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Abstract
Steganographic techniques and covert channels are becoming exploited by a wide-range of malware
to avoid detection and bypass network security tools. With the ubiquitous diffusion of IoT nodes, such
offensive schemes are expected to be used to exfiltrate data or to covertly orchestrate botnets composed
of resource-constrained nodes (e.g., as it happens in Mirai). Therefore, in this paper, we present a machine
learning technique for the detection of network covert channels targeting the TTL field of IPv4 datagrams.
Specifically, we propose to use Autoencoders to reveal anomalous traffic behaviors. The experimental
evaluation performed over realistic traffic traces showcases the effectiveness of our approach.
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1. Introduction

The Internet of Things (IoT) paradigm allows to create advanced services able to interact with
the physical world and to remotely operate large-scale infrastructures. As a result, the number
of applications taking advantage of IoT technologies is now almost unbounded. For instance,
cost-effective sensors and devices are used for entertainment and health purposes, to access and
manage industrial control systems, as well as to automatize homes and buildings. Unfortunately,
the tight coupling between devices and physical entities, the resource-constrained nature of
many nodes, and the lack of rigorous development or configuration processes, are at the basis
of countless security and privacy flaws [1].

Despite IoT nodes are often considered simple devices, they can be used to implement effective
threats. As an example, the Mirai malware allows to create a large-scale botnet of devices with
limited computing and connectivity resources, which has been used to launch Distributed Denial
of Service (DDoS) attacks against many international organizations and sensitive targets [2].
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In addition, IoT nodes can be enumerated to infer details on the physical deployment [3] and
their traffic can be inspected to implement various side-channel-based techniques or to conduct
reconnaissance campaigns [4]. Therefore, a major effort is devoted to make IoT ecosystems
more secure, but this could be partially voided by the recent trend of developing malware able
to remain undetected and bypass classical network security mechanisms. This new class of
threats takes advantage of various information hiding and steganographic techniques to conceal
malicious payloads in innocent-looking software assets, retrieve additional configuration files
without being noticed, or covertly exfiltrate hidden information [5]. Among the various attack
mechanisms, the adoption of network covert channels, i.e., cloaked and parasitic communication
paths nested within legitimate traffic flows, is gaining momentum. Specifically, network covert
channels can be exploited to establish Command & Control (C&C) communications, as well
as to bypass intrusion detection/prevention systems and firewalls for stealthily exchange vast
volumes of personal data [5, 4]. A recent example of attack using a network covert channel is
Sunburst, which hides commands in HTTP traffic1. Due to the ubiquitous availability of devices
always connected to the Internet, their intrinsic interaction with sensitive data, as well as several
design flaws and limitations, completely assessing the security of IoT deployments requires also
to consider threats endowed with network covert channels capabilities. To develop suitable
mitigation techniques, machine learning approaches demonstrated to be effective for detecting
a multitude of network attacks and to implement general intrusion detection mechanisms [6].
Unfortunately, countermeasures against network covert channels are poorly-generalizable, since
each hiding mechanism and network protocol have specific traits and behaviors [7]. For instance,
using some form of AI to reveal a channel hidden within DNS traffic [8] requires a complete
different inspection mechanism and metrics compared to the case of parasitic communications
targeting IPv6 conversations [9]. As a result, the literature abounds of attack-specific detection
methodologies and working towards a unique framework is still an open research problem
(see, e.g., [10] for a recent survey on the topic). A different case concerns the detection of
timing channels, which are created by encoding information in temporal statistics of network
traffic. To this aim, the secret information is usually hidden within the inter-packet time or in
the throughput characterizing a specific stream or network conversation [5, 7]. Owing to the
protocol-agnostic trait of timing protocols, several works using machine learning have been
proposed [11] even by exploiting techniques originally introduced for image processing [12].

Therefore, in this work we address the problem of detecting network covert channels targeting
the TTL field of IPv4 datagrams. In fact, the resource-constrained nature of IoT devices, including
the use of “lean” TCP/IP protocol stacks to tame complexity, prevent malware to implement
sophisticated covert channels or computing-intensive network steganography algorithms. To
develop our detection methods, we take advantage of autoencoders, which are neural networks
where the target of the network is the data itself. Autoencoders allow to reduce dimensionality
and to learn efficient encoding, whereas they are a convenient choice when in absence of a
labeled dataset. This is of prime importance when addressing malware exploiting network covert
channels, since it often remains undetected or undocumented until major reverse engineering
or forensics investigations [13]. As regards prior works considering covert channels targeting

1An updated list of attacks leveraging information hiding, steganography, and covert channels observed “in the
wild” is available online at: https://github.com/lucacav/steg-in-the-wild [Last Accessed: June 2022].
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Figure 1: Attack model considering a malware sending data towards a remote command and control
facility via a network covert channel created within the TTL field of IPv4 traffic.

IoT scenarios, the literature mainly focuses on timing channels, for instance to detect cloaked
communications in SCADA applications [14] or in the Constrained Application Protocol [15].

Summing up, the contributions of this work are: the design of a machine-learning-capable
approach for detecting covert channels targeting IoT ecosystems, and a performance evaluation
campaign based on realistic traffic traces commonly used in the literature. Since countermeasures
could be also deployed at the border of the network in nodes with limited capabilities (e.g.,
home gateways) emphasis has been put on the footprint required by the proposed approach.

The remainder of the paper is structured as follows. Section 2 provides details on the consid-
ered attack model, Section 3 introduces our approach to detect covert channels targeting the
TTL of IPv4 datagrams, and Section 4 showcases numerical results. Finally, Section 5 concludes
the paper and outlines possible future research directions.

2. Attack Model and Design of the Covert Channel

This section discusses the attack model taking advantage of a network covert channel. Figure
1 showcases the general reference scenario. Specifically, we consider an attacker able to take
control of one or more IoT nodes, for instance by dropping a malicious payload via a phishing
campaign [1]. The infected device will then create a network covert channel to exfiltrate data
towards a remote C&C server or to exchange commands with the attacker, e.g., to configure
a backdoor or operate a botnet. Relying upon a network covert channel allows to bypass a
firewall or specific security policies enforced by a middlebox, such as a home gateway.

Even if the literature abounds of techniques for creating cloaked communication paths within
network flows and real-world threats taking advantage of information hiding are multiplying
[5, 7, 16], the resource-limited nature of IoT nodes poses constraints on the complexity of the
covert channel. As a consequence, the embedding mechanism should be simple in order to
not disclose the presence of the malware due to perceptible lags or anomalous depletion of
batteries. At the same time, since IoT traffic often requires some form of Quality of Experience
(e.g., to not postpone the execution of commands sent by the user), traffic alterations and the
introduction of additional delays should be limited. Therefore, we consider a malware cloaking
data within the TTL field of the IPv4 header [7]. In more detail, the TTL is manipulated to



implement a storage network covert channel and transport arbitrary information. Due to the
varying nature of the TTL and to not appear suspicious, the malware should not directly write
the secret data in the field [17]. Rather, it can encode the bits 1 and 0 by increasing or decreasing
the observed TTL of a suitable threshold or by using most common values as “high” and “low”
signals. Finding proper TTL values is not trivial, since their difference should be ample enough
to absorb fluctuations caused by alterations of the routing and to prevent decoding errors,
while not reducing the stealthiness of the channel. To design the covert channel, the attacker
usually investigates the targeted network to understand “clean” traffic conditions and adapt
the hiding mechanism. To tune the channel, we considered the collection of IoT traffic made
available in [3]. As an example, we showcase results for the 24-hour slice of data captured from
September 22, 2016 at 16:00 to September 23, 2016 at 16:00, CEST2. Without loss of generality
and to prevent burdening results, we removed IPv6, ICMP, DNS and NTP conversations, in
addition to multicast/broadcast traffic. Figure 2 depicts heatmaps for the collected TTL values.
As depicted in Figure 2a, the values observed for the TTL are clusterized, especially in the
32− 64 and 208− 224 ranges. This requires the attacker to encode information without using
values never observed in normal conditions. Yet, traffic conditions are not static, hence, we
refined our analysis by resetting the observed values each hour. Figure 2b portraits results.
As shown, some values of the TTL are always present in the traffic (e.g., those around 48),
whereas others have an intermittent behavior. For instance, datagrams with a TTL equal to 128
are present only for 3 hours (i.e., from 13-th to the 16-th hours). This puts constraints on the
temporal location of channels using a TTL equal to 128 as well as on their duration.

In general, channels targeting the TTL should alter datagrams in a limited manner in order to
avoid macroscopic per-flow signatures [17]. Moreover, TTL values highly depend on the type
of nodes, hosts and appliances exchanging traffic through the network. In fact, Android and
iOS devices as well as Linux hosts generate traffic with a default TTL of 64, whereas Windows
nodes use a default TTL of 128 [18]. Thus another important trade off should aim at avoiding
to make the channel detectable via simple host/OS fingerprinting mechanism

3. Detecting Covert Channels With Autoencoders

This section describes the deep learning-based approach adopted to identify the presence
of covert channels within traffic flows. In our scenario, the detector takes the form of an
unsupervised deep neural network. The main benefit of our approach is the possibility of the
model to raise alarms also on never seen attacks: this is a frequent case when dealing with
covert channels, since they are often undocumented and unknown a priori. Moreover, this
solution allows for coping with the lack of labeled data issue, typical of our application scenario.

Specifically, our solution allows for learning a neural encoder-decoder network aiming
at compressing the input data (represented by metrics computed over the traffic generated
by the IoT network) within a latent space, which is then used to reconstruct the original
information. Here, the main idea is that the legitimate input data should be slightly affected by
the encoding/decoding procedures performed by the model, therefore the original distributions

2Data collected for IEEE TMC 2018, University of New South Wales, Sydney. Available online at: https://iotanalytics.
unsw.edu.au/iottraces.html [Last Accessed: June 2022].
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(a) Heatmap computed over the entire dataset

0 16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
5

TTL

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

[h
ou

r]

0

20

40

60

80

100

(b) Heatmap computed on 1-hour long slices

Figure 2: Various heatmaps computed over a 24h traffic trace.

D
ense

Layer

D
ense

Layer

Input Layer

D
ense

Layer (E
-D

L
0 )

D
ense

Layer (E
-D

L
k )

Encoder

Decoder

skip connection

skip connection

concatenation

… …

latent space

Figure 3: Neural architecture (Sparse Autoencoder) used to perform the detection of covert channels
targeting the TTL of IPv4 traffic.

substantially remain unchanged after this process. By contrast, anomalous instances will exhibit
deviant values that can lead to failures in the input reconstruction.

Although the idea to use the reconstruction error as an anomaly score to identify deviant
behaviors is not new itself, the adoption of unsupervised techniques (and in particular of
autoencoder-based solutions) for detecting covert channels is quite unexplored [6, 11, 10].
Hence, the use of autoencoders [19, 20] represents an effective approach to the unsupervised
task of learning a compressed representation able to effectively summarize the main information
contained in the input data. In essence, it can be thought as a neural network whose aim consists
in yielding as output a duplicate (as close as possible) similar to the input data.

Figure 3 shows the considered neural architecture. As shown, the architecture is composed
of two main components, named Encoder and Decoder, respectively. Let 𝑥 = {𝑥1, . . . , 𝑥𝑁} be a



set of numeric features (in our scenario, a set of statistics computed on the network traffic flow
yielded in a time slot). The former subnet allows for mapping z = enc(x) the input data with a
latent space (encoding), whereas the second one maps the features extracted by the encoder
with the output y = dec(z) (decoding). Gradient descent is used to learn the model weights by
minimizing a suitable reconstruction loss. In this paper, we adopted the Mean Square Error, i.e.,
𝐿𝑜𝑠𝑠𝑀𝑆𝐸(𝑥) =

1
𝑁

∑︀
𝑖 ‖xi − yi‖2.

Notably, the architecture shown in Figure 3 exhibits two main differences with respect
to a standard encoder-decoder model: (i) Skip Connections are used to boost the predictive
performances of the model and to reduce the number of iterations required for the learning
algorithm convergence, and (ii) a hybrid approach including the usage of Sparse Dense Layers is
adopted to make the autoencoder more robust to noise, especially since attacks often exhibit
slight differences compared with normal behaviors. In more detail, the idea behind Skip
Connections is to “help” the learning phase of the decoder by providing as input to each layer
of the decoder both the previous and the correspondent encoder layer. As regard the use of
Sparse Dense Layers, this allows for yielding a wider number of discriminative features that
can be used to extract a more effective latent representation.

Figure 4 shows how the detection of covert channels targeting the TTL of IPv4 datagrams
is performed. Without loss of generality, we assume to monitor an infinite datastream, i.e.,
the traffic produced by the various IoT nodes continuously feeds our detection mechanism.
At pre-fixed time intervals (corresponding to a time slot in Figure 4), we compute a number
of statistics to describe the behavior of the TTL fields composing the aggregate traffic flow.
This operation can be performed without impacting on the overall traffic and by using limited
computing resources (see, e.g., the use of the extended Berkeley Packet Filter (eBPF) [9]). In
more detail, we compute metrics such as the min, average, max, different percentiles, etc.,
starting from TTL values gathered from the packets composing the inspected traffic aggregate.
First, an autoencoder, pretrained only against legitimate data flows, is used to reproduce the
statistics, then reconstruction error is computed for the current example as the MSE between 𝑥
and 𝑦. Finally, if the error is lesser than a given outlierness threshold, the current data are labeled
as “normal” and exploited to update the model, otherwise a warning is raised.

4. Performance Evaluation

In this section we present the performance of the approach based on autoencoders. Preliminary,
we discuss the used dataset, then we showcase numerical results.

4.1. Dataset Preparation

To evaluate the effectiveness of our approach for detecting network covert channels targeting
IoT ecosystems, we prepared an artificial dataset starting from the traffic traces made available in
[3]. In more detail, we used datasets containing traffic collected from September 22, 2016 at 16:00
to September 29, 2016 at 16:00, CEST. Similarly to the example of Section 2, we removed IPv6,
ICMP, DNS and NTP conversations as well as multicast/broadcast traffic. To avoid unwanted
signatures/fingerprints, we also removed traffic generated by non-IoT devices, such as mobile
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Figure 4: Detection mechanism used to reveal the presence of network covert channels.

phones and laptops. We then obtained a 1-week long dataset with an overall throughput in the
5− 36 kbit/s range, generated by 28 IoT endpoints, such as speakers, lights, cameras, and hubs.

To implement the considered attack template in a realistic manner, we modeled the presence
of a threat tampering a single IoT device. As an example, the attacker could gain access to
the assets of the victim via phishing or by exploiting some ad-hoc CVEs3. In our scenario,
we considered a malicious software targeting the Dropcam camera, which has been used to
send/exfiltrate sensitive data towards a remote C&C facility. To have a dataset containing fair
amounts of “legitimate” and cloaked conversations, we assumed that the IoT device has been
tampered on September 27, thus the Dropcam has been under control of the attacker for 3 days.

To create the various storage network covert channels, we used the tool available in [21],
which allows to directly rewrite the traffic captures and implement realistic attack conditions.
As discussed in Section 2, to not make the detection trivial, we encoded bits 1 and 0 in TTL
values equal to 64 and 100, respectively. Moreover, we randomly interleaved packets containing
hidden data with legitimate/unaltered packets in order to prevent long bursts of manipulated
TTL values. In fact, the latter could reduce the stealthiness of the covert channel leading to
a trivial detection [17]. Such a behavior can be ascribed to an attacker switching the hidden
communication among two states (i.e., exfiltrate data and not manipulate traffic) to remain
unnoticed via elusive mechanisms. To avoid further statistical signatures, the secret data
transmitted over the covert channel has been modeled with randomly-generated strings: this
represents an attacker using some obfuscation technique, e.g., encryption or scrambling [22].
Concerning the volume of data transmitted within the covert channel, we modeled each day of
attack with a different template. Specifically, we considered the exfiltration of 69, 80, and 64
kbit of data. Such volumes can represent sensitive information like several username+password
pairs or configuration details of a specific IoT device or smart hub. Moreover, assuming covert
transmissions in the 64− 80 kbit range allowed to have an IoT node accounting for a variable
amount of steganographically-modified traffic. In more detail, the compromised IoT node

3List of CVEs targeting IoT nodes/devices maintained by MITRE. Available online at: https://cve.mitre.org/cgi-bin/
cvekey.cgi?keyword=iot [Last Accessed: June 2022].

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=iot
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=iot


manipulates the 18%, 1%, and 12% of the overall daily traffic, respectively.

4.2. Pre-processing, Parameters and Evaluation Metrics

To test our approach for revealing the presence of network covert channels within traffic
aggregates, we developed a prototype in Python based on the TensorFlow4 library. The traffic
dataset presented in Section 4.1 has been processed to obtain the following information: a
progressive timestamp, the number of incoming packets within a given time slot, the average
and median values of observed TTLs, the values of the 10𝑡ℎ, 25𝑡ℎ, 75𝑡ℎ and 90𝑡ℎ percentile,
minimum and maximum TTLs, as well as a label indicating the presence of the attack (i.e., for
testing purposes). Recalling that our approach exploits a “slotted” architecture (see Figure 4), in
this work we consider a time slot with a duration of 5 seconds.

The dataset has been divided in training and test sets by using a temporal split. Specifically:
(i) the data gathered in the first 96 hours only contains legitimate traffic and has been used for
the learning phase of the autoencoder, whereas (ii) the remaining instances compose the test
set. As a result, the training and the test set have 69, 116 and 51, 837 instances, respectively.
To normalize the input data feeding the model, a pre-processing phase has been performed. In
essence, a MinMax normalization has been used to map each feature in the range {−1, 1} in
order to improve the stability of the learning process.

As discussed in Section 3, the proposed model is a neural network composed of two subnets.
The Encoder has four fully-connected dense layers. Three layers have been instantiated with 32,
16, and 8 neurons and equipped with a ReLU (Rectified Linear Unit) activation function. The
fourth layer is the latent space and can be thought as a dense layer (shared between the encoder
and the decoder) including 4 neurons, and it is equipped with a ReLU activation function. The
Decoder is composed again of three fully-connected dense layers with the same dimensions and
activation function. Finally, the output layer is instantiated with the same size of the input, and
equipped with a Tanh activation function. This choice has been made since we want to yield an
output ranging in {−1, 1}. The model is trained over 16 epochs with a batch size of 16.

To assess the detection capabilities, we computed the following performance metrics. Let us
define 𝑇𝑃 as the number of positive cases correctly classified, 𝐹𝑃 as the number of negative
cases incorrectly classified as positive, 𝐹𝑁 as the number of positive cases incorrectly classified
as negative, and 𝑇𝑁 as the number of negative cases correctly classified. Then, we considered
the following metrics: the Accuracy, defined as the fraction of cases correctly classified, i.e.,

𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁 , the Precision and the Recall to measure the accuracy in identifying attacks and
avoiding false alarms, i.e., 𝑇𝑃

𝑇𝑃+𝐹𝑃 and 𝑇𝑃
𝑇𝑃+𝐹𝑁 , respectively. We also considered the F-Measure

to summarize the overall system performances as the harmonic mean of Precision and Recall.
Lastly, to perform experiments, we used a machine equipped with 32 Gb RAM, an Intel

i7-4790K CPU @4.00GHz and an 1Tb SSD disk drive.

4.3. Numerical Results

Since the outlierness threshold can influence the detection capability of the proposed approach,
we investigated its impact.

4TensorFlow machine learning library. Available online at: https://www.tensorflow.org/ [Last Accessed: June 2022].

https://www.tensorflow.org/


Table 1
Experimental results for different outlier thresholds. Values have been selected by computing the outlier
scores against the training set and by extracting the correspondent percentile values.

Threshold Values Accuracy Precision Recall F-Measure
0.040 - (90𝑡ℎ perc.) 0.872 0.729 0.991 0.840
0.055 - (95𝑡ℎ perc.) 0.901 0.791 0.964 0.869
0.126 - (99𝑡ℎ perc.) 0.910 0.937 0.786 0.855

As the autoencoder model is trained only against legitimate data (i.e., clean traffic produced
by IoT nodes), we computed the outlierness degree for each slot composing the training set.
We then selected as the anomaly threshold the values corresponding to the 90𝑡ℎ, 95𝑡ℎ and 99𝑡ℎ

percentiles. A detailed breakdown is depicted in Figure 5.
Table 1 reports experimental results obtained by taking into account different outlierness

thresholds computed over the training set. As shown, collected values exhibit an intuitive
behavior, i.e., when a more restrictive threshold is selected (99𝑡ℎ percentile), the approach
exhibits a good precision (∼ 94%), but a percentage of slots containing a network covert
channel is not correctly recognized. By contrast, a looser threshold value (90𝑡ℎ percentile)
allows to improve the probability of detection (∼ 99% of recall), but a higher number of false
alarms are raised. This can be mitigated by considering our mechanism as a first stage of a
more complex detection chain, which can trigger more resource-consuming approaches such as
deep packet inspection. Yet, the best setting is the one where the 95𝑡ℎ percentile is used, since it
guarantees the highest value in terms of F-Measure. This represents the best trade off between
probability of detecting the presence of a covert communication and false alarm rate.

Moreover, Figure 6 portraits the distribution of the outlierness degree for a window including
a marked number of compromised time slots. As it can be seen, the outlierness degree exhibits
higher values than the ones reported in Figure 5. In some cases, the outlierness is one order
of magnitude higher than the outlierness max value computed on the training set. This event
represents the presence of a covert communications within the bulk of traffic, thus leading to a
“deviation” in the output of the neural network.

Lastly, as regards the feasibility of deploying our approach in realistic settings, we point out
that its resource footprint is very limited. In more detail, gathering information about the TTL
usually accounts for an additional packet delay of ∼ 100 ns when using eBPF and 1 ms with a C
implementation exploiting libpcap over commodity hardware. Instead, apart the training phase,
which can be done offline, the average prediction time is 0.0132 ms. Another important aspect
concerns the “stateless” nature of the approach. In fact, the used neural architecture performs
the detection of covert communications by using information on the overall traffic (grouped in
time slots), which prevents memory consumption due to the need of storing information with
a per-flow granularity. Thus, the proposed approach should be considered suitable for being
implemented in home gateways often used in production-quality IoT ecosystems.



Figure 5: Training-set outlierness with different threshold values.

Figure 6: Test-set outlierness.

5. Conclusions and Future Work

In this paper, we presented a lightweight mechanism based on autoencoders for detecting
network covert channels targeting IoT scenarios. Results indicated the effectiveness of our
approach, i.e., the method can achieve the values of ∼ 91% and ∼ 94% for the accuracy and
the precision, respectively. Although our solution addresses a specific case, it can be easily
generalized to handle different network covert channels and environments, e.g., by considering
an ensemble of specialized detectors combined to reveal attacks on different carriers.

Future works aim at refining the proposed framework by considering other types of network
covert channels. At the same time, part of our ongoing research is devoted to develop some
form of “intermediate” representations, which can be used to exploit a unique mechanism to
face different threats. We are working towards general metrics that could partially compensate
the tight-coupling between the used hiding methodology/protocol and the countermeasure.
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