
Optimization of Kleene Closure Regular Path Query
Processing Based on Node Clustered Index
Lulu Yang1, Tenglong Ren1, Xiaowang Zhang1,2,∗, Fan Feng1 and Guopeng Zheng1

1 College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
2 Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China

Abstract
The 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑝𝑎𝑡ℎ 𝑞𝑢𝑒𝑟𝑦 (RPQ) consisting of Kleene closure (∗) is the most complex and difficult to handle
due to the infinite recursion of Kleene closure. The infinite recursive process of Kleene closure can
be preprocessed. However, the current optimization methods are less concerned with reducing query
time through preprocessing. In this paper, we propose Node Clustered Index (NCI), and generating
NCI in the preprocessing can solve the reachability problem on graphs. Moreover, we design a Kleene
closure pattern tree decomposition algorithm, which combines with selective design to generate locally
optimal query plans. Experimental results show that NCI can largely optimize Kleene closure regular
path queries, and the RDF data sizes have little impact on query efficiency.

Keywords
SPARQL, RPQ, Kleene Closure, Node Clustered Index

1. Introduction

Kleene closure regular path queries have higher expressiveness than ordinary regular path
queries. In real life, RPQ has been used in many fields, such as friendships in social networks,
signalling pathways in protein interaction networks, and connections between two different
organisms in bioinformatics. Besides the methods [1, 3] based on automata, there are also
methods [2, 4, 5, 6] based on path index to optimize Kleene closure regular path queries. The
representative work [5] is to use the landmark index to label constrained accessibility query,
which calculates the accessibility information between all individual nodes and landmarks.
Such work pays little attention to the infinitely recursive nature of Kleene closure. The tree
structure proposed in work [2] solves the infinite recursion problem of Kleene closure, but
its tree structure stores irrelevant nodes on the path, and it takes time to traverse the tree
structure during query execution. Our work is optimized based on [2], and a new data structure
is proposed, which directly clusters the path results and reduces the storage of unrelated nodes
to optimize time and space.

In order to solve the problem of infinite recursion of Kleene closure in RPQ, we designed the
preprocessing storage structure, and the system architecture is shown in Fig. 1. The contributions
of this paper are as follows:

ISWC’22: The 21th International Semantic Web Conference, October 23–27, 2022, Hangzhou
∗Corresponding author.
Envelope-Open luluyang@tju.edu.cn (L. Yang); tenglongren@tju.edu.cn (T. Ren); xiaowangzhang@tju.edu.cn (X. Zhang);
2119216025@tju.edu.cn (F. Feng); guopengzheng@tju.edu.cn (G. Zheng)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:luluyang@tju.edu.cn
mailto:tenglongren@tju.edu.cn
mailto:xiaowangzhang@tju.edu.cn
mailto:2119216025@tju.edu.cn
mailto:guopengzheng@tju.edu.cn
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

– We propose a new type of node clustered index (NCI). The NCI is built in the data
preprocessing, mainly to store the results of queries with Kleene closure in the form of
clusters.

– We design a regular expression decomposition algorithm, which can decompose complex
regular expressions into ternary trees in units of Kleene closure.

– We propose a selective design to optimize the query execution.

RDF Data Preprocessor

Query Parser

Query Executor

SPARQL

.

HDFS

Node Clustered Index

Node Clustered Index Generation
Algorithm

RDF

Value
(subject,
object)

Key
(predicate)

p1 … pn

p1 p1 p1

p1

Initial NodeInitial NodeTerminating NodeIntermediate Node

p1 … pn

pn

p1

…

(p1/(p4/p2)*/p3)*

null nullp1/(p4/p2)*/p3

p1 p3p4/p2

Kleene Closure Pattern Tree
Decomposition Algorithm

p4/p2p1 p3

p1/(p4/p2)*/p3

⋈

Selective Design

1

2

3

4

5

6

1

2

3

4

⋈

Result
5

Figure 1: System Architecture. The RDF Data Preprocessor outputs the NCI through the Node
Clustered Index Generation Algorithm. The Query Parser outputs the regular expression pattern tree
through the Kleene Closure Pattern Tree Decomposition Algorithm. The Query Executor combines
selective design to parse the pattern tree from the bottom up. The specific problem is identified when
the system cannot handle the query correctly.

2. Query Optimization

2.1. Node Clustered Index

The NCI is a data storage method, and the specific details depend on its implementation. In
short, the NCI can cluster the query results of the predicate (or expression) consisting of the
Kleene closure. Algorithm 1 demonstrates the NCI generation process.

Taking the predicate 𝑘𝑛𝑜𝑤𝑠 as an example, the specific process of the NCI generation algorithm
is as follows:

1. Get the subject-object table (value) of the current predicate 𝑘𝑛𝑜𝑤𝑠 (key) based on key-value
storage.

2. Get the starting point table and the ending point table of the node cluster, where the
starting points refer to the subject that does not appear in the object column, and the
ending points refer to the object that does not appear in the subject column.

3. Traverse the starting point table to get the object corresponding to the current starting
point (subject), take this object as the connection point, and carry out the self-join of the
subject-object table until the object exists in the ending point table. Save all objects, and
we can get the NCI with this starting point as the core.

4. Repeat step 3 until the starting points are traversed.

The result of the predicate 𝑘𝑛𝑜𝑤𝑠 consisting of Kleene closure can be aggregated data (the set
of nodes on the path) through Algorithm 1. When we query (𝑘𝑛𝑜𝑤𝑠)∗, the system returns the
set of results directly.

2.2. Query Plan Generation

The query executor optimizes queries by parsing the pattern tree of the Kleene Closure Pattern
Tree Generation Algorithm combined with the Selective Design to generate the query plan from
the bottom up.

2.2.1. Kleene Closure Pattern Tree Decomposition Algorithm

If the complex(nested) Kleene closure query is directly queried as a whole, it will undoubtedly
cost much time due to the infinite recursion of Kleene closure. Therefore, we propose a unique
Kleene closure pattern tree decomposition algorithm.
The basic idea is to decompose the expression consisting of Kleene closure as a unit and

decompose three leaf nodes: 𝑝𝑟𝑒𝑓 𝑖𝑥, 𝑖𝑛𝑓 𝑖𝑥, and 𝑝𝑜𝑠𝑡𝑓 𝑖𝑥, as shown in the Query Parser section of
Fig. 1. The 𝑖𝑛𝑓 𝑖𝑥 refers to the string modified by the current Kleene closure, the 𝑝𝑟𝑒𝑓 𝑖𝑥 refers to
the string before the current Kleene closure unit, and the 𝑝𝑜𝑠𝑡𝑓 𝑖𝑥 refers to the string located
after the current Kleene closure unit. The algorithm is a recursive process until there is no
expression consisting of Kleene closure in the leaf nodes. Finally, we can get a complete pattern
tree.

Algorithm 1 Node Clustered Index Generation Algorithm
Input: 𝑒𝑥𝑝𝑒𝑟;
Output: 𝑛𝑐𝑖𝑆𝑒𝑡;
1: 𝑘𝑒𝑦𝑉 𝑎𝑙𝑢𝑒𝑇 𝑎𝑏𝑙𝑒, 𝑠𝑡𝑎𝑟 𝑡𝑃𝑜𝑖𝑛𝑡𝑆𝑒𝑡, 𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡𝑆𝑒𝑡, 𝑛𝑐𝑖𝑆𝑒𝑡 , 𝑖𝑛𝑡𝑒𝑟𝑆𝑒𝑡 ← ∅;
2: 𝑘𝑒𝑦𝑉 𝑎𝑙𝑢𝑒𝑇 𝑎𝑏𝑙𝑒 = 𝑔𝑒𝑡𝐾𝑒𝑦𝑉 𝑎𝑙𝑢𝑒(𝑒𝑥𝑝𝑒𝑟);
3: Separate 𝑘𝑒𝑦𝑉 𝑎𝑙𝑢𝑒𝑇 𝑎𝑏𝑙𝑒 to get 𝑘𝑒𝑦𝑆𝑒𝑡, 𝑣𝑎𝑙𝑢𝑒𝑆𝑒𝑡;
4: 𝑠𝑡𝑎𝑟 𝑡𝑃𝑜𝑖𝑛𝑡𝑆𝑒𝑡 = 𝑘𝑒𝑦𝑆𝑒𝑡 − 𝑣𝑎𝑙𝑢𝑒𝑆𝑒𝑡;
5: 𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡𝑆𝑒𝑡 = 𝑣𝑎𝑙𝑢𝑒𝑆𝑒𝑡 − 𝑘𝑒𝑦𝑆𝑒𝑡;
6: for all 𝑠𝑡𝑎𝑟 𝑡𝑃𝑜𝑖𝑛𝑡 ∈ 𝑠𝑡𝑎𝑟 𝑡𝑃𝑜𝑖𝑛𝑡𝑆𝑒𝑡 do
7: 𝑖𝑛𝑡𝑒𝑟𝑆𝑒𝑡 ← ∅;
8: 𝑣𝑎𝑙𝑢𝑒𝑃𝑜𝑖𝑛𝑡 = 𝑘𝑒𝑦𝑉 𝑎𝑙𝑢𝑒𝑇 𝑎𝑏𝑙𝑒(𝑠𝑡𝑎𝑟 𝑡𝑃𝑜𝑖𝑛𝑡) ;
9: 𝑖𝑛𝑡𝑒𝑟𝑆𝑒𝑡.𝑎𝑑𝑑(𝑣𝑎𝑙𝑢𝑒𝑃𝑜𝑖𝑛𝑡);
10: 𝑖𝑛𝑡𝑒𝑟𝑁 𝑜𝑑𝑒 = 𝑣𝑎𝑙𝑢𝑒𝑃𝑜𝑖𝑛𝑡;
11: while true do
12: 𝑖𝑛𝑡𝑒𝑟𝑁 𝑜𝑑𝑒 = 𝑆𝐸𝐿𝐹𝐽𝑂𝐼𝑁 (𝑘𝑒𝑦𝑉 𝑎𝑙𝑢𝑒𝑇 𝑎𝑏𝑙𝑒, 𝑖𝑛𝑡𝑒𝑟𝑁 𝑜𝑑𝑒);
13: 𝑖𝑛𝑡𝑒𝑟𝑆𝑒𝑡.𝑎𝑑𝑑(𝑖𝑛𝑡𝑒𝑟𝑁 𝑜𝑑𝑒);
14: if 𝑖𝑛𝑡𝑒𝑟𝑁 𝑜𝑑𝑒 ∈ 𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡𝑆𝑒𝑡 then
15: 𝑏𝑟𝑒𝑎𝑘;
16: end if
17: end while
18: 𝑛𝑐𝑖𝑆𝑒𝑡.𝑎𝑑𝑑(𝑖𝑛𝑡𝑒𝑟𝑆𝑒𝑡);
19: end for
20: return 𝑛𝑐𝑖𝑆𝑒𝑡.

2.2.2. Selective Design

We use the bottom-up scheme for the parsed pattern tree to join the results. The result of the
root node is related to the three-leaf nodes so that we can consider the optimal join order locally.
We design equations 1 and 2 to determine the join order of 𝑝𝑟𝑒𝑓 𝑖𝑥, 𝑝𝑜𝑠𝑡𝑓 𝑖𝑥, and 𝑖𝑛𝑓 𝑖𝑥.

𝑠𝑒𝑙(𝑝𝑟𝑒𝑓 𝑖𝑥) =
𝑇 (𝑝𝑟𝑒𝑓 𝑖𝑥)
𝑇 (𝑖𝑛𝑓 𝑖𝑥)

(1)

𝑠𝑒𝑙(𝑝𝑜𝑠𝑡𝑓 𝑖𝑥) =
𝑇 (𝑝𝑜𝑠𝑡𝑓 𝑖𝑥)
𝑇 (𝑖𝑛𝑓 𝑖𝑥)

(2)

Where 𝑠𝑒𝑙(⋅) denotes the selection degree of the current leaf node, and 𝑇 (⋅) denotes the current
leaf node table size. The specific implementation is to compare 𝑠𝑒𝑙(𝑝𝑜𝑠𝑡𝑓 𝑖𝑥), 𝑠𝑒𝑙(𝑝𝑟𝑒𝑓 𝑖𝑥), and
who is the smallest. The benefits of this selective design are as follows:

1. In the case of 0 matches, the number of joins between the two tables is minimal.
2. In the case of full matches, the maximum amount of useful data in 𝑖𝑛𝑓 𝑖𝑥 will be filtered

out while minimizing the number of joins.

3. Experiment and Evaluation

We ran experiments on Intel (R) Xeon (R) CPU E5-4607 v2@2.60GHz, 4 cores, and 62 GB
RAM. We used the dataset (LUBM1) to compare the SPARQL query system (JENA, Blazegraph,
Virtuoso) on the query set2 (covering various types3 of Kleene closures). Also, to evaluate the
system’s scalability, we compared it with different data sizes (10, 100, 200) of LUBM. The query
results are shown in Fig. 2, and our proposed system is NCI_RPQ.

!

"

#

$

%

&

'

(

)

*

"!

""

+" +# +$ +% +& +' +(+) +*

!"#$%&

!

#

%

'

)

"!

"#

"%

"'

")

#!

##

+" +# +$ +% +& +' +(+) +*

!"#$%&&

,-./01+ 2345 6789:;<; =>5?3@85AB

!

&

"!

"&

#!

#&

$!

$&

%!

%&

&!

&&

+" +# +$ +% +& +' +(+) +*

!"#$'&&

Figure 2: Query time (s) for queries on different data sizes.

The experimental results show that the efficiency of NCI_RPQ is less affected by the data
sizes, especially compared with Jena, and the average query efficiency of NCI_RPQ is increased
by at least 8.2 times when querying Q2-Q6, which is all due to NCI. In addition, compared to all
other systems, the NCI_RPQ can handle various types of Kleene closure regular path queries
due to the decomposition algorithm’s strong applicability.

4. Conclusion

Our methods solve the problem of infinite recursion of Kleene closure in RPQ, and has great
scientific research value. However, our work is still inadequate, and further optimization of
NCI storage space and selective design based on deep learning are subsequently considered.

References

[1] Arroyuelo D , Hogan A , Navarro G , et al. Time- and Space-Efficient Regular Path Queries
on Graphs[J]. 2021.

[2] Fan Feng, Optimization of Kleene Closure Regular Path Query Based on Tree Structure[Mas-
ter Thesis], Tianjin University, 2022.

[3] Yakovets N , Godfrey P , Gryz J . Query Planning for Evaluating SPARQL Property Paths[C]//
International Conference on Management of Data. ACM, 2016.

1http://swat.cse.lehigh.edu/projects/lubm
2https://github.com/luer9/RPQ_QUERY/blob/main/RPQ_QUERY.md
3Four types: general (Q1), single predicate (Q2, Q3), expression (Q4, Q5, Q6), complex (Q7, Q8, Q9).

[4] Liu B , Wang X , Liu P , et al. PAIRPQ: An Efficient Path Index for Regular Path Queries on
Knowledge Graphs[J]. Springer, Cham, 2021.

[5] Valstar L D J , Fletcher G H L , Yoshida Y . Landmark Indexing for Evaluation of Label-
Constrained Reachability Queries[C]// the 2017 ACM International Conference. ACM, 2017.

[6] Fletcher G H L , Peters J , Poulovassilis A . Efficient regular path query evaluation using
path indexes[C]// Extending Database Technology. OpenProceedings.org, 2016.

	1 Introduction
	2 Query Optimization
	2.1 Node Clustered Index
	2.2 Query Plan Generation
	2.2.1 Kleene Closure Pattern Tree Decomposition Algorithm
	2.2.2 Selective Design

	3 Experiment and Evaluation
	4 Conclusion

