of possible cross-configurations, in
order that the solution contains sets of appropriate configurations that takes into account both the CPS
and the uncertainties.

Keywords
Simulation, Cyber-Physical Systems, Verification

1. Introduction

Cyber-Physical Systems (CPS) are denoted by the combination of physical and computational
processes whose design is profoundly integrated between the cyber component and the physical
one. In addition to this and conversely to desktop computing, wireless sensor network, as well
as standard embedded/real-time systems, CPS have some specific characteristics including: 1)
adaptive abilities (e.g. dynamic reconfiguration), 2) automation (e.g. advanced feedback control),
3) reliable operations (e.g. certified activities in terms of safety and security), 4) complex and

*Corresponding author.
$ valeria.trombetta@uni.lu (V. Trombetta); maxime.cordy@uni.lu (M. Cordy); tronci@di.uniroma1.it (E. Tronci);
axel.legay@uclouvain.be (A. Legay)
� 0000-0001-9795-0966 (V. Trombetta); 0000-0001-8312-1358 (M. Cordy); 0000-0002-0377-3119 (E. Tronci);
0000-0003-2287-8925 (A. Legay)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:valeria.trombetta@uni.lu
mailto:maxime.cordy@uni.lu
mailto:tronci@di.uniroma1.it
mailto:axel.legay@uclouvain.be
https://orcid.org/0000-0001-9795-0966
https://orcid.org/0000-0001-8312-1358
https://orcid.org/0000-0002-0377-3119
https://orcid.org/0000-0003-2287-8925
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


various spatial and temporal scales (i.e. CPS execution is bounded by spatiality and real time), 5)
scalability, 6) limited resources and the presence of the software in each physical component and
embedded system [1]. CPS can concern various domains including aerospace [2], automotive
[3], avionic [4], healthcare [5], transportation [6], industrial production [7, 8], environmental
[9], UAV [10] etc. Despite the domains to which a CPS can belong, commonly all these kind of
systems have elements of variability, which, for the context of this work, refers to presence of at
least one component that is not the same of the original CPS. Various CPS have to to deal with
multiple contexts that incorporate new customer requirements and changing environmental
conditions. Each time that an unseen context occurs, the development of a new variant of
a system totally from scratch becomes costly and inefficient. Normally a better adaptability,
compliance and economies of scale, can be gained by engineers inserting variation points in the
system, in order that the latter can then be adjusted to specific new contexts. Consequently
Variability-Intensive Systems (VIS) is the name of such systems. VIS include a huge class
of systems that can result into multiple variants including software product lines ([11]) and
configurable systems ([12][13]). The notion of variability refers to all the way in which the
variants are dissimilar, comprising, for instance, a variable having a different value. Commonly
these variation points are known as features, and as parameters in software product lines
and in configurable systems respectively. Considering the selected scenarios, engineers have
to develop, deploy and run adequate variants of their VIS, to provide the satisfaction of the
requirements. To pursue this aim, they commence the development of a configuration process
in which the configuration parameters (i.e. the variation points) of the VIS are set to precise
values to get the appropriate variant ([12][14]. In various embedded systems (i.e. real-world
cases), the variability has an impact on the behaviour of the system in multiple fashions. As
consequence of this situation, it is not banal to evaluate the variants taking into account the
expected requirements. It is more evident in large systems (i.e. system with various sources of
variability) how the presence of variability affects the system behavior. Typically variability in
taken into account only in huge systems, however in some cases it could be essential to monitor
also the one related to small systems as computationally even this one could become extremely
expensive to be analyzed, depending on the specific contexts and scenarios. This raised the first
three research question: RQ1) Given a scenario, is it fundamental to monitor the effect
of variability even in small systems? RQ2) What is the total size of configuration space
composed by multiple small configuration systems and their scenarios? RQ3) Can we
reduce this complex configuration space to a smaller step of solutions? Additionally to
what aforementioned, the injection of variability may get in an intractable situation because of
the exponential computation due to many millions of variants ([15]). Moreover considering that
VIS may belong to several domains, the identification of adequate variants is even more complex
due to the presence of multiple constraints and criteria to be taken into account. Furthermore
the selection of the appropriate variant becomes even more challenging when uncertainties
(e.g. noises, disturbances, etc.) occur. This is due to the fact that the requirements of the system
should be satisfied with the highest probability in the majority of contexts ([16][17]) but in these
situations the system behaves unpredictably. From this, our second research question is: RQ4)
Do the identified best configurations remain valid in the presence of uncertainties? As
consequence of the presence of uncertainties and configurability, to validate each configuration
it is useful to monitor if they had an impact on the success of the mission taking into account



the requirements. From here, the fifth research question is: RQ5) Given a set of scenarios,
can we identify the optimal configuration wrt the budget and the desired assurance
level? In VIS the variability can be related to the design-time and the run-time. At design-time
engineers have already stated the definition of the requirements, so the purpose is to detect
which variants of their VIS are more likely to satisfy the requirements in the best possible way
and then which ones should be developed/deployed. At run-time, unpredictable changes in the
environment are present to have an impact on the already running system (i.e. a specific variant
of the VIS). To verify that the requirements are still satisfied in spite of the mutable ambient
situations, engineers have to reconfigure the system, i.e. swapping the latter from a variant
to another one by changing the value of its configuration parameters during its execution.
This is why the development of an approach that can manage this two kind of variability is
complex, and this brings the sixth research question: RQ6) Do the identified configurations
remain valid taking into account both the design-time and run-time variability? The
preliminary work introduces in this paper is targeted on the analysis Cyber-Physical Systems
(CPS) [18, 19] with high variability and intensity, and their related behavior in presence of
variability concerning parameter configurations and uncertainties. The aim of the research is to
help engineers to investigate all the possible and appropriate configuration alternatives at both
design and run-time wrt the scenario, the mission, the assurance level, and the budget. This
raised the seventh research question: RQ7) Given a set of scenarios, an assurance level, a
budget whose expenditure must be minimised, is the identified configuration the same
for both design and run-time? Taking into account that this type of analysis is extremely
time consuming as based on highly realistic simulations and models, this is the eighth research
question that has been identified: RQ8) Is it feasible to develop an approach to reduce the
computational time related to the simulations? To answer to all these research questions
we modeled a set of scenarios, uncertainties, and a system based on UAV, more precisely on
swarm of drones, which are extremely critical and are intensively susceptible to environmental
perturbations. In general as a consequence of their critical missions it is essential that CPS
behave appropriately and do not act unexpectedly even in case of uncertainties. This is why
the design, construction and verification of such systems are significant phases throughout
which quality should be confirmed. However these phases are challenging due to the difficulty
to represent and reproduce the various and complex system-world interactions [20, 21, 22]. The
quality is an also a fundamental component to be demonstrated as it concerns the satisfaction
of various safety industrial standards (e.g. ISO). Taking into account a mission and a scenario
the satisfaction of safety standards (i.e. the quality) is the core component to develop a system
that could exists in reality. CPS engineers typically rely on simulations and related platforms,
such as MathWorks’ software products (e.g. MATLAB, Simulink, etc.), to prepare and assess
candidates designs for their system. MATLAB and Simulink are de-facto industry standard
[23][24] well known by engineers. MATLAB is a programming language as well as the tool
that contains Simulink, an environment based on block diagrams which permits the modeling
and simulations of dynamical systems. The case study we modeled can be customized to run
extra experiments in an uncomplicated way. The framework developed to perform preliminary
analysis and experiments is easy-reusable and extendable. Such framework and the model
are also totally developed adopting the notorious MathWorks software products, so it is not
necessary to engineers to gain expertise with extra frameworks.



2. Research Methodology and Approach

The principal aim consists in the identification of the best configuration in terms of accom-
plishment of the mission, the scenario, the possible presence of uncertainties, the assurance
level, as well as the costs that have to be minimized. In addition to this we investigated if the
injection of various kind of uncertainties lead to a change of the configuration wrt the same
scenario in which uncertainties are absent. Furthermore we analyzed if the choice of the type
(i.e. the quality) of drones have a major impact on the success of the mission or if the latter
depends on the amount of drones in swarms, or if such kind of selection depends on the specific
scenarios. To reach such an objective, we modeled a case study based on a swarm of drones
in which each drone has two features related to the nature of the battery and the radio. Both
of these features can have three different values (i.e. top, medium, low) which represent the
quality of that component. For example, a top battery has a higher capacity than the other ones,
and a top radio affects to a lesser extent the batteries. Internally the radio has two modules
namely the transmission and the reception ones. This latter is modeled to be always on and
has a limited impact on the battery. Conversely to this the transmission module consumes
more battery and it is designed to be active only for the first 5 seconds of the simulations. The
reason of this is to represent the fact that at the beginning of simulations ideally drones are
receiving the coordinates related to the initial position of the target, and drones are supposed to
send back an ”ack” signal. If at least a drone of the swarm reaches the target, the mission is
accomplished. To prevent collisions, the target is considered reached if a drone reach it having
a meter of distance. The target is always present and unique. In addition to this it can be
fixed, or in movement adopting a random motion, depending on the considered scenario. If
a drone is almost out of battery, it lands. Drones do not communicate each other, and in the
swarm there is not any ”leader” drone. The modeled arena has fixed dimensions, and on it the
first drone of the swarm spawns in a random location. According to this position all the other
drones spawn randomly in a range of 3 meters. The reason of this choice is to prevent drones
to be located in positions that are too far from each other, as in this way the perception of the
swarm would be lost. All the drones spawn at the same time and they all have anti-collisions
mechanisms [25]. The target spawns in a random location having the constraint to appear in the
opposite part of the arena wrt the swarm position. This is due to prevent to have simulations in
which the swarm and the target are too close or even overlapped, as this would have get an
unnecessarily over-complicated analysis of the behavior of the swarm, drones battery, etc., to
avoid to have unrealistic scenarios, as well as to force the swarm to pass through a group of
obstacles. In some scenarios in fact it has been modeled a group of 50 obstacles that spawns in
random locations of the arena. If present, obstacles can be fixed or moving having a random
motion. Both the target and the obstacles do not change their dynamics: if they are fixed,
they remain stationary for the entire simulation, and vice-versa in case they are moving. The
drones have the same anti-collision approach also wrt to the obstacles but such condition is
not mutual. In case of scenario with enabled faults, both the modules of drones radio may be
disabled/activated in multiple moments and time ranges during simulations. Faults are modeled
as a Markov Chain [26][27] having 2 states and equal probability on all the edges. The two
states of the Markov Chain represent the correct/incorrect behavior of the system, and at every
second of the simulation a state transition may occur. Faults affect the behavior of the radio



(e.g. the transmission module of the radio may be enabled for various unnecessary moments
and this affects the level of the battery). As additional forms of uncertainties white noises [28]
and random gusts are modeled on drones thrusters, and on drones trajectories respectively. If
enabled, uncertainties are present for all the drones of the swarms. In order to have a symbolic
representation of the costs for the swarm, we applied 8, 5, 2 for the batteries and 3, 2, 1 for the
radio, where the higher numbers represent the top quality. We decided to assign higher values
to the battery as empirically we noticed that it is the most relevant element that characterize
the quality of the drone wrt the success of the mission.

3. Preliminary Results

The swarm of drones is entirely modeled adopting MATLAB as programming language, and
the simulations are performed in MATLAB environment. Such simulations are the Monte
Carlo ones [29][30][31]. In our evaluations we considered as negligible the random locations
in which drones spawn, the one of the target, as well as the ones of obstacles if these latter
are present. We also considered irrelevant the possibility that multiple drones arrive close to
the target at the same time and that there will be a consequent effect on motion due to the
anti-trajectory approach. The assurance level that we decided to consider is 96%, which means
that the discovered configurations ensure that at least a drone of the swarm reaches the target
with that probability. To answer to RQ1) we empirically proved that even for small systems
having just two features, it is fundamental to monitor the variability as the latter may have
a decisive impact on the accomplishment of the mission (i.e. reaching the target), expecially
when in the swarm there are few drones. In addition to this, in general the total effect of
such small systems is embedded in complex scenarios which further increase the variability
management. Pondering that drones can have 9 different configurations, the mix on the quality
of battery and radio, the considered maximum amount of drones in the swarm that we took
into account for our preliminary experiments which is 9, all the possible scenarios in terms of
type of target, obstacles, and uncertainties, the total size of configuration space is 12264 and
this is the answer for RQ2). About the RQ3), it is possible to reduce the complex configuration
space to a smaller one only when in the swarm there are drones of the same type (e.g. only
top quality drones), but even if such kind of configurations would accomplish the mission
having the aforementioned assurance level, one of the main goal of this work consists in the
identification of suitable configurations that minimize the costs and satisfy the requirements in
terms of the success of the mission and the assurance level. The selection of a swarm composed
exclusively by top drones would not permit the costs to be minimized as trivially low-medium
quality drones are less pricey. For all the scenarios we discovered in fact configurations that
allow to save the budget maintaining the same assurance level on the success of the mission.
On RQ4) for each scenario we determined that only a type of uncertainties had an impact on
the choice of the configuration of the swarms. For instance we discovered that in no scenario
moving obstacles, noises and faults lead to a change of the configuration, namely considering
two versions (i.e. with and without noises and faults) of the same scenario, the identified
configuration remains the same, conversely to scenarios in which gusts are present. If these
latter are enabled we discovered that for any scenario it is essential to have better quality drones



in order to accomplish the mission. The enhanced quality of drones is not a valid solution in
every case, in fact performing experiments we determined that the main element that affect
the configuration selection configuration is related to the presence of the mobile target. In
such kind of scenario the best configurations have an additional amount of drones. So the two
identified solutions to mitigate with uncertainties (i.e. gusts and the aleatoriness related to the
random motion of the target) are not equivalent. For each scenario when the gusts are present
on average the costs increases by 5, and it increases by 7 in case of moving target. To answer
RQ5) for all scenarios we have identified the configuration that satisfies the assurance level,
minimize the costs wrt the budget, permits the success of the mission. None of these identified
configurations include a swarm with all top drones or with the maximum amount of drones
that for the considered preliminary experiments is 9. RQ6), RQ7), RQ8) are part of future
development. Some threats to the validity of the current work include the fact that in order to
evaluate our results we performed 50 Monte Carlo simulations for every cross-configuration
on swarms and the scenarios. Despite all the identified configurations have 96% as assurance
level in terms of success of the mission, we cannot state if the same configurations would have
been selected performing further Monte Carlo simulations. In addition to this, even if we run
very realistic simulations, we did considered yet simulation with specific ISO standards, so we
cannot state if these design choices could be applied in reality (e.g. due to constraints related to
standards, etc.) for the scenarios taken into account. The purpose of this preliminary work was
to show the existence of a huge variability space even in small systems like drones, and that
such variability can become even more challenging to be evaluated due to the complexity that
grows up exponentially when combined with additional small systems (i.e. the swarms) as well
as in realistic scenarios. This is why also variability related to small systems have to be deeply
analyzed and investigated. Moreover as contribution we modeled a case study including the
model, uncertainties and a set of scenarios, which can be customized and extended, as well as
a framework that can be easily tailored for additional models and re-used for further type of
experiments and analysis. It will be part of future work to validate the experiments considering
various safety standards, different simulations settings, as well as additional missions, scenarios
and run-time variability.

4. Preliminary Results

The swarm of drones is entirely modeled adopting MATLAB as programming language, and
the simulations are performed in MATLAB environment. Such simulations are the Monte
Carlo ones [29][30][31]. In our evaluations we considered as negligible the random locations
in which drones spawn, the one of the target, as well as the ones of obstacles if these latter
are present. We also considered irrelevant the possibility that multiple drones arrive close to
the target at the same time and that there will be a consequent effect on motion due to the
anti-trajectory approach. The assurance level that we decided to consider is 96%, which means
that the discovered configurations ensure that at least a drone of the swarm reaches the target
with that probability. To answer to RQ1) we empirically proved that even for small systems
having just two features, it is fundamental to monitor the variability as the latter may have
a decisive impact on the accomplishment of the mission (i.e. reaching the target), expecially



when in the swarm there are few drones. In addition to this, in general the total effect of
such small systems is embedded in complex scenarios which further increase the variability
management. Pondering that drones can have 9 different configurations, the mix on the quality
of battery and radio, the considered maximum amount of drones in the swarm that we took
into account for our preliminary experiments which is 9, all the possible scenarios in terms of
type of target, obstacles, and uncertainties, the total size of configuration space is 12264 and
this is the answer for RQ2). About the RQ3), it is possible to reduce the complex configuration
space to a smaller one only when in the swarm there are drones of the same type (e.g. only
top quality drones), but even if such kind of configurations would accomplish the mission
having the aforementioned assurance level, one of the main goal of this work consists in the
identification of suitable configurations that minimize the costs and satisfy the requirements in
terms of the success of the mission and the assurance level. The selection of a swarm composed
exclusively by top drones would not permit the costs to be minimized as trivially low-medium
quality drones are less pricey. For all the scenarios we discovered in fact configurations that
allow to save the budget maintaining the same assurance level on the success of the mission.
On RQ4) for each scenario we determined that only a type of uncertainties had an impact on
the choice of the configuration of the swarms. For instance we discovered that in no scenario
moving obstacles, noises and faults lead to a change of the configuration, namely considering
two versions (i.e. with and without noises and faults) of the same scenario, the identified
configuration remains the same, conversely to scenarios in which gusts are present. If these
latter are enabled we discovered that for any scenario it is essential to have better quality drones
in order to accomplish the mission. The enhanced quality of drones is not a valid solution in
every case, in fact performing experiments we determined that the main element that affect
the configuration selection configuration is related to the presence of the mobile target. In
such kind of scenario the best configurations have an additional amount of drones. So the two
identified solutions to mitigate with uncertainties (i.e. gusts and the aleatoriness related to the
random motion of the target) are not equivalent. For each scenario when the gusts are present
on average the costs increases by 5, and it increases by 7 in case of moving target. To answer
RQ5) for all scenarios we have identified the configuration that satisfies the assurance level,
minimize the costs wrt the budget, permits the success of the mission. None of these identified
configurations include a swarm with all top drones or with the maximum amount of drones
that for the considered preliminary experiments is 9. RQ6), RQ7), RQ8) are part of future
development. Some threats to the validity of the current work include the fact that in order to
evaluate our results we performed 50 Monte Carlo simulations for every cross-configuration
on swarms and the scenarios. Despite all the identified configurations have 96% as assurance
level in terms of success of the mission, we cannot state if the same configurations would have
been selected performing further Monte Carlo simulations. In addition to this, even if we run
very realistic simulations, we did considered yet simulation with specific ISO standards, so we
cannot state if these design choices could be applied in reality (e.g. due to constraints related to
standards, etc.) for the scenarios taken into account. The purpose of this preliminary work was
to show the existence of a huge variability space even in small systems like drones, and that
such variability can become even more challenging to be evaluated due to the complexity that
grows up exponentially when combined with additional small systems (i.e. the swarms) as well
as in realistic scenarios. This is why also variability related to small systems have to be deeply



analyzed and investigated. Moreover as contribution we modeled a case study including the
model, uncertainties and a set of scenarios, which can be customized and extended, as well as
a framework that can be easily tailored for additional models and re-used for further type of
experiments and analysis. It will be part of future work to validate the experiments considering
various safety standards, different simulations settings, as well as additional missions, scenarios
and run-time variability.

5. Work Plan

As future directions for the project, the idea is to answer to all the research questions performing
experiments on additional systems, including the ones belonging to other domains, such as
swarms of Cubesats having different roles and characteristics for specific missions as well as
group of aircrafts, etc. Considering the modeled case study we plan to validate experiments wrt
to various specific safety industrial standards, additional missions and scenarios, and different
uncertainties. We also plan to run experiments to identify the best configurations also wrt
KPIs such as the final level of battery when the target is reached in order to evaluate the
configurations also according to further criteria that can be considered relevant for specific
missions (e.g. if the goal is to get to the target and then to come back at the starting point, the
level of battery when the target is reached, is a relevant KPI). About the target the presence of
multiple targets will be modeled as well as the addition of a ”leader” drone that will be in charge
to reach one or more targets. Moreover additional missions design will include the presence of
swarms having more drones, as well as the adoption of other motions for the target and the
obstacles.In furtherance of this, for example, if the leader drone has some faults, the swarm can
be reconfigured to have a new leader, as well as if any ”non-leader” drone is closer to a target
than the current leader. This is what we plan to develop to answer to RQ6 as well as to compare
our approach with the already existing ones.On RQ7, in addition to the modeling of missions
and scenarios in which run-time configuration will be included, we plan to adopt simulations
based on the Empirical Bernstein Stopping Algorithm [32]. In this way for each scenarios
simulations will be automatically stopped by the algorithm when the suitable configuration will
be identified rather than after an a-priori defined about of runs. This in conjunction with the
consideration of ISO standards will solve the aforementioned threats to the validity. Concerning
RQ8), currently it is under development an approach based on simulation snapshots. The plan
consists in establishing similarity thresholds that monitors the values of variables belonging
to different configurations, if these values are equal or less than the established threshold, the
simulation is stopped. Since simulations are extremely time consuming, the idea is to avoid to
run entirely all the simulations related to configurations that are too similar and at the same
time to explore all the configuration space. For the following months this will be the adopted
working plan: Sep.-Oct. : enhancement and automatization of the snapshot approach Nov.-Dec.
: experiments and comparison with other approaches. Jan.-Feb. : experiments on additional
models (e.g. industrial models belonging to other domains or multi-domains, etc.) and adoption
of safety standards Mar-Apr. : addition of further scenarios, missions, adoption of different
simulation setting. May-Jun. : to run experiments on run-time variability and comparison with
other approaches for such type of systems.



6. Related Work

All of the following works make use of MathWorks Software Products for variability modeling,
but they mainly address the system configurability and do not consider any uncertainties. Alalfi
et al. [33] have empirically derived five variability operators for Simulink models. Leitner et
al. [34] have enhanced the variability by adopting layers of abstractions and an extra binding
time for Simulink models. According to the survey elaborated by Berger et al. [35] as many
as 38% of respondents have used a home-grown domain-specific tool, including Simulink, to
perform activities related to the variability modeling in industrial practice. Schlie et al. [36]
proposed an holistic approach for the reeingineering of an entire Simulink model portfolio into
a single variability model. Schulze et al. [37] described the problem of intermixing of various
function variants with the variability switching logic adopting a Simulink model. Arrieta et al.
[38] proposed a methodology for mutating configurable Simulink models where their variability
is expressed as feature models. Finally, Haber et al. [39] applied the method of delta modeling
[40] to the Simulink environment in order to obtain a modular and flexible variability modeling
approach suitable for Simulink models.Regarding the use of Simulink and thus also MATLAB
as tools, authors such as Bressan et al. [41], who developed a tool for specifying variability in
safety-critical systems and which can produce the correct system configuration models. On the
modeling of swarms of drones adopting MATLAB, Soria et al. [42] modeled a swarm analyzing
some performances, however they do not consider uncertainties and different kind of drones.
Lee et al. [43] designed endogenous paradigms to monitor effects on the increased degree
of freedom on a swarm. Quesada et al [44] adopted fuzzy logic theory for the generation of
leader-follower behavior in a swarm. Other related works are those regarding the application
of software product line (SPL) methods [45] to CPS. The SPL engineering paradigm promotes
systematic reuse and a-priori identification of variation points in order to make the development
of software variants more effective. Our work does not try to adapt SPL to CPS models in the
UAV field but uses MATLAB, a notorious tool already used in both SPL and the UAV domain, to
model and analyze the effect of variability using a cross-configurations approach. To the best of
our knowledge, there are not other methods oriented to the analysis of the configuration of
both CPS elements and uncertainties, because all the surveyed approaches focus only on the
first one. On run-time and Software Product Lines Cetina et al. [46] performed an evaluation
about reconfigurations and related reliability-based risks, more precisely, the availability and
the severity. Van der Hoek [47] developed an infrastructure with which variabilities can be
specified at design time, but resolved at any time thereafter. Gomaa and Hussein [48] delineated
a methodology based on architecture patterns to design software reconfiguration patterns. The
State-of-the art on Behavioural Verification of VIS include Model checking [49] that represent
one of the most notorious technique to analyse system behaviour wrt requirements. Typically, it
takes as inputs a state machine (i.e. an executable model of the system) to be verified and a logic
formula that contains the requirements that the system is expected to satisfy, and it outputs
false and counterexamples if the executions of the model did not satisfy the logic formula, true
otherwise. The model-checking problem for VIS is, more complex than for single systems since
each variant must be verified wrt the formula [50]. A possible solution consists in adopting
a single-system model checking to all the variants in a separate way. These procedures are
called product-based in the software-product-line jargon [51], but due to their monitor of each



variant individually they may lead to the exponential blow-up induced by variability. To avoid
this complexity, family-based [51] model-checking approaches were developed [50][52]. Their
objective is based on the decrement of the verification effort by taking into consideration the
commonalities that are present in multiple variants. The analysis is executed on each variant at
the same time, using approaches such as late splitting and early joining to check only once a
(part of) execution common to multiple variants. In this way they decrement the exponential
blow-up, despite it can still be present [53][54]. Feature-based model checking[55] [56] is based
on the same aim of avoiding computations that are not indispensable. These approaches consider
that variation points are compositional and decrease the analysis of one variant to the individual
analysis of its variation points. This consideration is valid only for VIS that are structured in
particular fashions and do not generalize. Family-based and feature-based approaches were
taken into account to analyse the behaviour of stochastic VIS [16][17], but they are not scalable
or they have strict assumptions on how variation points can affect the system, and this is valid
only in few particular cases. Sample-based methods are the trade-off between the product-based
and feature-based ones [51] [57]. They analyse variants separately but they consider also a
degraded form of compositionality across features such that the results for the sampled variants
can facilitate the inference of the characteristics of the non-sampled ones. Such goal is reached
since the behaviour of variants that are not known is already considered by the ones that are
known or via extrapolation based on prediction models [58][59][60].

Acknowledgments

This project is supported by FNR Luxembourg (grant C19/IS/13566661/BEEHIVE/Cordy).

References

[1] J. Shi, J. Wan, H. Yan, H. Suo, A survey of cyber-physical systems, in: 2011 international
conference on wireless communications and signal processing (WCSP), IEEE, 2011, pp.
1–6.

[2] L. Zhang, View oriented approach to specify and model aerospace cyber-physical systems,
in: 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure
Computing, IEEE, 2013, pp. 296–303.

[3] A. Patil, K. More, S. Kulkarni, A review on vehicular cyber physical systems, International
Research Journal of Engineering and Technology (IRJET) 5 (2018) 1138–1143.

[4] K. Sampigethaya, R. Poovendran, Aviation cyber–physical systems: Foundations for future
aircraft and air transport, Proceedings of the IEEE 101 (2013) 1834–1855.

[5] S. A. Haque, S. M. Aziz, M. Rahman, Review of cyber-physical system in healthcare,
international journal of distributed sensor networks 10 (2014) 217415.

[6] L. Deka, S. M. Khan, M. Chowdhury, N. Ayres, Transportation cyber-physical system and
its importance for future mobility, in: Transportation Cyber-Physical Systems, Elsevier,
2018, pp. 1–20.

[7] P. J. Mosterman, J. Zander, Industry 4.0 as a cyber-physical system study, Software &
Systems Modeling 15 (2016) 17–29.



[8] L. Wang, M. Törngren, M. Onori, Current status and advancement of cyber-physical
systems in manufacturing, Journal of Manufacturing Systems 37 (2015) 517–527.

[9] G. Mois, T. Sanislav, S. C. Folea, A cyber-physical system for environmental monitoring,
IEEE Transactions on Instrumentation and Measurement 65 (2016) 1463–1471.

[10] R. Shakeri, M. A. Al-Garadi, A. Badawy, A. Mohamed, T. Khattab, A. K. Al-Ali, K. A. Harras,
M. Guizani, Design challenges of multi-uav systems in cyber-physical applications: A
comprehensive survey and future directions, IEEE Communications Surveys & Tutorials
21 (2019) 3340–3385.

[11] L. Northrop, Sei’s software product line tenets, IEEE Software 19 (2002) 32–40. doi:10.
1109/MS.2002.1020285.

[12] D. Sabin, R. Weigel, Product configuration frameworks-a survey, IEEE Intelligent Systems
and their applications 13 (1998) 42–49.

[13] M. Raatikainen, T. Soininen, T. Männistö, A. Mattila, A case study of two configurable
software product families, in: International Workshop on Software Product-Family Engi-
neering, Springer, 2003, pp. 403–421.

[14] M. Cordy, P. Heymans, Engineering configurators for the retail industry: experience report
and challenges ahead, in: Proceedings of the 33rd Annual ACM Symposium on Applied
Computing, 2018, pp. 2050–2057.

[15] T. Berger, S. She, R. Lotufo, A. Wąsowski, K. Czarnecki, Variability modeling in the real:
a perspective from the operating systems domain, in: Proceedings of the IEEE/ACM
international conference on Automated software engineering, 2010, pp. 73–82.

[16] G. N. Rodrigues, V. Alves, V. Nunes, A. Lanna, M. Cordy, P.-Y. Schobbens, A. M. Sharifloo,
A. Legay, Modeling and verification for probabilistic properties in software product lines,
in: 2015 IEEE 16th International Symposium on High Assurance Systems Engineering,
IEEE, 2015, pp. 173–180.

[17] L. Pessoa, P. Fernandes, T. Castro, V. Alves, G. N. Rodrigues, H. Carvalho, Building reliable
and maintainable dynamic software product lines: An investigation in the body sensor
network domain, Information and Software Technology 86 (2017) 54–70.

[18] A. Platzer, Logical Foundations of Cyber-Physical Systems, 1st ed., Springer Publishing
Company, Incorporated, 2018.

[19] L. Hu, N. Xie, Z. Kuang, K. Zhao, Review of cyber-physical system architecture, in:
2012 IEEE 15th international symposium on object/component/service-oriented real-time
distributed computing workshops, IEEE, 2012, pp. 25–30.

[20] A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov, D. D. Gajski, J. Teich, Electronic
system-level synthesis methodologies, IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 28 (2009) 1517–1530.

[21] S. A. Seshia, S. Hu, W. Li, Q. Zhu, Design automation of cyber-physical systems: Challenges,
advances, and opportunities, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 36 (2016) 1421–1434.

[22] S. Bliudze, S. Furic, J. Sifakis, A. Viel, Rigorous design of cyber-physical systems, Software
& Systems Modeling 18 (2019) 1613–1636.

[23] B. Murgante, O. Gervasi, S. Misra, N. Nedjah, A. M. A. C. Rocha, D. Taniar, B. O. Apduhan,
Computational Science and Its Applications–ICCSA 2012: 12th International Conference,
Salvador de Bahia, Brazil, June 18-21, 2012, Proceedings, Part I, volume 7333, Springer,

http://dx.doi.org/10.1109/MS.2002.1020285
http://dx.doi.org/10.1109/MS.2002.1020285


2012.
[24] S. L. Shrestha, S. A. Chowdhury, C. Csallner, Deepfuzzsl: Generating models with deep

learning to find bugs in the simulink toolchain, in: 2nd Workshop on Testing for Deep
Learning and Deep Learning for Testing (DeepTest), 2020.

[25] C. R. Stark, L. M. Pyke, Dynamic pathfinding for a swarm intelligence based uav control
model using particle swarm optimisation, Frontiers in Applied Mathematics and Statistics
7 (2021) 744955.

[26] S. Brooks, Markov chain monte carlo method and its application, Journal of the royal
statistical society: series D (the Statistician) 47 (1998) 69–100.

[27] C. J. Geyer, Practical markov chain monte carlo, Statistical science (1992) 473–483.
[28] H.-H. Kuo, White noise distribution theory, CRC press, 2018.
[29] C. Z. Mooney, Monte carlo simulation, 116, Sage, 1997.
[30] E. Zio, Monte carlo simulation: The method, in: The Monte Carlo simulation method for

system reliability and risk analysis, Springer, 2013, pp. 19–58.
[31] R. L. Harrison, Introduction to monte carlo simulation, in: AIP conference proceedings,

volume 1204, American Institute of Physics, 2010, pp. 17–21.
[32] V. Mnih, C. Szepesvári, J.-Y. Audibert, Empirical bernstein stopping, in: Proceedings of

the 25th international conference on Machine learning, 2008, pp. 672–679.
[33] M. H. Alalfi, E. J. Rapos, A. Stevenson, M. Stephan, T. R. Dean, J. R. Cordy, Variability

identification and representation for automotive simulink models, in: Automotive Systems
and Software Engineering, Springer, 2019, pp. 109–139.

[34] A. Leitner, W. Ebner, C. Kreiner, Mechanisms to handle structural variability in mat-
lab/simulink models, in: International Conference on Software Reuse, Springer, 2013, pp.
17–31.

[35] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, A. Wasowski, A survey
of variability modeling in industrial practice, in: Proceedings of the Seventh International
Workshop on Variability Modelling of Software-intensive Systems, 2013, pp. 1–8.

[36] A. Schlie, C. Seidl, I. Schaefer, Reengineering variants of matlab/simulink software systems,
in: Security and Quality in Cyber-Physical Systems Engineering, Springer, 2019, pp. 267–
301.

[37] M. Schulze, J. Weiland, D. Beuche, Automotive model-driven development and the chal-
lenge of variability, in: Proceedings of the 16th International Software Product Line
Conference-Volume 1, 2012, pp. 207–214.

[38] A. Arrieta, U. Markiegi, L. Etxeberria, Towards mutation testing of configurable simulink
models: a product line engineering perspective, Jornadas de Ingeniera del So ware y Bases
de Datos (JISBD) (2017).

[39] A. Haber, C. Kolassa, P. Manhart, P. M. S. Nazari, B. Rumpe, I. Schaefer, First-class variability
modeling in matlab/simulink, in: Proceedings of the Seventh International Workshop on
Variability Modelling of Software-intensive Systems, 2013, pp. 1–8.

[40] D. Clarke, M. Helvensteijn, I. Schaefer, Abstract delta modelling, Mathematical Structures
in Computer Science 25 (2015) 482–527.

[41] L. Bressan, A. L. de Oliveira, F. Campos, R. Capilla, A variability modeling and transforma-
tion approach for safety-critical systems, in: 15th International Working Conference on
Variability Modelling of Software-Intensive Systems, 2021, pp. 1–7.



[42] E. Soria, F. Schiano, D. Floreano, Swarmlab: A matlab drone swarm simulator, in: 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2020,
pp. 8005–8011.

[43] D.-H. Lee, J.-H. Jeong, H.-J. Ahn, S.-W. Lee, Design of an eeg-based drone swarm control
system using endogenous bci paradigms, in: 2021 9th International Winter Conference on
Brain-Computer Interface (BCI), IEEE, 2021, pp. 1–5.

[44] W. O. Quesada, J. I. Rodriguez, J. C. Murillo, G. A. Cardona, D. Yanguas-Rojas, L. G. Jaimes,
J. M. Calderón, Leader-follower formation for uav robot swarm based on fuzzy logic theory,
in: International Conference on Artificial Intelligence and Soft Computing, Springer, 2018,
pp. 740–751.

[45] R. Rabiser, A. Zoitl, Towards mastering variability in software-intensive cyber-physical
production systems, Procedia Computer Science 180 (2021) 50–59.

[46] C. Cetina, P. Giner, J. Fons, V. Pelechano, Prototyping dynamic software product lines
to evaluate run-time reconfigurations, Science of Computer Programming 78 (2013)
2399–2413.

[47] A. Van der Hoek, Design-time product line architectures for any-time variability, Science
of computer programming 53 (2004) 285–304.

[48] H. Gomaa, M. Hussein, Software reconfiguration patterns for dynamic evolution of
software architectures, in: Proceedings. Fourth Working IEEE/IFIP Conference on Software
Architecture (WICSA 2004), IEEE, 2004, pp. 79–88.

[49] F. Laroussinie, Christel baier and joost-pieter katoen principles of model checking. mit
press (may 2008). isbn: 978-0-262-02649-9. 44.95. 975 pp. hardcover, The Computer Journal
53 (2010) 615–616.

[50] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, J.-F. Raskin, Model checking lots
of systems: efficient verification of temporal properties in software product lines, in:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1, 2010, pp. 335–344.

[51] T. Thüm, S. Apel, C. Kästner, I. Schaefer, G. Saake, A classification and survey of analysis
strategies for software product lines, ACM Computing Surveys (CSUR) 47 (2014) 1–45.

[52] P. Asirelli, M. H. Ter Beek, S. Gnesi, A. Fantechi, Formal description of variability in
product families, in: 2011 15th International Software Product Line Conference, IEEE,
2011, pp. 130–139.

[53] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, J.-F. Raskin, Featured
transition systems: Foundations for verifying variability-intensive systems and their
application to ltl model checking, IEEE Transactions on Software Engineering 39 (2012)
1069–1089.

[54] M. Cordy, A. Classen, P. Heymans, A. Legay, P.-Y. Schobbens, Model checking adaptive
software with featured transition systems, in: Assurances for Self-Adaptive Systems,
Springer, 2013, pp. 1–29.

[55] M. Plath, M. Ryan, Feature integration using a feature construct, Science of Computer
Programming 41 (2001) 53–84.

[56] K. Fisler, S. Krishnamurthi, Decomposing verification around end-user features, in:
Working Conference on Verified Software: Theories, Tools, and Experiments, Springer,
2005, pp. 74–81.



[57] S. Apel, A. Von Rhein, P. Wendler, A. Größlinger, D. Beyer, Strategies for product-line
verification: case studies and experiments, in: 2013 35th International Conference on
Software Engineering (ICSE), IEEE, 2013, pp. 482–491.

[58] J. Oh, D. Batory, M. Myers, N. Siegmund, Finding near-optimal configurations in product
lines by random sampling, in: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, 2017, pp. 61–71.

[59] J. Guo, D. Yang, N. Siegmund, S. Apel, A. Sarkar, P. Valov, K. Czarnecki, A. Wasowski,
H. Yu, Data-efficient performance learning for configurable systems, Empirical Software
Engineering 23 (2018) 1826–1867.

[60] N. Siegmund, A. Grebhahn, S. Apel, C. Kästner, Performance-influence models for highly
configurable systems, in: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, 2015, pp. 284–294.


	1 Introduction
	2 Research Methodology and Approach
	3 Preliminary Results
	4 Preliminary Results
	5 Work Plan
	6 Related Work

