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Abstract

Knowledge graphs have been recognized in manufacturing as a suitable technology for integration of
multidisciplinary knowledge from heterogeneous data sources. The effective reuse of this knowledge can
better inform stakeholders in their decision making processes and consequently, establish a competitive
advantage. In contrast to the utilization of knowledge graphs for autonomous decision making systems,
less attention in production research has been given to the creative participation of humans in the
exploration of manufacturing knowledge graphs. Exploratory search systems are a promising solution
to facilitate this participation. However, most exploratory search systems focus on general knowledge
graphs for which common knowledge is sufficient. We argue that within the complex environment of
manufacturing, closer attention has to be paid to particular exploratory search features. In this paper,
we therefore present a configurable and adaptive exploratory search system, which implements three
special features. Firstly, adaptability of the system to multiple (engineering) perspectives. Secondly,
visibility of provenance details about statements to simplify investigative work. And finally, a tree view
for browsing deep hierarchical structures.
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1. Introduction

The new paradigm shift in manufacturing, which is commonly referred to as the fourth indus-
trial revolution, is guided by the fusion of traditional manufacturing technology with modern
information and communication technology [1]. This vision is investigated by several strategic
initiatives such as Industrie 4.0 in Germany [2]. Core to all of these initiatives is the digitization
of multidisciplinary information about production systems and processes.

Knowledge graphs (as defined by Galkin et al. [3]) are one solution to facilitate this digital
transformation. As shown by the survey of Li et al. [4], knowledge graphs have received
considerable attention in production research over the last years. In fact, it has been widely
recognized as an important component of the next generation of information systems for
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manufacturing [4]. Moreover, industrial enterprises started to construct knowledge graphs
related to manufacturing such as Bosch [5] or Siemens [6].

Problem. The effective reuse of manufacturing knowledge can better inform stakeholders in
their decision making and consequently, establish a competitive advantage [7]. Much work in
production research has been dedicated to the utilization of knowledge graphs for autonomous
decision making systems, e.g., Rozanec et al. [8]. However, less attention has been given to the
creative participation of human stakeholders in the exploration of manufacturing knowledge
graphs. In particular, we present two concrete use cases in which this need arises:

(UC1) OntoTrans' is an EU project (H2020) which aims to design an environment of tools for
translators who are working on innovation challenges to manufacturing processes. Three
companies take part in this project with their individual innovation challenge to improve
a certain manufactured product in respect to several key performance indicators. An
innovation challenge requires the interactive collaboration of stakeholders from different
disciplines who have diverging perspectives and conceptualizations of a problem. A
translator has to provide a communication-based glue between the involved stakeholders.
The innovation challenge as well as the corresponding manufacturing information are
converted into an ontological form. A tool to explore this interdisciplinary knowledge
graph could assist translators in their tasks.

(UC2) Aspern pilot factory” is one of several Austrian "learning and experimentation facto-
ries". It currently hosts a series of valuable collaborative and industrial robotic arms as
well as a wide range of supporting tools (grippers, 3D cameras, projectors, etc.), which
can be used by students, researchers, and companies for their own purposes. However,
interested students, researchers, and companies are often unaware of the availability and
capabilities of the manufacturing technology in this pilot factory, which contributes to
a relatively low usage degree of these expensive, state of the art production equipment.
Furthermore, best practises and design patterns in software engineering are a valuable
guide for writing robotics software. A knowledge graph was built from this interdisci-
plinary knowledge and a tool to explore it could help users of the pilot factory to learn
about how to realize their individual projects with the available equipment.

Solution. Exploratory search systems are a promising solution to support human stakehold-
ers in their decision and sense making. Exploratory search is an open-ended and multi-faceted
information-seeking activity. It is commonly used in the context of scientific discovery, learning
and decision making [9]. Most exploratory search systems focus on general knowledge graphs
for which common knowledge is sufficient. We argue that within in the complex environment
of manufacturing, closer attention has to be paid to particular exploratory search features.

Contribution. To that end, we provide in Section 2, a list of exploratory search features
towards which we want to draw special attention, because they were commonly requested in
interviews with stakeholders of our two use cases. Section 3 proposes a configurable and adaptive
exploratory search interface, which considers the special search features for manufacturing

'https://ontotrans.eu/
*https://www.pilotfabrik.at/language/en/
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Common Features (from Marie et al. [10]) Manufacturing Features
(1) Overview and analysis feature (9) Multiperspectival exploration
(2) Faceted interface (10) Provenance visibility

(3) Result clustering (11) Hierarchical browsing

(4) Facilitator for back and forth navigation
(
(
(
(

5) Query-suggestions and refinement
6) Serendipitous discovery enforcement
7) Result explanation generator

8) Memorization feature

Table 1
Exploratory search features for the domain of manufacturing.

domain. The system architecture of our exploratory search is briefly introduced in Section 4.
Finally, the preliminary evaluation of our exploratory search system is presented in Section 5.

2. Features for Manufacturing

A survey about widespread features in KG-based exploratory search systems was conducted
by Marie et al. [10] (see left-side of Table 1). Three additional features that are important to
manufacturing professionals were identified from informal interviews (see right-side of Table 1).
Two translators to an industry partner in OntoTrans (UC1), two smart manufacturing researchers
working in the pilot factory (UC2) with industry and university background respectively, and
one simulation expert of production plants were among the interviewees. They were given
an introduction to a basic exploratory search system in beforehand, and were then asked to
discuss their requirements towards such a search system. The remaining part of this section
elaborates on the three extracted features from these collected requirements.

Multiperspectival exploration enables stakeholders to select and switch between different
perspectives on a manufacturing knowledge graph. In a manufacturing environment, stakehold-
ers from multiple disciplines work together and they might have different conceptualization of
manufacturing entities. Moreover, different disciplines might have a distinct perspective on
what information is relevant about a manufacturing entity, and don’t want to be overloaded
with information that is irrelevant to them. A machinery could for instance be viewed in a
impressively detailed manner by mechanical engineers, but only be seen as a black box with
certain wiring requirements by electrical engineers.

Provenance visibility is a valuable feature in a manufacturing environment, where inter-
disciplinary knowledge is integrated from many heterogeneous sources. If a stakeholder is
interested in investigating the properties of a physical component, then it might be necessary
to know the original data source in which these values for a property have been reported in
order to resolve ambiguities for proper decision making. The value of a parameter could have
been gathered from promotional material of the manufacturer, or could have been measured by
a local engineer. The visibility of provenance information allows stakeholders to quickly reason
about the trustworthiness of presented statements.

Hierarchical browsing is a frequent search task over manufacturing knowledge graphs in
which the digital twin of production plants or machines might be comprised of deep containment
relationships between components. Furthermore, manufacturing processes and bill of materials
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Figure 1: Scope hierarchy for the adaptive Ul engine.

of products can have deep hierarchies. Thus, stakeholders must be able to quickly navigate
through these hierarchies, and be able to cognitively focus on important parts and not be
overwhelmed by the whole hierarchy.

3. Adaptive Exploratory Search Interface

Based on our interviews with stakeholders from the two manufacturing use cases, exploratory
search interfaces in manufacturing ought to be designed with the requirements from Section 2
in mind. Preferences about the presentation method of entities and arrangement of interface
elements might differ from use case to use case. Bootstrapping a new exploratory search
system is however a time-consuming and costly endeavour. Thus, we propose in this section
a configurable and adaptive search interface, which aims to be flexible and reusable. The
architecture of the whole system is outlined in Section 4.

This adaptive search interface is based on the concept of scopes and configurations, which
was introduced by the Linked Data Reactor (LD-R) [11]. A scope is in LD-R a hierarchical
permutation of dataset, resource, property and value, where dataset is at the top and value at the
bottom of this hierarchy. A presentation template (i.e. a configuration) can then be written in
JSON format for a particular scope, which tells the web application how to render entities in the
knowledge graph that match this scope. Each scope has a specificity, and if entities belong to
multiple scopes, then the configuration of the most specific scope overwrites the others. While
we adapt this mechanism for our adaptive search interface, the scope components and their
hierarchy were changed to integrate multiperspectival exploration.

Scope components are organized in the hierarchy that is depicted in Figure 1.

— At the top of this hierarchy is the resource class or selection R. This can either be the
IRI of a class of resources or an IRI matching one single specific resource. The class
rdfs:Resource can be used as a wildcard to match all resources in a knowledge graph.

— The following scope component is the perspective P, which allows to adapt metrics
powering the search interface as well as the presentation of widgets and entities to the
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currently selected perspective. The underscore (i.e. ’_’) is a wildcard and represents all
perspectives.

— Alist of widgets W1, ..., Wy, is the next component in the hierarchy. Widget refers here to
an interface element with an unique name. A list always starts with the outermost widget
and ends with the innermost. The distinct presentation of entities in different widgets
(e.g. bookmarks and result overview) is made possible with this scope component.

— Predicate path Py is one level below in the hierarchy. A predicate path is a subset of a
property path in SPARQL, only allowing sequences (i.e. ’/’), alternatives (i.e. ’|’) and
inversion (i.e. ). A predicate path makes it possible to configure how a matching property
itself is presented and how a collection of it‘s values should be visualized.

— At the bottom is the value class or selection V. This scope component has the purpose
to configure the presentation of matching values. In order to facilitate the design of UI
components for visualizing provenance details, metadata about relevant named graphs
is passed to values. In our solution, it is assumed that the single-triple named graphs
approach is used to state provenance information in favor of RDF reification, singleton
properties [12] and RDF-star [13].

Templates are aggregated in files written in HCL?, which is easy to edit and read by humans.
Listing 1 shows a snippet of such a configuration file for the class RobotType. Ul components
are assigned with ’handler’ to widgets, properties, and values. These Ul components can
moreover be customized by passing properties with a 'config’ object. Line 29-39 in Listing 1
states that every value for the property "reach" of a Robot Type shall be rendered as ordinary text
literal as long as it isn’t a quantity value from the QUDT ontology, which needs some additional
parsing. Listing 2 shows how the recommendation section for instances of RobotType is
configured to use LDSD [14] in general, but is limited to specific classes for the two mentioned
perspectives. Similarly, distinct ranking metrics could be chosen.

*Hashicorp configuration language - https://github.com/hashicorp/hcl
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Listing 1: Configuration of RobotType. Listing 2: Different recommendation configu-
(10) class = "cobot:RobotType" rations per perspective.
(11)
(12) perspective _ widget infobox { (40) perspective _ widget infobox {
(13) handler = "GenerallnfoBox" (41) section recommendations {
(14) config { (42) handler = "SimilaritySection”
(15) sections = ["prop_table", (43) config {
(16) "recommendations "] (44) number = 4
(17) } (45) ranking = {
(18) } (46) Idsd {
(19) perspective _ widget infobox section prop_table { (47) step = "esm.exploit.sim.ldsd"
(20) handler = "ProvenanceTableSection", (48) weight = -1.0
(21) config { (49) }
(22) neighbourhood { (50) }
(23) include = ["cobot:degreesOfFreedom", (51) }
(24) "cobot:handlingPayload", "cobot:reach", (52) }
(25) "cobot:skills "], (53) }
(26) } (54) perspective RoboticsEngineer widget infobox {
(27) } (55) section recommendations {
(28) } (56) config {
(29) perspective _ widget infobox { (57) classes = ["cobot:RobotType"]
(30) property "cobot:reach"” { (58) }
(31) handler = "LinkedProperty" (59) }
(32) value _ { (60) }
(33) handler = "TextValue" (61) perspective SoftwareEngineer widget infobox {
(34) } (62) section recommendations {
(35) value "qudt:Quantity" { (63) config {
(36) handler = "QudtQuantityValue" (64) classes = ["cobot:HandlingFunction",
(37) } (65) "star:ArchitecturalElement "]

(38) } (66) }
(39) 1} (67) }
(68) }

Search interface is provided by a rendering engine that interprets these templates. The
interface is intended to be similar to major search engines on the Web in order to lower the
learning curve. The main entry point for starting an exploration is a keyword search as depicted
in Figure 2. The result set of a keyword search is listed vertically, and an info box is shown for
the first entry of the result list. Nonetheless, a user can switch to a different search paradigm,
e.g. a tree view.

4. System Architecture

Many KG-based exploratory search systems report to only rely on a SPARQL interface to the
target knowledge graph, which has the big advantage that these systems can directly be applied
to virtually every RDF-based knowledge graph. An integral part of our system is the computation
of centrality metrics (e.g. PageRank) for the ordering of resources according to their "importance”
and similarity metrics (e.g. LDSD [14]) for recommendations. A reasonable responsiveness is
however an important non-functional requirement towards search interfaces, and we claim
that this is hard to achieve without precomputing metrics or sophisticated indexing techniques.
Thus, we introduce a middleware application which sits on top of the storage solution for the
target knowledge graph. The conceptual overview of our whole exploratory search system is
depicted in Fig. 3.

The adaptive search interface presented in Section 3 is provided by our web application,
which is designed to be a thin single-page application. React]S* is used to implement the Ul

*JavaScript library for building user interfaces - https://reactjs.org
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Figure 2: Entry point for exploration (keyword search).

components, and the state is managed with Redux’. In order to be able to render the UI, the web
application needs to load the UI configuration (see Section 3). The required data for rendering
the UI components is then fetched by assembling corresponding exploration flows, and sending
them to the middleware. The web application is only responsible for the correct rendering and
isn’t handling any RDF data itself.

3State container for JavaScript applications - https://redux.js.org
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Figure 3: Conceptual overview of the exploratory search system.

An exploration flow is a sequence of steps which all execute a single operation. Listing 3
shows a flow that computes the weighted sum of LDSD [14] and a general peer pressure metric
for all pairs between a particular gripper and all other resources in the knowledge graph. Then,
the collection of pairs is ordered by this weighted sum, and only the top 10 pairs are eventually
returned. The goal of an exploration flow is to abstract the more complex part of the Semantic
Web technologies, and only expose the basic concepts of RDF to the web application.

Listing 3: Top 10 recommendations for a certain gripper (Python).

(1)
(2)
(3)
(4)
(5)

f = Single(resource="ex:gripper04’) \
>> PairWith (flow=All()) >> (LDSD() | PeerPressure()) \
>> WeightedSum (’sum’, {Sim.ldsd: -1, Sim.peerpressure: 1}) \
>> OrderBy(’sum’, strategy=Order.DESC) >> Limit(n=10)

resp = FlowAPI("http://localhost:8080").execute(f)

The middleware is a Spring Boot application written in Java and it has two main tasks.
Firstly, it provides an interpreter for exploration flows, which parses flows and executes their
steps one by one in the correct order. Secondly, it orchestrates the computation of analytical
services such as centrality and similarity metrics among others. However, we can’t solely rely
on SPARQL for these tasks, because:

(a) Graph traversal is limited in the specification of SPARQL 1.1 [15]. While property paths

add the ability to check whether a route of arbitrary length exists between two nodes in the
knowledge graph, a wider range of path operations aren’t supported such as computing
the shortest distance between two nodes. Query languages for property graphs usually
don’t have this limitation, and RDF-based knowledge graphs can easily be represented in
property graphs. However, at the moment of writing no query language is accepted as a
standard for property graphs. GQL is one of the emerging attempts to establish such a
standard [16]. Cypher and Gremlin are nevertheless two prominent choices.

(b) Full-text searches are a feature of many triplestores, but it is not included in the specifi-
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TASK A

TASK B

Imagine that you are a member of a team which is
working on a manufacturing project with collaborative
robots and you have access to the equipment located
at the pilot factory in Aspern. In this project, you have
to move a 4 kg heavy and cubic object with a length
of 20cm from a conveyor belt to a manufacturing cell
that is 60cm away. Goal You have been asked to design
a hardware setup for this project with equipment that is

Imagine that you are a member of a team which is
working on a collaborative robot picking up a small
transistor from a storage box and placing it on a certain
position on a circuit board. The robot works in proximity
of human workers and it might have to interrupt it's
task, due to them coming too close. However, we don’t
want the robot to remain in this state, and proceed with
the task as soon as possible. Goal: You have been asked

available at the pilot factory. Your team would be glad || to explore design patterns that could be lend from software

about a brief presentation of your findings. engineering for this kind of error handling and eventually

present promising design patterns to your team.

Table 2
Exploratory search tasks for evaluating the system.

cation of SPARQL 1.1 [15]. The SPARQL syntax for issuing a full-text search is vendor-
specific, and the configurability of search indices varies from vendor to vendor. Alterna-
tively, one might want to use an external solution for creating full-text indices.

Due to these limitations of SPARQL, the middleware expects three interfaces to the stored
knowledge graph: (1) SPARQL 1.1, (2) Gremlin as query language for property graphs, and (3)
simple full-text search APIL The middleware includes plugins, which implement these three
interfaces for a number of popular triplestores (Blazegraph, GraphDB, Stardog and Virtuoso).
And given that barely any triplestore supports the Gremlin query language, the middleware
provides also a mechanism to clone the knowledge graph over the SPARQL interface into an
embedded JanusGraph® instance.

5. Preliminary Evaluation

Our exploratory search system’ was evaluated on a small scale with five participants for the
pilot factory use case (UC2), which is why we want to set a heavy focus on qualitative analysis.
All five participants were non-experts in smart manufacturing and robotics, but they were
knowledgeable in software engineering. Participants took in our experiments the role of an
information seeker and explored the domain of collaborative robotics. The evaluation aimed
to assess the ability of our system to allow a user to interactively investigate, learn and make
sense of a topic from this manufacturing domain.

The two tasks listed in Table 2 were designed to elicit exploratory search behaviour from
participants. The experiment started with a brief survey to assess participant’s a-priory knowl-
edge about robotics and software engineering. Then, they were given both exploratory search
tasks one-by-one, and had 20 minutes time with our search system for each task. Afterwards,
their gained knowledge was assessed by a new survey. Moreover, we asked the participants

Open source distributed graph database - https://janusgraph.org/
’Online deployment - https://data.ifs.tuwien.ac.at/cobot
Source code for local deployment - https://gitlab.tuwien.ac.at/kevin.haller/cobot-playground
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to rate the "usefulness" of single features for completing their tasks, and conducted informal
interviews to gather feedback. All the sessions were recorded for later video analysis.

Overall, all participants gained some additional knowledge and were able to present a reason-
able solution for both tasks to their fictional team. Regarding the exploratory search features,
the participants thought that info boxes were the most useful, which isn’t surprising given that
it plays a prominent role in our search system. On the other hand, the tree view for browsing
deep hierarchies wasn’t rated highly. A video analysis of the recorded sessions showed that
the participants were overburdened by the current design of the tree view and the click rate
was low. Moreover, it showed that they preferred to use browser tabs as well as back and forth
navigation over our in-built memorization feature.

6. Related Work

Little work has been published for exploratory search in manufacturing and production.
Metaphactory describes in [17] their platform for knowledge graph management and briefly
outlines use cases in the engineering and manufacturing domain at Siemens. While exploratory
search is not discussed, it touches on faceted navigation, query building assistance as well as
customizable search experience and result visualization. Sabou et al. [18] show an approach to
transform a central repository of architectural knowledge at Siemens into a knowledge graph,
and furthermore, present a search system with an user interface similarly to major search
engines on the Web. The search interface includes info boxes with faceted navigation and a
KG-based recommendation engine. Yet, these systems don’t address the manufacturing features
discussed in this paper.

Much work has been published about utilizing the semantics of knowledge graphs to render
configurable presentations of resources. Fresnel [19] is an ontology that provides a vocabu-
lary to annotate resources, classes and properties with presentation knowledge. A browser
understanding this vocabulary can then visualize these entities accordingly. Rutledge et al. [20]
propose an extension of this Fresnel ontology that allows to define presentation knowledge
for provenance information as well. LESS [21] introduces on the other side a new template
language based on Smarty® to define the presentation of resources. A LESS processor is then
taking the designed template and applies it either to a specified RDF document or the result
set of a specified SPARQL query. Uduvudu [22] utilizes templates in a similar manner, but
additionally proposes algorithms for the automatic selection of templates based on the input
data. These solutions focus however exclusively on the visualization of entities in a knowledge
graph and thus, not all aspects of configuring an adaptive search interface are covered.

Linked Data Reactor (LD-R) [11] is a faceted explorer with a configurable and adaptive user
interface. It proposes the concept of scopes and configurations as outlined in more detail in
Section 3. LD-R enables the configuration of facets following these newly introduced concepts.
Moreover, it implements a mechanism to change it's UI components based on the persona of
a user. Nonetheless, LD-R exclusively focuses on faceted exploration. Furthermore, we argue
that simple perspectives are a more accessible mechanism for stakeholders in manufacturing
than user personas in LD-R. KG-Explorer [23] proposes similarly a configurable and adaptive

SPHP template engine - https://www.smarty.net
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search interface that mainly focuses on faceted exploration, but not exclusively. Some aspects
of the overall search interface can be adapted in a configuration file as well as templates can be
created for editorial pages about entities. However, the search behaviour and interface elements
can’t be customized for different user perspectives. Moreover, these systems don’t address the
other two manufacturing features discussed in this paper.

7. Conclusion and Future Work

KG-based exploratory search systems share a common set of features. In this paper, we identi-
fied and reported three particular features from interviews that are additionally relevant for
enabling exploratory search on manufacturing knowledge graphs. The adaptability of the search
system to multiple (engineering) perspectives is one of these features. Moreover, the visibility of
provenance information supports stakeholders in manufacturing in their investigative work.
Finally, browsing deep hierarchical structures of containment relationships is a frequent task on
manufacturing knowledge graphs.

We presented an adaptive and configurable exploratory search system, which implements
solutions to these features among others. A new scope component representing perspectives was
introduced to allow the multiperspectival configuration of visualizations as well as the underlying
search system. The visibility of provenance details was addressed by passing information about
the named graphs for each statement to the corresponding Ul components and hence, enabling
the implementation of Ul components that visualize this knowledge. The requirement of
browsing deep hierarchies was addressed with the implementation of a simple tree view (as
known from Protegé for example) in combination with info boxes.

A small-scale evaluation of our system showed the usefulness of the implemented features
for participants for completing their search tasks, with the exception for the tree view and
memorization feature. Participants were overburdened by our current design of the tree view.
Moreover, our implemented memorization feature was mainly ignored by participants in favor
of maintaining multiple browser tabs. Overall, the participants were able to present a reasonable
solution for their search tasks.

Hence, as future work we want to improve on the tree view for browsing deep hierarchies.
Furthermore, we want to make our rendering engine compatible with RDF-star [13], due to it's
increasing popularity. Eventually, we aim to evaluate the improved system on the OntoTrans
use case (UC1) with a larger number of participants.
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