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Abstract
Query answering in Data Integration/Exchange has been extensively studied using two different ap-
proaches of reasoning: forward-chaining (or chase) algorithms and backward-chaining algorithms (or
query rewriting). These two approaches have been explored separately in terms of algorithms, practical
implementations, and benchmarks. While there are numerous available comparisons within the same
approach, there is no framework to compare solutions across both approaches. In this paper, we demon-
strate ForBackBench, a framework that provides the web interface and infrastructure for cross-approach
comparisons, and automated graph plotting, containing a variety of tools that help explore the differences
between chasing and query-rewriting.

Keywords
Query answering, Query rewriting, Chase, Data integration, OBDA, Dependencies, Benchmark.

1. Introduction

In Data Integration (DI) and Data Exchange (DE) heterogeneous data sources are mapped to a
mediated schema or an ontology via schema-mappings. There are different formats for these
mappings but both these and further database constraints, or ontology axioms, can be captured
using implications known as tuple-generating dependencies (TGDs). Themost common problem
in these settings is how to answer a query posed over the mediating schema by using data in
the data sources while taking the constraints into account [1, 2].

Data Exchange (DE) focuses on populating a centralized warehouse, to be made available for
querying, with source data, via running the chase algorithm. This setting usually considers:
a set of source schemas and a target centralized schema, source-to-target TGDs that express
mappings between the source and the target, target TGDs that express dependencies on the
target schema, and also a query on the target schema [2, 3].
Data Integration (DI), or virtual integration, on the other hand is usually associated with

query answering via query rewriting. In DI and related areas such as Ontology Mediated Query
Answering (OMQA) or Ontology Based Data Access (OBDA), backward-chaining algorithms
start from the query and process the ontology axioms backwards to generate a query rewriting
that incorporates the ontology entailments. Depending on the complexity of the mapping
language, the rewriting can be unfolded and executed over the source schema directly. OBDA
usually considers the DL-Lite𝑅 family of description logics and the associated OWL2 QL pro-
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file [4]. In Description Logic terms, this setting involves a DL-Lite T-Box representing the target
ontology, an (optional) A-Box containing data, a query and mappings between the data sources
and the target ontology [5].
Both areas have seen a rise in algorithms, practical implementations, and benchmarks. We

have developed ForBackBench, a single framework to provide comparison and analysis for
systems across both forward- and backward-chaining (for the scenarios that both approaches
support/terminate). Providing a unified framework allows us to investigate systems’ limits and
their interplay. We also make it easier to answer a query by combining algorithms from both
approaches, for example, using the chase on the source-to-target mappings (not the data) to
produce an equivalent setting with chased mappings and without target dependencies, then
using a query rewriting algorithm to answer the query over the new source-to-target mappings
(see [6]). We are complementary to other recent frameworks, such as the GTFS-Madrid-Bench
framework [7] which addresses the problem of heterogeneity and different formats of the
data sources, benchmarking only backward-chaining systems and not considering the target
reasoning part of the problem. In this paper, we present our framework infrastructure, set of
tools, and functionalities via a user web interface. For the full details see [6].

2. Framework Overview

ForBackBench comes with a set of common query-answering systems, as well as common
experimental scenarios, and also a set of integrated converter, generation and management tools
to support the evaluation and comparison process, allowing for automated testing, plotting and
easy future extension. It supports a variety of languages: TGDs and queries in ChaseBench [3] or
Rulewerk [8] formats, OWL, RDF, OBDA-mappings [9], SPARQL, and SQL. The ForBackBench
framework is made available as an open-source project1. Figure 1 presents a high-level overview
of our framework architecture. It consists of six main components, subsequently explained.
Scenarios Conversion Engine. This component of the framework is responsible for pro-
ducing a cross-approach scenario from uploaded forward- or backward-chaining scenarios or
pre-existing ones taken form literature (see [6]). It can parse and recognise ChaseBench or
OBDA scenarios. ChaseBench scenarios usually come with TGD dependencies and queries in
ChaseBench or SQL format, while OBDA scenarios come with OWL ontologies, SPARQL queries
and potentially OBDA mappings. The engine then translates the given scenario to scenarios
containing all necessary files for all types of systems; this universal set of files and inputs is
called a cross-approach scenario. A theoretical basis for our translation between DL-Lite𝑅 and
TGDs is developed in [6].
Data/Mapping Generator. If mappings are not being given as part of the scenario, we ran-
domly generate source-to-target TGDs and then use the source-to-target dependencies to
translate to OBDA-mappings. Our generated source-to-target dependencies will be either very
simple (one-to-one) mappings, or they will be mapping a join query over the sources to a target
ontology concept or role (GAV), or a source table to a join query over the target ontology/schema
(LAV). As well, if not given, we generate data. The data generator produces CSV data files for
the source schema with four different dataset sizes (small, medium, large, and very large ranging

1https://github.com/georgeKon/ForBackBench
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Figure 1: ForBackBench Framework Architecture

from 500 to 1, 000, 000 tuples per table). The output of our conversion engine and our generator
is a cross-approach scenario that contains dependencies (in TGD/ChaseBench, RLS, or OWL
formats), queries (SPARQL, SQL, ChaseBench), source/target schema (SQL, ChaseBench), OBDA
Mappings, and data in CSV files, which is stored in Data Storage. Our choice to support the
OBDA-mapping language is driven by our intention to first include the Ontop system [9] in
our framework, which is universally considered as one of the most mature systems. We are
currently working on extending our framework to support other mapping languages such as
R2RML. Our translators and converters can also be used separately as standalone jar files from
our repository2 which contains full description of their functionality and usage.
Evaluation Component. The evaluation component is responsible for automating the process
of running end-to-end evaluation and comparisons for query-answering systems on the cross-
approach scenarios generated by the conversion engine. The execution component in Fig. 1 is
the collection of scripts dedicated to this task. The process starts by selecting a scenario and
some of the integrated query-answering systems. First, it runs the “Experiment Run” script,
which will invoke the “Database Configuration” script to build a temporary database and then
load the data from CSV files into this database. Second, for each query in the scenario, it
invokes the “Query Run” script, which runs experiments repeatedly up to the number of times
selected. Each run will compute intermediate times as well as the entire time each system
takes and store the those performance measurements as well as query results in CSV files.
The framework integrates numerous systems from both reasoning approaches (RDFox [10],
Rulewerk [8], Llunatic [11], Rapid [12], IQAROS [13], Graal [14], GQR [15], OntopR, Ontop[9],
and ChaseGQR [16]).
Data Storage. This component contains the data for each scenario and the results of each
experiment as CSV files as well as the PostgreSQL database that is created for the scenario
during each experiment. In addition, it stores all files for the cross-approach scenarios.

2https://github.com/georgeKon/ForBackBench/tree/main/utilityTools
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Visualization Component. We offer python scripts that take experiment results as CSV files
and generate a graph with systems’ performance. Each system’s performance is depicted with a
bar whose different segments are coloured differently. The entire bar shows end-to-end time but
its subparts show fine-grained times for loading/pre-processing, chasing, rewriting, converting
or executing.
Graphical User Interface. ForBackBench provides a user-friendly web interface with two
main functionalities. The first is uploading a ChaseBench or OBDA scenario. This will trigger
the scenario conversion engine to produce a cross-approach scenario with appropriate data and
mapping choices. The user simply has to upload the dependency files (TGDs or OWL), schema
files in ChaseBench format, and queries (ChaseBench or SPARQL). The web interface offers a
full guide about all required files and their naming scheme. The second function is running
experiments by selecting the parameters: the scenario, the data size, the schemamapping format,
the number of times for running the experiment, and the systems to be compared. Then, after
the experiment is finished, the user can explore the results as a graph or download a full results’
folder as a zip file that includes the CSV files with all performance measurements and the plotted
graph. A demo video is available for the web interface on: https://youtu.be/gZ0iRvzuSZI.

3. Implementation Details

The ForBackBench framework is implemented using JavaScript, shell script, PHP and Java.
JavaScript supports the OBDA converter API, and is also is used to build most of the folder
structure for OBDA scenarios. Java supports the OWL API and ChaseBench API, which we
use to implement most of our translators of ChaseBench scenarios. For timing scripts, the
framework uses the date command to capture the accurate fine-grained timings for each process
part for each system. The web interface is implemented using PHP that supports running shell
commands in the background and returning results.

4. Demonstration

At the conference, we will demonstrate both ChaseBench and OBDA scenarios. The attendees
will be able to interact with the framework by uploading a scenario and generating the data
for it. As well, the attendees will be able to run an experiment on one of the pre-integrated
scenarios or the uploaded scenario, with some or all query-answering systems. Then, the
attendees can explore the results as a graph or CSV files. Running our larger experiments on
full scenarios might take hours to finish; thus, for easy interaction with the framework, we
will provide simplified versions of the pre-existing ChaseBench and OBDA scenarios for the
attendees to interact with and explore immediate results.
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