CEUR-WS.org/Vol-3253/paperl.pdf

Shacled Turtle: Schema-Based Turtle
Auto-Completion

Julian Bruyat’, Pierre-Antoine Champin®?’, Lionel Médini’ and Frédérique Laforest!

"Univ Lyon, INSA Lyon, CNRS, UCBL, LIRIS, UMR5205, F-69621 Villeurbanne, France
2W3C, Sophia Antipolis, France
3University Cote d’Azur, Inria, CNRS, I3S (UMR 7271), France

Abstract

Producing RDF documents has always been a tedious task. To make it easier, most approaches propose
an abstraction like forms to produce the data. In this paper, we propose Shacled Turtle, a method and a
tool to ease the editing of RDF documents with auto-completion, based on RDFS and/or SHACL schemas.
We also describe an experiment with volunteers to evaluate the usefulness of the tool, and we discuss its
results.

Keywords
RDF, Auto-completion, SHACL

1. Introduction

Producing RDF data is a widely studied problem. In real life, most RDF datasets are either
generated by tools to convert other formats to RDF or from data filled in a form by the user.
However, the lack of good RDF editors is identified by the EasierRDF group as one of the
many issues that can refrain developers from using RDF'. Indeed, many usages require to
write relatively small pieces of RDF by hand: teaching the basics of RDF, describing ontologies,
building graph patterns in SPARQL queries, declaring RZRML mappings [1]... Meta-ontologies,
such as RDF Schema [2] (RDFS) or the Web Ontology Language [3] (OWL), have always played
a central role in the RDF ecosystem. Recently, the necessity to validate RDF data appeared,
giving birth to SHACL [4] and ShEx? to check the validity of graphs. But to the best of our
knowledge, the literature has barely explored the ability to use inferential schemas or validating
schemas to help users explicitly write RDF graphs.

Our research hypothesis in this work is that schemas can be used to provide useful suggestions
to users when writing an RDF document. We developed Shacled Turtle® [5], a tool that uses
RDFS and SHACL schemas to provide auto-completion for writing Turtle documents [6]. The

VOILA! 2022: 7th International Workshop on Visualization and Interaction for Ontologies and Linked Data, October 23,
2022, Virtual Workshop, Hangzhou, China, Co-located with ISWC 2022.
& julian.bruyat@liris.cnrs.fr (J. Bruyat); pierre-antoine@w3.org (P. Champin); lionel. medini@liris.cnrs.fr
(L. Médini); frederique.laforest@liris.cnrs.fr (F. Laforest)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
=] CEUR Workshop Proceedings (CEUR-WS.org)
'https://github.com/w3c/EasierRDF/issues/35
*https://shex.io
*https://github.com/Bruju/shacled-turtle

Shacled Turtle: Schema-based Turtle Auto-Completion

purpose of this work is not the validation of documents, for which tools already exist, but only
the assistance to the users in writing them.

The rest of this paper is structured as follows. In Section 2, we review the different available
tools to produce RDF data. In Section 3 we present Shacled Turtle through a concrete example
to give an intuition about the tool. In Section 4 we describe the architecture used to provide
suggestions based on the chosen schema graph that is then detailed in Sections 5 and 6. In
Section 7 we evaluate Shacled Turtle style of suggestions against the kind of suggestions
provided by other similar tools from a user perspective. In Section 8 we discuss our contribution,
the results and the experimental protocol. Finally, in Section 9 we conclude with the possible
improvements.

2. Where do RDF Triples come from?

To produce RDF data, most approaches use some kind of abstraction, convert existing data or
directly write programs that output RDF data.

2.1. RDF data production

The most popular abstractions are forms. Protégé [7] requires the user to fill forms to build their
ontology and then generate the corresponding RDF file. The SHACL specification explicitly
mentions the possibility to generate forms from property shapes, which has been implemented
by systems like Schimatos [8]. Form generators have also been developed for the other shape
language ShEx.
Converting non-RDF data is also a popular way to produce RDF data. Many tools have been de-
veloped: R2RML maps relational databases and tabular data to RDF by using mappings provided
by the user, RML [9] extends the latter to support other kinds of data sources, RDF123 [10] aims
to produce RDF data by using spreadsheets as an abstraction, JSON-LD [11] transforms JSON
documents to RDF and is the way recommended by Google to add metadata to a website in
order to improve its SEO (Search Engine Optimisation).

Even by using these approaches, users may still have to write RDF documents: the RZRML
mappings must be described in RDF, users may want to fine tune the ontology produced by
Protégé.

2.2. Current editors

Plugins for popular code editors have been developed, like LNKD. tech Editor * and RDF and
SPARQL ° for the JetBrain suite. A language server for Turtle has recently been developed by
Stardog Union®. But all these plugins mainly focus on syntactic checking and coloration.

In [12], Rafes et al. list some of the expected features from a SPARQL auto-completion module.
They identify 3 major categories: suggestion of snippets, prefix declaration and auto completion
for Internationalized Resource Identifiers (IRIs). Snippets suggestion is described as being mostly

*https://plugins.jetbrains.com/plugin/12802-Inkd-tech-editor
>https://sharedvocabs.com/products/rdfandsparql/
Shttps://marketplace.visualstudio.com/items?itemName=stardog-union.vscode-langserver-turtle

Shacled Turtle: Schema-based Turtle Auto-Completion

requested by experienced users “and can be seen as the step after suggesting terms”. Prefix
auto-completion is deployed by most editors, through the use of the prefix.cc API".

To the best of our knowledge, IRI suggestions in all RDF document editors, like RDF and
SPARQL and Yasgui [13] are limited to proposing all the terms that exists in a given ontology.
Yasgui filters the list of suggestions depending on the position: for example if the current term
is a predicate, all properties in the ontology are displayed and other terms are discarded. This
approach is best suited for small ontologies, as for big ontologies, like schema.org®, the number
of suggestions can reach hundreds, making it impractical for users.

Some SPARQL editors like the Flint Sparql Editor’ or the one presented by Gombos and Kiss in
[14] uses intermediate SPARQL queries to help users write their queries. Sparglis [15] also uses
this approach but goes further by exposing an interface in natural language, removing the need
for the end-user to know SPARQL. In [16], De la Parra and Hogan first compute the relationships
between all types and predicates in the graph, and use the result of this computation to provide
auto-completion when the user builds their SPARQL query. All these approaches resort on
using the actual data to produce the effective schema of the graph. But in our case, as we are
interested in writing new data, these kinds of approaches are not applicable. Hence instead of
using the effective schema of the graph we will rely on the expected schema as specified by an
RDFS ontology or a set of SHACL shapes.

3. Shacled Turtle usage example

Shacled Turtle is implemented as a Code Mirror 6'° extension that provides support for the
Turtle language.

The selling key-point of Shacled Turtle is the auto-completion module. While most advanced
editors suggest all terms from the ontology, Shacled Turtle narrows the list to the parts of the
ontology that are related to the currently edited resource. We consider that most resources
in an RDF graph must be typed. When the type of a resource is known, it is likely that the
predicates related to the known types will be used to describe it. Figure 1 shows a concrete
usage example: we defined that ex:alice is a s:Person and then we start to write a new
triple. The suggestion engine considers that we probably want to use a predicate related to
persons, like s:nationality or s:name, and does not suggest terms like s : numTracks or
s:measurementTechnique that are related to other types.

4. Shacled Turtle general architecture

Figure 2 shows the general architecture of Shacled Turtle.

0. Before the interaction starts, a preprocessing phase is performed. The content of a schema
graph is converted into inference rules and suggestion rules by the schema to rules converter.
This schema can be written either in RDFS, in SHACL or a mix of both.

"https://prefix.cc
Shttps://www.schema.org
*http://fr.dbpedia.org/sparglEditor
Yhttps://codemirrornet/6/

Shacled Turtle: Schema-based Turtle Auto-Completion

fiprefix ex: <http://example.org/>

f@pretix rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-nsi#>
iprefix xsd: <http://wwiw.w3.org/2001/XMLSchema#>

f@prefix s: <http://schema.org/> .

ex:alice rdf:type s:Person ;

—

=5
:mainEntity0fPage
:makesOffer
:member0f

|l.l'l

(1]

|5 |

rnaics

(0]

:nationality
: netWorth

l.ﬂ||.l'l

b

: |

Figure 1: For a subject of type Person, Shacled Turtle only suggests predicates related to this type in
the Schema ontology

1. When the user is writing an RDF graph, the inference engine uses all complete triples to
deduce the types of all resources and the list of shapes that they should comply with.
These results are stored in the meta graph.

2. When the user is writing a new incomplete triple, after the subject has been written, i.e.
on writing the predicate or on writing the object, the suggestion engine queries the meta
graph for the list of all the types and shapes of the subject. It will then return to the user:

« If the incomplete triple only has a subject, the list of all predicates related to the
types and shapes of the subject.

« If the incomplete triple has a subject and a predicate, a list of resources depending
on the types and shapes of the subject and the predicate'’.

We will first describe the basics of all the components used by the interaction loop in Section 5,
in particular describe how the rule systems used by the inference engine and the suggestion
engine work. Then we will describe how the preprocessing translates the schema graph into
inference and suggestions rules in Section 6.

5. The interaction loop

The interaction loop comprises all operations performed when the user uses the editor.

""Note that for some predicates like rdf : type, the suggestion may be independent of the list of types and shapes of
the subject.

Shacled Turtle: Schema-based Turtle Auto-Completion

Preprocessing Interaction loop
User
k4
Currently written graph
Incomplete triple
: Complete - Subject only
Schema > triples - Subject predicate pair
RDFS and/or .
SHACL
0. Build rules for . 1 Run inferences 2. Request for Suggested femis ¥
the engines . possible predicates
; or objects
|
= Types and
3 v shapes of al Types and shapes
5 resoUrces Meta graph of the subject 4
- | Inference engine Suggestion engine
¥
Infe les Suggestion rules
Schema to rules rmof " |
converter

Figure 2: The different components of Shacled Turtle

5.1. The graphs

During the interaction loops, two different graphs are used:

« The currently written graph is the graph in the text editor. It is composed of two different
parts:

— The completed triples, triples for which the subject, the predicate and the object are
known. These triples are used to power up the inference engine and produce triples
for the meta graph.

— The incomplete triple that the user is currently editing. If the subject of this incomplete
triple is known, the suggestion engine and the meta graph will be requested to provide
a list of suggested terms. If other triples are incomplete, they are ignored by the engine.

« The meta graph is the graph that stores triples produced by the inference engine. Its role
is to store, for each resource, the list of all known types, and the list of shapes that the
resource should comply with. The content will then be used by the suggestion engine, in
particular to know the list of types and shapes of the subject of the incomplete triple.

Shacled Turtle: Schema-based Turtle Auto-Completion

5.2. The inference engine

We want our system to be able to deduce both the deducible types from an RDFS ontology and
to be able to list the shapes a resource must comply with.

These inferences are specified by inference rules (see Table 1 and 3). These rules go beyond
the ones traditionally used for RDFS, but do not need to capture the full semantics of SHACL as
we are not aiming at validating the graph.

Each inference rule has the form:

DataTriple? SourceMetaTriple?
ProducedM etaTriple

where:

« The body can require
— DataTriple?: 0 or 1 complete triple from the currently written graph.

- SourceMetaTriple?: 0 or 1 triple from the meta graph.
« The head must be a triple ProducedM etaT'riple that will be stored in the meta graph
and its predicate must either be rdf: type or : pathsof'%

5.3. The suggestion engine

In the same way, the system relies on a set of rules to deduce the possible suggestions at run-time,

from the meta graph and the incomplete triple.
We suppose that ?s, ?p, 7o are variables and A and P are IRIs.
Each suggestion rule has the form:

IncompleteTriple MetaTripleCondition?

Suggestion

where:

o The IncompleteTriple is either
- (?s,...,...) for applying the rule when only the subject of the incomplete triple is

known.
- (7s,A,...) for applying the rule when both the subject and predicate are known.
« The MetaTripleCondition? is optional, and either
— A triple pattern of the form (?s, P, 70) that is searched in the meta graph, where ?s is
the subject occurring in IncompleteTriple.
- “No info on ?s", for applying the rule only if there are no types or shapes known for
the resource ?s.
— none when no condition holds on the meta graph content.
« The Suggestion is either
- suggest(A) to add A to the list of suggested terms.
- suggestAll(?p, 7o) to add to the list of suggested terms all resources « such that
(a, 7p, ?0) is in the meta graph.

“The triple (u, :pathsO f, s) means that for the resource u we should suggest the paths specified by the shape s.

Shacled Turtle: Schema-based Turtle Auto-Completion

Table 1
Transformation of triples in the schema graph into inference and suggestion rules.
Triple in schema graph Inference rules Suggestion rules
(Pu, rdf:type,?t) none (?t,...,...) Noinfoon ?u
(Pu, rdf :type, 7t) suggest(rdf:type)
none (Tu,rdf:type, t) (?u,rdf:type,...) none
(?t, rdf :type, rdf s:Class) suggest All(rdf :type, rdf s:Class)
(?u,...,...) Noinfo on ?7u
(P’ rdf s:domain, T) (Tu, P,7) nome suggest(P)
VP =P or H—
P’ subproperty of P (Pu, rdf type, T) (Puy..oy.n) (Pu,rdfitype, T)
suggest(P)
(P, rdf sirange, T) (?u, P,7v) none (?u,P,...) none
VP = P or - -
P’ subproperty of P (v, rdf :type, T) suggest All(rdf type, T)
MUy ey .. tu, rdf :type, T
(P, s:domainIncludes, T) (ru,) ftype, T)
suggest(P)

(?u,P,...) none

suggest All(rdf :type, T)

(P, s:rangelIncludes, T)

none (Tu,rdf:type, S)

(?u, :pathsOf, S)
none none

(S, rdf:type, sh:NodeShape)

(S, shitargetNode,U) m
(S, shitargetClass, T) none (Tu,rdf:type,T) (Pu, rdf:type,...) none
o ’ (?u, :pathsOf, S) suggest(T')
(?u,...,...) Noinfoon 7u
suggest(P)
(S, shisubjectsOf. P) (?u, P, 7v) none (Puyeeey.nn) (?u, :pathsOf, S)
PoEn ’ (?u, :pathsOf, S) suggest(P)
(?uy...y...) mnone
suggest(P)
(S, shiobjectsO f. P) (?u, P,7v) none (?u,P,...) none
T ’ (v, :pathsOf, S) suggest All(:pathsOf,S)
(81, sh:node, S2) none (Tu,:pathsOf, S1)
and S1 is a node shape (7u, :pathsO f, 52)

6. The preprocessing

We now describe the preprocessing, which is the step where the schema to rules converter converts
the schema graph into inference and suggestion rules for the eponymous engines. It uses two
kinds of transformations: rules that are built by searching all triples with a certain pattern in

Shacled Turtle: Schema-based Turtle Auto-Completion

the schema graph, and SHACL paths whose recursive nature will be handled by using finite
state automata.

6.1. Rules built by looking up some triples pattern

Table 1 exposes the list of inference and suggestion rules that are generated from the schema
graph. Note that the purpose of this tool is neither to infer all possible suggestions, nor to
validate the graph, but to make suggestions that are as relevant as possible. This is a subjective
criterion, as having either too few or too many suggestions would make the tool less useful. We
will discuss this further in Section 8.

6.2. Rules built from SHACL Paths

Similarly to SPARQL paths, a SHACL path can be either a predicate path (an out-coming triple
with a given predicate) or a composition of other paths with one of the following operators:
inverse, sequence, alternative, repetition, kleene, and optional.

One issue with paths is that we want to be able to process complex paths, and provide
suggestions at any point in the path. For example, for the sequence path (:a :b), :b should
be a suggested predicate for nodes targeted by :a.

Unit paths and virtual shapes Our solution is to split composite paths into what we consider
unit paths. Unit paths are either predicate paths, e.g. : owns, or inverse paths of a predicate path,
e.g. [sh:inversePath :ownedBy]. These unit paths are connected with virtual shapes,
shapes that do not explicitly exist in the composite shape graph. The chain of all the unit paths
through the virtual shapes is equivalent to the original composite path for the purpose of our
suggestion engine.

Let us consider the shape graph on Listing 1. This shape graph means any node
?postalAddress extracted from the SPARQL request on Listing 2 must comply with the
node shape s:PostalAddress. For our purpose, it is equivalent to the shape graph on List-
ing 3 where we introduced a new shape, ex:VirtualShape that will act as the shape of all
the matches for ?0 in the SPARQL request.

Overview on transforming SHACL Paths into rules. To process SHACL paths, we assume
that:

+ We can decompose any path into unit paths connecting virtual shapes.

« Processing a chain of unit predicate paths is similar to processing a string with a regex.
Hence we can use finite-state automaton (FSA) to recognize if a chain of triples is recognized
by a path.

+ The only difference between a predicate path and an inverse predicate path is whenever
the subject or the object variable is bound to a known value.

Based on these assumptions, to parse the SHACL path into a list of inference and suggestion
rules, we first transform the path into an FSA, then we transform the FSA into rules.

Shacled Turtle: Schema-based Turtle Auto-Completion

Listing 1: An example shape Listing 3: The same shape graph with a virtual
shape
s:Person rdf:type sh:NodeShape ;

sh:targetClass s:Person ;
sh:property [

s:Person rdf:type sh:NodeShape ;
sh:targetClass s:Person ;
sh:property [

Sh:Pathk(F sh:path s:worksFor ;
S:workskor sh:node ex:virtualShape01
s:address

1.
) s
sh:node s:PostalAddress

] ex:VirtualShape01

rdf:type sh:NodeShape ;
sh:property [

c e . B sh:path s:address ;
Listing 2: SPARQL query to get all the re chinode ox:PostalAddress

sources targeted by the property 1.
shape contained by s: Person

SELECT ?postalAddress WHERE {
All resources targeted by the shape
?person rdf:type s:Person .
Travel the path
?person s:worksFor ?o0 .
?0 s:address ?postalAddress .

From SHACL paths to FSA. We build the FSA that describes the path P by composition.
Predicate paths produce an FSA with two states and only one transition. The FSA of other paths,
that are composite paths, are built by combining the automaton of their components in some
way. The transition symbol used by all the produced automaton are composed by combining
either the sign 4+ for out-going edges or — for incoming edges, with the predicate to travel.
Table 2 describes all the composition rules, where we consider that p is any predicate, P, P1 and
P2 are paths.

From FSA to rules. After minimization and determination, an FSA can be defined as one
initial state, a set of final states and a set of transitions (StartState, Symbol, EndState).

« We define m a total function from all states s of the FSA to RDF Nodes. For each state s,
m(s) is a fresh RDF node, i.e. it is not used elsewhere.

+ The virtual shape mapped from the initial state of the FSA is a super-shape of the starting
shape of the property shape

« If a destination shape is known for the property shape, it is declared as a sub-shape of all
the final states of the FSA.

« Table 3 describes how to convert the transitions to inferences rules.

7. Evaluation

Shacled Turtle uses schemas to reduce the number of suggestions proposed to users, keeping
only the most relevant ones. The underlying assumption is that this is more helpful for users

Shacled Turtle: Schema-based Turtle Auto-Completion

Table 2
Mapping from all kinds of path to automata
. R .
Kind and SHACL Syntax egex Built automaton
equivalent
+pred
Predicate
pred P
Take automaton P
Inverse None Inverse all transitions
[sh:inversePath P] Transform all + into -
Transform all - into +
P1 17
Sequence P1 P2 —fem) CD u €D Ceom H>
(P1 P2)
Pl
Alternate
[sh:alternatePath (P1]P2)
(P1 P2)]
P
Zero or one p? :W:
[sh:zeroOrOnePath P])
)
One or more Py :w:
[sh:oneOrMorePath P]
Zero or more .
roormor p* Equivalent to (P+)?

[sh:zeroOrMorePath P]

than a less selective suggestion engine. In order to evaluate the validity of this assumption,
we asked volunteers to translate two texts into Turtle documents by using a given ontology.
The produced documents were expected to be constituted of approximately 10 triples. One of
the documents had to be written by using our auto-completion engine, the other by using an
auto-completion engine similar to the one used by YASGUI, i.e. that displays all the terms of
the ontology. The order of the two different documents and of the two auto-completion engines

was randomized.

We used two different schemas:

 The Schema.org ontology. For this session, we used the RDF schema graph published on
Github by Schema.org'®. We slightly altered the graph to transform the cases where a pred-

Bhttps://github.com/schemaorg/schemaorg/blob/main/data/releases/14.0/schemaorg-all-https.tt]

Shacled Turtle: Schema-based Turtle Auto-Completion

Table 3
Converting the transitions of the produced FSA to rules
Transition Inference rules Suggestion rules
(Puyeoeyo) (Pu,:pathsOf,m(S))
t(P)
(?u, P, 7v) u, :pathsO f,m(S)) sugges
(S,+P.E) ()

(70, :pathsOf,m(E)) (Pu, Py...) (Tu,:pathsOf,m(S))

suggest All(:pathsO f, m(E))

(Pu, P,7v) (v, :pathsOf,m(S))

(Sv _Pa E)
(?u, :pathsO f, m(E))

icate only had one value for schema:domainIncludes or schema:rangeIncludes
to rdfs:domain and rdfs:range to help the inference engine of Shacled Turtle. This
alteration has no impact on the naive suggestion engine. As said previously, Schema.org
is a big ontology with thousands of terms. For this session, we had 23 volunteers, 21 of
them were Semantic Web experts with more than 3 years of usage and 6 had already used
the Schema.org ontology:.

« Friend of a friend (foaf)'*. As this ontology is defined by using mostly RDFS, it benefits
fully from the inference engine. Moreover, it is a small ontology, with a few dozen of terms.
For this session, we had 11 volunteers, 7 of them were Semantic Web experts and none
declared to already have used the ontology.

After writing the two different RDF documents, one with Shacled Turtle and one without
it, they were asked to grade on a Likert scale [17] their feeling about the usefulness of both
completion engine (naive and Shacled Turtle) and if they preferred an auto-completion engine
over another one. We also let users explain in a free field why they preferred one engine, if any;
and another free field to collect general feedback. Finally, we measured how much time each
volunteer took to write each document.

The whole evaluation was conducted online. We published the source code of the platform
and the anonymized collected results on Github at https://github.com/Bruju/shacled-turtle-
evaluation.

Of the 34 volunteers, 17 declared to have no preference towards an engine or the other. Six
volunteers even admitted to have seen no difference between the two engines. The number of
people that prefer one engine over another is almost equal for both engines.

When asked separately, all volunteers gave a similar rank to both engines, the worst case
being a strong appreciation on an engine and a neutral appreciation on the other; but 21 users
gave the same appreciation to both.

Using Shacled Turtle does not enable the user to complete the task faster: 20 volunteers were
faster to complete the second task than the first, regardless of if Shacled Turtle is the first engine
or the second, and 14 took about the same time.

“https://xmlns.com/foaf/spec/

Shacled Turtle: Schema-based Turtle Auto-Completion

8. Discussion

In this section, we study some of the most recurring comments made by the volunteers about
the tool to have a better understanding of what can be improved in Shacled Turtle.

Relevance of suggestions. Five volunteers showed a high enthusiasm about the approach
and their comments showed that they understood well the purpose of the tool. In particular,
two of them appreciated that the tool leads to less errors, feeling more confident about the
produced graph.

However, in Section 6.1, we mentioned that the choice of which suggestions to filter out is,
to some extent, arbitrary, and could lead to false negatives.

The question arises especially in the case of SHACL shapes: we suggest only predicates
that are mentioned in the shape(s) of the subject, but unless these shapes are flagged with
sh:closed true, they actually do not disallow other predicates. Similar issues may apply
with RDFS classes, because an instance of a class might still be an instance of another one.

Indeed, three volunteers complained about the fact that Shacled Turtle produced less sug-
gestions than the other engine. 21 volunteers ranked both engines similarly, and six of them
explicitly reported that they did not notice any difference, suggesting that there is no clear
benefit in reducing the overall number of suggestions.

Other filtering strategy. Most auto-completion engines enable users to filter the list of
suggestions by name. In Code Mirror, and therefore in Shacled Turtle, when the user types for
example s:na, the system will only show the terms that contain the characters s:na in that
order (e.g. s: familyName or s:eventStatus). A common practice to find a desired term is
to opportunistically reduce the list of terms using the filtering by name. Then when the user
considers the list of terms to be short enough, they look further at the displayed terms. The
responses of the volunteers indicate that they proceeded that way.

Therefore it might be more valuable to promote the suggestions we deem relevant than to
filter out the others, and leave it to the user reduce the number of suggestions using filtering
by name. Once a suggestion list is filtered out by the user, we think that Shacled Turtle could
provide an efficient strategy to help the user pick the right term, in conjunction with manual
filtering by name.

The importance of good documentation. Shacled Turtle shows, with each suggested term,
a description (rdfs: comment) of that term when provided by the schema. While the query
GUI of Wikidata does the same, because Wikidata IRIs are opaque, many other suggestions
engine do not. During our experiment, seven volunteers reported that the descriptions of the
terms are important, as they complained when descriptions were missing or incomplete, either
because of bugs during the early stages of the experiment or because of the used schema. Five
volunteers reported to have consulted the ontology online documentation to check how to use
the ontology and have a better idea of the usage of the terms and their links. At the opposite, a
volunteer reported that thanks to this tool, they fortunately did not feel the necessity to consult
the ontology documentation.

Shacled Turtle: Schema-based Turtle Auto-Completion

One of the volunteers explained that the domain and the range of a property can be more
informative than a description. The schema to rules converter could also be used to enrich the
descriptions to add the links between the predicates and the different types and shapes.

As mentioned previously, Shacled Turtle should not be used to filter out choices from contex-
tual data, but to enrich the documentation. This could be changed by using Shacled Turtle to
promote terms that we deem relevant, either by displaying them first in the list, by highlighting
them, or both: it would solve the issue of users not seeing a difference. To increase the perceived
reliability of the tool, the decision made should be explained to the users, i.e. in case of an
incomplete triple with only a subject, displaying which type or shape of the subject is used to
suggest each relevant predicate; and for an incomplete triple with only a missing object, which
type or shape of the suggested objects is used to suggest them depending on the subject and
the predicate.

9. Conclusion

In this paper, in order to tackle the problem of writing RDF documents by hand, we proposed
Shacled Turtle, an auto-completion engine that resorts to a schema graph to suggest terms
related to the types and shapes of the subject of the triple that the user is writing. The system
relies on two different rule engines : an inference engine that deduces the list of types and
shapes of all resources in the currently written graph and a suggestion engine that provides
possible following terms. However, in our experiments, the users barely saw any difference
between a naive approach, proposing all terms that are in the ontology, and our approach: to
find appropriate terms, they preferred to rely on other strategies like filtering by name and
reading the ontology online documentation. We explain this by the inability of our method
to display explicit insights: the difference between Shacled Turtle and the naive approach is
implicit, as it consists in showing less options.
As users are in quest of information, four aspects can be considered:

« Enriching the descriptions of the terms, both with information extracted from the schema
to rules converter like the links between the predicates and the types and shapes, and with
contextual information to explain why the system thinks a term may be relevant in the
current incomplete triple.

« Instead of using Shacled Turtle to filter out irrelevant terms, promote these relevant terms
in the list of all existing terms.

« Running an inference engine to provide the list of types of the resources when the user
hovers the resource. While this is currently done for RDFS, it could be expanded to any
inference rule-set like OWL.

« Using a SHACL validation report to report errors, i.e. as a linting tool. This would lead to
more accurate information and more visible error.

Another perspective that is to propose snippets, i.e. complete set of triples, instead of simple
paths. SHACL sequence paths are paths composed of other paths: instead of requiring the
user to chain blank nodes for each path that composes the sequence path, a snippet could be
suggested that would build all the intermediate blank nodes at once. This approach would better
benefit from SHACL paths and offer a higher level of suggestion.

Shacled Turtle: Schema-based Turtle Auto-Completion

Acknowledgments

We would like to thank all the volunteers for their time and their very valuable feedback.

References

[1] S.Das, S. Sundara, R. Cyganiak, RZRML: RDB to RDF Mapping Language, W3C Recom-
mendation, W3C, 2012. Https://www.w3.0org/TR/2012/REC-r2rml-20120927/.

[2] R. Guha, D. Brickley, RDF Schema 1.1, W3C Recommendation, W3C, 2014.
Https://www.w3.0rg/TR/2014/REC-rdf-schema-20140225/.

[3] D.L. McGuinness, F. Van Harmelen, et al., Owl web ontology language overview, W3C
recommendation 10 (2004) 2004.

[4] D. Kontokostas, H. Knublauch, Shapes Constraint Language (SHACL), W3C Recommenda-
tion, W3C, 2017. Https://www.w3.org/TR/2017/REC-shacl-20170720/.

[5] J. Bruyat, Bruju/shacled-turtle: Shacled turtle 0.0.3, 2022. URL: https://doi.org/10.5281/
zenodo.6907388. doi:10.5281/zenodo.6907388.

[6] E. Prudhommeaux, G. Carothers, RDF 1.1 Turtle, W3C Recommendation, W3C, 2014.
Https://www.w3.0rg/TR/2014/REC-turtle-20140225/.

[7] M. A. Musen, The protégé project: a look back and a look forward, Al matters 1 (2015)
4-12.

[8] J. Wright, S. J. Rodriguez Méndez, A. Haller, K. Taylor, P. G. Omran, Schimatos: a shacl-
based web-form generator for knowledge graph editing, in: International Semantic Web
Conference, Springer, 2020, pp. 65-80.

[9] A.Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, R. Van de Walle, Rml:
a generic language for integrated rdf mappings of heterogeneous data, in: Ldow, 2014.

[10] L.Han, T. Finin, C. Parr, J. Sachs, A. Joshi, Rdf123: from spreadsheets to rdf, in: International
Semantic Web Conference, Springer, 2008, pp. 451-466.

[11] P.-A. Champin, G. Kellogg, D. Longley, JSON-LD 1.1, W3C Recommendation, W3C, 2020.
Https://www.w3.org/TR/2020/REC-json-1d11-20200716/.

[12] K. Rafes, S. Abiteboul, S. Cohen-Boulakia, B. Rance, Designing scientific sparql queries
using autocompletion by snippets, in: 2018 IEEE 14th International Conference on e-
Science (e-Science), IEEE, 2018, pp. 234-244.

[13] L. Rietveld, R. Hoekstra, Yasgui: not just another sparql client, in: Extended Semantic Web
Conference, Springer, 2013, pp. 78-86.

[14] G. Gombos, A. Kiss, Sparql query writing with recommendations based on datasets,
in: International Conference on Human Interface and the Management of Information,
Springer, 2014, pp. 310-319.

[15] S. Ferré, Sparklis: An expressive query builder for sparql endpoints with guidance in
natural language, Semantic Web 8 (2017) 405-418.

[16] G. de la Parra, A. Hogan, Fast approximate autocompletion for sparqgl query builders
(2021).

[17] R. Likert, A technique for the measurement of attitudes., Archives of psychology (1932).

