
The Ontology for Agents, Systems and Integration of

Services: recent advancements of OASIS

Giampaolo Bella1, Domenico Cantone1, Marianna Nicolosi Asmundo1 and
Daniele Francesco Santamaria1

1Department of Mathematics and Computer Science, University of Catania, Viale Andrea Doria 6 - 95125 - Catania, Italy

Abstract
Semantic representation is, especially through the use of Semantic Web technologies, a key enabler
for many application domains, notably thanks to the representation of agents. A semantic description
of agents can be practically achieved by taking a behaviouristic approach, whose essential aim is to
define the operational capabilities of every agent. These are leveraged to enable agents to operate and
engage with their peers. The OASIS ontology — An Ontology for Agent, Systems, and Integration of
Services, presented in 2019 — pursues the behaviouristic approach to deliver a higher-level, semantic
representation system as well as a communication protocol for agents and their commitments. Following
the profitable adoption of OASIS as a foundational ontology for agents in the context of blockchain-
oriented e-commerce, the ontology has been maintained and substantially updated over the years. This
paper reports on the modelling choices and general advancements since the first publication of OASIS,
especially after its profitable adoption by an European project.

Keywords

Semantic Web, Ontology, OWL, Agent, Multi-Agent Systems

1. Introduction

The gist of the Semantic Web [1] is to achieve the full interoperability of software applications
by means of common data formats, exchange protocols, data reuse and data sharing across
systems, enterprises and community boundaries. In the Semantic Web vision of the Internet,
software agents are enabled to query and manipulate information on behalf of human agents
by means of machine-readable data. Such data carries explicit meaning, namely expressed with
formally defined semantics through suitable representation languages supporting the automatic
process of information. For this purpose, the Word Wide Web Consortium (W3C) conceived the
Web Ontology Language (OWL) [2], a family of knowledge representation languages relying on
Description Logics [3], as the standard language for representing Semantic Web ontologies. The
main advantage of the Semantic Web is to enable users and applications to access data-oriented
web content: users and applications become able to discover and invoke web resources in a

WOA 2022: 23rd Workshop From Objects to Agents, September 1–2, Genova, Italy
†
These authors contributed equally.
$ giampaolo.bella@unict.it (G. Bella); domenico.cantone@unict.it (D. Cantone);
marianna.nicolosiasmundo@unict.it (M. Nicolosi Asmundo); daniele.santamaria@unict.it (D. F. Santamaria)
� https://www.dmi.unict.it/giamp/ (G. Bella); https://www.dmi.unict.it/cantone/ (D. Cantone);
https://www.dmi.unict.it/nicolosi/ (M. Nicolosi Asmundo); https://www.dmi.unict.it/santamaria/ (D. F. Santamaria)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:giampaolo.bella@unict.it
mailto:domenico.cantone@unict.it
mailto:marianna.nicolosiasmundo@unict.it
mailto:daniele.santamaria@unict.it
https://www.dmi.unict.it/giamp/
https://www.dmi.unict.it/cantone/
https://www.dmi.unict.it/nicolosi/
https://www.dmi.unict.it/santamaria/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


completely automatic way. One of the most important web resources is the one that provides
access to services. Generally speaking, services are intended as artifacts that do not merely
provide static information but perform actions and changes over the surrounding environment.
Much effort of the Semantic Web community has been oriented at the creation of Semantic
Web Services [4], namely intelligent Web Services with semantically represented content, in
order to enable automatic discovery, composition and invocation of services. Therefore, in
those environments where people and organizations interact with autonomous systems in a
dynamic way, even Semantic Web Services struggle to capture the complex interactions of
the participants. This is why it is most convenient to identify the proactive stakeholders as
autonomous agents [5]. Agents are defined as entities whose state is perceived as a set of
mental components such as beliefs, capabilities, choices, and commitments [6], forming the
foundations for the Agent Oriented Programming (AOP) paradigm. AOP is most often motivated
by the need for open architectures that continuously evolve to adapt to external changes in a
robust, autonomous, and proactive way. Coherently with this vision, defining suitable Semantic
Web ontologies to represent agents still is an open challenge in the large realm of Knowledge
Representation.

The authors’ choice for the semantic description of agents focuses on the agents’ mental
components. Then, the behaviouristic approach inspired by the Tropos methodology [7] provides
a useful operational semantics. Agent behaviours may be decomposed in the atomic and
essential mental states, namely the tasks that each agent seeks to accomplish. The Ontology
for Agents, Systems and Integration of Services [8], OASIS in short, applies the behaviouristic
approach to deliver a representation system and a communication protocol for agents and
their commitments. Agents are enabled to transmit to their peers the set of operations that
they are able to perform and the type of data required to execute these. Each output is also
identified in a clear, human-understandable and unambiguous way, so as to abstract from the
implementation details and transparently automate the task agent discovery. Agents may then
join a collaborative environment in a plug-and-play way, since third-party interventions are no
longer required, thereby profiting from the Semantic Web features. For example, by means of
Semantic Web technologies and of automated reasoners, data provides machine-understandable
information that can be processed, integrated and exchanged by any type of agent. Data
consistency can be easily verified, and information can be inferred and retrieved through what
is already defined in the knowledge base.

This paper reports on the modelling choices and general advancements since the first publica-
tion of OASIS in 2019, mostly derived from its adoption by the ONTOCHAIN project. Focus is on
the representation of agents and their commitments, and on the recent outcomes derived from
taking the behaviouristic approach. Specifically, the paper illustrates the modelling approach
concerning: a) agent behaviour templates, namely, general descriptions of agent behaviours that
can be implemented and specialized by real-world agents, b) concrete agent behaviours, and c)
agent actions and how they evolved since the first approach. In addition to their representations,
the paper presents how behaviour templates, concrete behaviours and the resulting commit-
ments are related to each other. OASIS also provides the definition of plan that is a request
forwarded to agents in order to accomplish some actions associated with their behaviours.
Another aspect concerning the agent realm and addressed by OASIS deals with the entrustment



of agents, which represents the act of engaging agents to perform requested actions.
The paper is organized as follows. Section 2 presents related works about ontologies for

services and agents. Section 3 first reports on recent works on OASIS, particularly on the
outcomes from its adoption to blockchain-based e-commerce following an European project,
and then unfolds the behaviouristic approach of OASIS and the related aspects mentioned above.
Finally, Section 4 concludes the paper with future perspectives.

2. Related Works

In the context of the semantically representing application artifacts, the Semantic Web aims
at enabling users to locate, select, employ, compose, and monitor web-based services auto-
matically, giving rise to Semantic Web Services. Semantic Web Services describe Web Services
with semantic content thereby automatically enabling service discovery, composition, and
invocation. For this reason, the DARPA Agent Markup Language (DAML) pursued the goal
of developing a markup language for representing semantic relations in a machine readable
way [9]. In 2003, the World Wide Web Consortium (W3C) proposed OWL-S [10], an ontology
for describing web services and related information. OWL-S tries to enable several tasks such
as automatic web services discovery, automatic web services invocation, and automatic web
services composition and interoperation. OWL-S explicitly supports the description of services
as classes of activities, so that agents can decide how to use, invoke, and interpret responses
from them. However, since DARPA and OWL-S are conceived to describe services, they do not
adequately fulfil the requirements of describing general-purpose agents operating in different
types of environments [11]. Indeed, describing agents as they coincide with services, although
of a limited kind, may lead to an inaccurate and ambiguous depiction of them, also because
service capabilities need to be semantically described both at a high and a low level. Hence, one
of the most prominent visions of the relationships between agents and services is one in which
agents exploit, use, are composed of, are deployed as, and are extended by services [11], which
remains relatively simple.

The integration of agent systems and the Semantic Web has been investigated in the last
decade in several contexts [9, 12, 13] and the advantages of ontology-based applications have
been recognized in the realm of MAS [14]. Those advantages are manifest a) in the context
of agent matching, i.e., the capability of finding agents satisfying specific requirements and
automatically engaging them, b) in the context of developing agents with standard features
exploiting shared common semantic tools, or c) as decision support for supply chains.

Ontologies for MAS have been modeled by taking approaches similar to those of Agent-
Oriented Software Engineering (AOSE) [15, 16], a software engineering paradigm for the devel-
opment of complex MAS, based on the abstraction of agent roles and on their organizations.
Other approaches inspired by belief-desire-intention agent architectures (BDI) [17] are proposed
in [7] and [18]. Inspired by Bratman’s theory of human practical reasoning [19], BDI systems
focus on the idea that agents have certain goals (desires) and a set of plans whose realization
leads to their achievement; plans are selected, thus becoming intentions, depending on the
agent’s perception of the circumstances (represented by a set of beliefs). Beliefs, desires, and
intentions are specified at a high level, often using a powerful logic/declarative approach: this



enables the implementation of complex behaviours while still keeping code transparent and
readable. The AOSE approach is intended to support all analysis and design activities in the
software development process, whereas the BDI approach provides a flexible environment
offering both traditional object-oriented imperative and declarative constructs, enabling the
definition of robot’s high-level behaviours in a simple, natural way. In [20], an ontology for
agent-oriented software engineering is proposed together with a tool that uses the ontology to
generate programming code for MAS, but without examining agents and their interactions in
detail. Moreover, an appropriate modelling of agent communication is missing.

Some results attempt to bring uniformity and coherence to the increasing volume and diversity
of information in a specific domain, but domain-legacy generally makes them not applicable
to other contexts even if they provide interesting insight for a general approach. For example,
in [21], the authors propose an ontology-based framework for seamlessly integrating agents
and Semantic Web Services, focusing on biomedical information. In [22], an infrastructure
to allow agent-oriented platforms to access and query domain-specific OWL ontologies is
presented. In [23], an approach is introduced to design scalable and flexible agent-based
manufacturing systems integrating automated planning with multi-agent oriented programming
for the Web of Things (WoT). In particular, autonomous agents synthesize production plans using
semantic descriptions of web-based artifacts and coordinate with one another via multi-agent
organizations. Concerning the Internet of Things (IoT), ontological approaches mainly focus
on the description of sensors, with the purpose of collecting data associated with them for
generating perceptions and abstractions of the observed world [24].

A comprehensive ontology for representing IoT services is presented in [25] together with
a discussion on how it can be used to support tasks such as service discovery, testing and
dynamic composition, taking into account also parameters such as Quality of Services (QoS),
Quality of Information (QoI), and IoT service tests. A unified semantic knowledge base for IoT
is proposed in [26], capturing the complete dynamics of IoT entities, for example enabling
semantic searching while hiding their heterogeneity. Agent-based IoTs are comprehensively
discussed in [27].

In [28], the authors discuss the unification of the state-of-the-art architectures, as put forward
by the scientific community of the Semantic Web of Things (SWoT), by means of an architecture
based on different abstraction levels, namely Lower, Middle, and Upper Node (LMU-N). In [29], a
lightweight and scalable model, called IoT-lite, is proposed to describe key IoT concepts allowing
interoperability and discovery of sensory data in IoT platforms.

The W3C advances a formal model and a common representation for WoT descriptions based
on a small vocabulary that makes it possible both to integrate diverse devices and to allow
diverse applications to interoperate [30]. The representation system provides a way to expose
the state of a thing and to invoke functions that, however, must be known in advance, and
this may complicate the task of invoking agents that would like to join the environment in a
plug-and-play manner. Moreover, the provided schema does not fully allow agents to interact
according to the specific roles they aim to play.

It is also noteworthy to mention works devoted to business processes, to which applications
of Semantic Web ontologies are well known in literature. For instance, in [31] an ontological
approach to represent business processes is presented together with a prototype of a system
architecture exploiting the proposed model. In [32], ontologies are used as facilities within



a framework that assists designers in the realization and analysis of complex processes. An
approach to verify whether a business process is compliant with given business rules combining
logic programming and ontologies is presented in [33], whereas [34] proposes an approach
of using Ontology-Based Data Access (OBDA) to govern data-aware processes, in particular
those executed over a relational database that issues calls to external services to acquire new
information and update the data. However, the downside of limiting ontological models to
business processes lies at the absence of relationships between agents and their commitments
that instead represents the core of agent-oriented representations. That implies the inability of
finding agents/services with specific capabilities, invoke them, and enabling their interoperabil-
ity. Notably, benefits of process-oriented representations such as the facilitation mechanisms to
the search and selection of process models are also offered by the agent-oriented ones as long
as they are sufficiently general albeit flexible.

3. Contributions and advancements of OASIS

The first version of OASIS was published in [8] together with the architecture design and
implementation of a domotic assistant based on it, called Prof-Onto.1 The approach employed
in [8] also represents a first foundational contribution to adopt Semantic Web technologies
for defining a transparent communication protocol among agents. The proposed protocol is
based on the exchange of RDF-based fragments of OASIS, each consisting of a description of a
request that is checked, by means of ad-hoc constructed queries, against the description of the
behaviour of the agent selected to satisfy it.

In [36], the OASIS ontology is extended with Ontological Smart Contracts (in short, OSCs)
and conditionals. OSCs are intended as agreements among agents expressed through suitable
ontological fragments that allow one to establish responsibilities and authorizations among
agents. Conditionals have many purposes, namely they are used a) to restrict and limit agent
interactions, b) to define activation mechanisms that trigger agent actions, and c) to define
constraints and contract terms on OSCs. Additionally, OSCs can be secured through digital
public ledgers such as the blockchain. For this purpose, [36] also sketched the architecture
of a framework based on the Ethereum blockchain and the Interplanetary File System. The
framework leverages a suitable Ethereum smart contract to claim and transfer non-fungible
tokens (NFT) compliant with the Ethereum ERC-721 standard and representing the ownership of
OWL ontological fragments stored on the IPFS. Additionally, smart contracts allow one to verify
unauthorized modifications both on the hierarchy of imported ontologies and on the SPARQL
queries that verify the ontology itself. The approach also constitutes a first approach to deliver
a semantic blockchain, where operations over smart contracts are semantically represented.

In [37], the definition of digital contracts is extended over the blockchain to include smart
contracts, intended as programs running on the blockchain and interpreted as digital agents
in the OASIS fashion, including their operational semantics and tokens exchanged through
them. It represents the first approach to formalize ERC-721 compliant smart contracts through
Semantic Web ontologies by leveraging the behaviouristic approach pursued by OASIS. The
main capabilities of ERC-721 compliant smart contracts are represented through OASIS and are

1The latest version of Prof-Ontohas been recently renamed as Clara [35]



exploited to fully enable a semantic blockchain that provides agents and humans with means
for probing the Ethereum blockchain, thus discovering smart contracts and their interactions,
transactions, exchanges of cryptocurrencies and tokens, on the one hand, and building oracles
for distributed ledgers, on the other.

The Next Generation Internet initiative, launched by the European Commission in 2018,
funded the NGI-ONTOCHAIN project [38], which aims at providing solutions for a secure and
transparent blockchain-based knowledge management system as an interoperability service for
the Internet. In its turn, ONTOCHAIN funded the third-party project POC4COMMERCE [39]
intended to build the ontological framework for the entire ONTOCHAIN ecosystem, albeit with
a focus on the commercial domain. POC4COMMERCE is founded on an ontological stack that
adopts and extends the most prominent ontologies in the modern literature suitably selected
for the blockchain-oriented commerce domain with a behaviouristic vision of its essentials:
commercial actors, offers, products, and tokens emitted on the Ethereum blockchain as digital
witnesses of exchanged assets. Specifically, the stack provides three ontologies, one for each
underlying sub-domain of knowledge, namely a) OC-Found, which exploits OASIS for the
representation of commercial participants and smart contracts, b) OC-Commerce, which adopts
GoodRelations and is responsible for describing commercial offerings, assets and activities
under the vision of the behaviouristic approach, and c) OC-Ethereum, which exploits BLONDiE,
focused on the representation of Ethereum smart contracts and related tokens in compliance
with the standards ERC20 (for fungible tokens), ERC721 (for non-fungible tokens), and ERC1155
(for semi-fungible tokens). The approach of the proposed stack is presented in [39], while
its design and analysis can be found in [40]. A semantic search engine [41] harnessing the
expressive power of the ontological stack is under development, currently standing at TRL3, in
the context of the ONTOCHAIN project that funded the realization of POC4COMMERCE.

Therefore, the adoption of BLONDiE and GoodRelations limited the expressive power of the
ONTOCHAIN ontological stack whereas a pure behaviouristic approach widens the representa-
tional goals of stakeholders. For example, in OC-Ethereum both miners and users are merely
presented as static entities and their capabilities of mining blocks and submitting transactions,
respectively, is neglected. Analogously, in OC-Commerce negotiations of offerings are not
deeply represented and buyers are not allowed to propose custom activities regarding supply
chains related with goods and services. For example, buyers cannot request for alternative
payment or shipping methods, or request for a discount. Moreover, it is not clear how offered
assets and sold goods are related, thus preventing the distinction between what is offered and
what is acquired from buyers. For this reason, we introduced two novel ontologies, where
the dependencies of OC-Ethereum from BLONDiE and of OC-Commerce from GoodRelations,
respectively, give way to a pure behaviouristic approach: the first ontology, called Ether-OASIS
[42], carries out the approach in [37], while the second ontology called EC-OASIS and whose
development is in progress, aims at overcoming the limitations of mixing the GoodRelations
and the behaviouristic approaches mentioned earlier.

Here we present the OASIS modelling approach concerning agents and their commitments
as they evolved thanks to their adoption by the ONTOCHAIN project. We recall that OASIS is
a foundational OWL 2 ontology that leverages the behaviouristic approach derived from the
Theory of Agents and the related mentalistic notions to represent multi-agent systems. The
approach aims at describing how agents behave with respect to the environment by representing



their essential mental states, namely goals and tasks. While goals depict the long term desires
of the agents, tasks represent the atomic operations that they are able to physically carry out.

Such behaviouristic approach is an effective way for semantically describing agents by char-
acterizing their capabilities. Agents are enabled to report the set of activities that they are able
to perform, the types of data required to execute those activities as well as the expected output
through the description of their behaviours. Agents’ implementation details are abstracted
away so as to make the discovery of agents transparent, automatic, and independent of the
underlying technical infrastructure. As a consequence, agent commitments are also clearly
described and the entire evolution of the environment is unambiguously represented, searchable,
and accessible, so agents may join a collaborative environment in a plug-and-play fashion, as
there is no more need of third-party interventions. The behaviouristic approach is exploited by
OASIS to characterize agents in terms of the actions they are able to perform, including pur-
poses, goals, responsibilities, information about the world they observe and maintain, and their
internal and external interactions. Finally, OASIS models the executions and assignments of
tasks, restrictions on them and constraints used to establish responsibilities and authorizations
among agents. Thanks to the semantic representation of their behaviours, which are publicly
exposed, agents are able to manifest the set and type of operations that they are able to perform,
including the type of data required to execute them together with the expected output, so that
they can be suitably queried or engaged.

In OASIS, the representation of agents and their interactions is carried out along three main
steps, a) an optional step that consists in modelling general abstract behaviours (called templates)
from which concrete agent behaviours are drawn, b) modelling concrete agent behaviours,
possibly, drawn by agent templates, and c) modelling actions performed by agents by associating
them with the behaviours from which actions are drawn.

The first step is not mandatory and represents the first main difference with the previous
release of OASIS. It consists in defining the agent’s behaviour template, namely a higher-level
description of behaviours of abstract agents that can be implemented to define more specific
and concrete behaviours of real agents. For example, a template may be designed to describe
which features a smart contract compliant with the ERC721 standard should own. Moreover,
templates are useful to guide developers to define the most suitable behaviours for their agents.
To describe abstract agent’s capabilities to perform actions, an agent template comprises three
main elements, namely a) behaviours, representing the mental state associated with the agent’s
behaviours, b) goals, representing the mental state associated with the objective or target that
the agent would reach or achieve, which are constituted by one or more c) tasks. Tasks, which
represent the lower-level mental state of the agent, describe atomic operations that agents may
perform including, possibly, input and output parameters required to accomplish the actions.
Indeed, the core of OASIS agent representation revolves around the description of atomic
operations introduced by the definition of tasks, i.e., the most simple (atomic) operations that
agents are able to actually perform.

The second step consists in representing the concrete agent behaviours either by specifying a
shared template or by defining it from scratch. In both cases, concrete behaviours are modelled
analogously to those of templates, where the models of ideal features are replaced with actual
characteristics. Behaviours drawn by shared templates are clearly associated with them in order
to depict the behaviour inheritance relationship.



Finally, in the third step, actions performed by agents are described as direct consequences
of some behaviours and are associated with the behaviours of the agent that performed them.
To describe such an association, OASIS introduces plan executions. Plan executions describe
the actions performed by an agent and associated with one of its behaviours. Associations
are carried on by connecting the description of the performed action to the behaviour from
which the action has been drawn: actions are hence described by suitable graphs that retrace
the model of the agent’s behaviour. Plans can be also submitted in order to request agents to
accomplish some tasks. Moreover, specific agents are allowed to assign a plan to selected agents
through an agent entrustment activity.

To describe how ideal agents should perform actions, an agent template comprises three
main elements, namely behaviours, goals and tasks. Agent tasks, in their turn, describe atomic
operations that agents may perform, including possibly input and output parameters required
to accomplish them. The core of agent representation, indeed, revolves around the description
of atomic operations represented by instances of the class TaskDescription that characterizes the
mental state corresponding to commitments. In their turn, instances of the class TaskDescription
are related with the following five elements that identify the operation:

• an instance of the class TaskOperator, characterizing the mental state corresponding to
the action to be performed. Instances of TaskOperator are connected either by means of
the object-property refersExactlyTo or refersAsNewTo to instances of the class Action. The
latter class describes physical actions that are introduced by means of entity names in the
form of infinite verbs and representing the actions (e.g., produce, sell). The object-property
refersExactlyTo is used to connect the task operator with a precise action having a specific
IRI, whereas refersAsNewTo is used to connect a task operator with an action for which
a general abstract description is provided. In the latter case, the action is also defined
as instance of the class ReferenceTemplate: such instances are used to introduce entities
that represent templates for the referred element describing the characteristics that it
should satisfy. By exploiting the object-property refersAsNewTo, the entity provides only
a general description of the features needed to accomplish the task, for example, that it
must be of a specific type; on the contrary, the object-property refersExactlyTo specifies
the actual and exact entity involved in the task.

• Possibly, an instance of the class TaskOperatorArgument, connected by means of the
object-property hasTaskOperatorArgument and representing additional specifications
for the task operator (e.g., on, off, left, right). Instances of TaskOperatorArgument are
referred to the operator argument by specifying either the object-property refersAsNewTo
or refersExactlyTo.

• An instance of the class TaskObjectTemplate, connected by means of the object-property
hasTaskObjectTemplate and representing the template of the object recipient of the action
performed by the agent (e.g., price). Instances of TaskObjectTemplate are referred to the
action recipient by specifying either the object-property refersAsNewTo or refersExactlyTo.

• Input parameters and output parameters, introduced in OASIS by instances of the classes
TaskInputParameterTemplate and TaskOutputParameterTemplate, respectively. Instances
of TaskDescription are related with instances of the classes TaskInputParameterTemplate
and TaskOutputParameterTemplate by means of the object-properties hasTaskInputParam-



eterTemplate and hasTaskOutputParameterTemplate, respectively. Instances of TaskInput-
ParameterTemplate and of TaskOutputParameterTemplate are referred to the parameter
by specifying either the object-property refersAsNewTo or refersExactlyTo. Moreover, the
classes TaskInputParameterTemplate and TaskOutputParameterTemplate are also subclasses
of the class TaskParameterTemplate.

The main classes characterizing an agent template in OASIS are the following ones:

• AgentBehaviorTemplate. This class comprises all the individuals representing templates of
agents. Instances of such a class are connected with one or more instances of the class
Behavior by means of the OWL object-property hasBehavior.

• Behavior. Behaviours of agent templates represent containers comprising all the goals that
the agent can achieve. Instances of Behavior are connected with one or more instances of
the class GoalDescription by means of the object-property consistsOfGoalDescription.

• GoalDescription. Goals represent containers embedding all the tasks that the agent can
achieve. Instances of GoalDescription comprised by a behaviour may also satisfy depen-
dency relationships introduced by the object-property dependsOn. Goals are connected
with the tasks that form them and are represented by instances of the class TaskDescription
through the object-property consistsOfTaskDescription.

• TaskDescription. This class describes atomic operations that agents are able to perform.
Atomic operations are the most simple actions that agents are able to execute and, hence,
they represent what agents can do within the environment. Atomic operations may de-
pend on other atomic operations when the object-property dependsOn is specified. Atomic
operations whose dependencies are not explicitly expressed are intended to be performed
in any order. Finally, tasks are linked to the individuals that describe the features of the
atomic operations, i.e., the instances of the classes TaskOperator, TaskOperatorArgument,
TaskObjectTemplate TaskInputParameterTemplate, and TaskOutputParameterTemplate, as
described above.

• TaskOperator. This class characterizes the type of operation to perform. Instances of
TaskOperator are connected with instances of the class Action by means of either the object-
properties refersExactlyTo or refersAsNewTo. Tasks are connected with task operators by
means of the object-property hasTaskOperator.

• Action. This class describes actions that can be performed by agents. Entity names of the
class Action’s instances are introduced as infinite verbs such as buy, sell, compute, and so
on, drawn from a common, shared and extendable vocabulary defined by the OASIS-Abox
ontology[43].

• TaskOperatorArgument. This class defines operator arguments representing subordinate
characteristics of task operators. Tasks are connected with operator arguments by means
of the object-property hasTaskOperatorArgument.

• TaskObjectTemplate. Instances of this class represent the recipient of the behaviours
of agent templates. Tasks are connected with object templates by means of the object-
property hasTaskObjectTemplate.

• TaskInputParameterTemplate. This class represents the input parameters required to
accomplish the referred operation, as for instance the type of asset on which a quality



valuation is performed. Tasks are possibly connected with the input parameters by means
of the object-property hasTaskInputParameterTemplate.

• TaskOutputParameterTemplate. This class represents the output parameters obtained as a
result of the referred operation. Tasks are possibly connected with the output parameters
by means of the object-property hasTaskOutputParameterTemplate.

Figure 1 illustrates an example of agent template describing the procedure for smart contracts
minting ERC721 compliant non-fungible tokens and stored on the Ethereum blockchain (see
[37] for the description of the complete behaviour template).

The agent template described in the example comprises a single behaviour, constituted by a
single goal that in its turn comprises a single task. The task, which represents the ability of the
agent to generate an NFT, provides four elements:

• mint_ERC721_token_task_operator, representing the mental state of the behaviour’s action
(the task operator), which is associated to the OASIS-ABox individual mint, the latter
describing the capability of generating a coin;

• mint_ERC721_token _task_operator_argument, introducing an additional feature (the
operator argument) associated with the action and represented by the OASIS-Abox term
blockchain_digital_token. Such feature describes the fact that the minting action is referred
to a digital coin on the blockchain. Task operator and its argument describe together the
capability of minting token on the blockchain;

• mint_ERC721_token_task_object_template, representing the recipient of the operation,
which is related with an instance of the class EthereumTokenERC721 by means of the
object-property refersAsNewTo. Such an instance comprises all the features that the
recipient of the minting action should own, that is being a ERC721 token. In fact, the
concrete actions implementing the behaviour template for minting tokens are supposed
to generate ERC721 compliant tokens that therefore can provide additional properties, as
for example the description of specific physical assets;

• mint_ERC721_token_task_output_template, representing the output of the operation,
namely the same token recipient of the mint action.

Concrete behaviours of agents have a structure analogous to the one provided by behaviour
templates. The structure reflects the modelling pattern adopted for the representation of agent
behaviour templates described above, but with the following differences:

• The instance of the class AgentBehaviorTemplate gives way to an instance of the class Agent,
representing a concrete agent in the knowledge domain. Concrete agents are connected
with templates of agent by means of the object-property adoptsAgentBehaviorTemplate.

• The instance of the class TaskObjectTemplate gives way to an instance of the class TaskOb-
ject, representing the real recipient of the concrete agent action.

• The instance of the class TaskInputParameterTemplate gives way to an instance of the
class TaskFormalInputParameter, representing the formal input parameter of the concrete
agent action.



hasTaskOperatorArgumenthasTaskObjectTemplate

refersAsNewTo

oasis:consistsOf

GoalDescription

oasis:consistsOf

TaskDescription

hasTaskOperator

oasis:

hasBehavior

hasTaskOutput

ParameterTemplate

AgentBehaviorTemplate
ethereum_ERC721_smart_

contract_behavior_template

Behavior
mint_ERC721_token_behavior

GoalDescription
mint_ERC721_


token_goal_description

TaskDescription
mint_ERC721_token_task_description

TaskObjectTemplate
mint_ERC721_


token_task_object_template

EthereumTokenERC721
mint_ERC721_token

TaskOperator
mint_ERC721_token


_task_operator

Action
mint

refersExactlyTo

TaskOutputParameterTemplate
mint_ERC721_token


_task_output_template

TaskOperatorArgument
mint_ERC721_token


_task_operator_argument

DescriptionObject
blockchain_digital_token

Figure 1: Example of OASIS agent template

• The instance of the class TaskOutputParameterTemplate gives way to an instance of
the class TaskFormalOutputParameter, representing the formal output parameter of the
concrete agent action.

With respect to the first release, it is worth noting that in order to align the representation of
concrete agents with the one of agent templates, the object, the operator, and the input/output
parameters of concrete agents introduce an additional layer between the agent’s mental state
and the effective entities associated with them. The intermediate layer is marked by the
object-properties refersExactlyTo and refersAsNewTo. This choice is motivated by the fact that
such entities may be involved in different states and with different purposes by many agents.
Additionally, concrete agents are possibly connected with the agent template that they are
drawn from. In order to describe the fact that concrete agents inherit their behaviours from a
common and shared agent template, the following associations are introduced:

• The instance of the class TaskDescription of the concrete agent is connected by means of
the object-property overloadsTaskDescription with the instance of the class TaskDescription
of the agent template.

• The instance of the class TaskObject of the concrete agent is connected by means of the
object-property overloadsTaskObject with the instance of the class TaskObjectTemplate of
the agent template.

• The instance of the class TaskOperator of the concrete agent is connected by means of
the object-property overloadsTaskOperator with the instance of the class TaskOperator of
the agent template.

• The instance of the class TaskFormalInputParameter of the concrete agent is connected by
means of the object-property overloadsTaskInputParameter with the instance of the class
TaskInputParameterTemplate of the agent template.

• The instance of the class TaskFormalOutputParameter of the concrete agent is connected
by means of the object-property overloadsTaskOutputParameter with the instance of the
class TaskOutputParameterTemplate of the agent template.



hasTaskObject


hasTask

Operator

hasTaskActualInputParameter

hasTaskActualOutputParameter

PlanExecution GoalExecution(1,*) (1,1)

consistsOf

GoalExecution

dependsOn(0,*) (0,*)

TaskExecution

dependsOn(0,*) (0,*)

consistsOf

TaskExecution

Agent
(1,*) (1,*)

TaskOperator

(1,1)

(1,1)Action (1,1) (0,*)

refersAsNewTo 

or


refersExactlyTo

TaskObject

(1,1)

refersAsNewTo 

or


refersExactlyTo

(1,1)

owl:Thing
 (0,*)

(1,1)

TaskActualInputParameter

(0,*)

TaskOperator
Argument

(0,1)

(0,1) hasTaskOperator

Argument

 (0,*)

(1,1)

refersAsNewTo 

or


refersExactlyTo (1,1)

 (0,*)

TaskActuallOutputParameter

 (0,*)

refersAsNewTo 

or


refersExactlyTo

(1,1)

TaskActualParameter rdf:subClassOf
(0,1)

(0,1)

performs

(1,*) (1,1)

(0,*)

Figure 2: UML diagram of OASIS agent actions

Analogous object-properties are defined for the behaviour and goal of the agent.
Agent actions that are executed autonomously are related with the description of the con-

crete behaviour of the agent from which they are drawn. As depicted in Figure 2, an agent
action is primarily introduced by an instance of the class PlanExecution, representing the agent
commitment. In their turn, plan executions comprise goal executions, represented by instances
of the class GoalExecution, while goal executions comprise task executions (instances of the
class TaskExecution) embedding at least the following three elements:

• TaskObject. As in the case of agent behaviours, this class comprises elements used as
recipients of performed actions.

• TaskOperator. As in the case of agent behaviours, this class comprises the operations
performed by the agent.

• TaskOperatorArgument. As in the case of agent behaviours, this class comprises the
specification of the operations performed by the agent. Operator arguments are introduced
in agent actions only if the corresponding behaviour that generates the actions also
provides operation arguments.

Unlike the tasks of agent behaviours, task executions comprise instances of the following
classes, which take the place of the instances of the classes TaskFormalInputParameter and
TaskFormalOutputParameter, respectively:

• TaskActualInputParameter. This class represents the actual input parameters exploited
to accomplish the agent action. Task executions are possibly connected with the actual
input parameters by means of the object-property hasTaskActualInputParameter.

• TaskActualOutputParameter. This class represents the actual output parameters obtained
as result of the agent’s action. Task executions are possibly connected with the output
parameters by means of the object-property hasTaskActualOutputParameter.



Agent commitments are related with the behaviour from which they are drawn by. As a
consequence, the additional layer present in the agent’s behaviour between the agent mental
state and the entity involved has been also introduced for commitments. These relationships
are realized by:

• connecting the instance of PlanExecution of the agent action to the instance of the class
Behavior of the agent behaviour through the object-property planExecutionDrawnBy;

• connecting the instance of GoalExecution of the agent action to the instance of the
class GoalDescription of the agent behaviour through the object-property goalExecution-
DrawnBy;

• connecting the instance of TaskExecution of the agent action to the instance of the
class TaskDescription of the agent behaviour through the object-property taskExecution-
DrawnBy;

• connecting the instance of TaskObject of the agent action to the instance of the class
TaskObject of the agent behaviour through the object-property taskObjectDrawnBy;

• connecting each instance of TaskActualInputParameter of the agent action to the related
instance of the class TaskDescription of the agent behaviour through the object-property
taskActualInputParameterDrawnBy;

• connecting each instance of TaskActualOutputParameter of the agent action to the related
instance of the class TaskDescription of the agent behaviour through the object-property
taskActualOutputParameterDrawnBy.

Agents that desire to engage agent peers with performing actions can submit plans, namely
descriptions of actions that they wish to be realized. Plans, already available in the first release
of OASIS, are now fully fledged by way of instances of PlanDescription. Those instances provide
a structure analogous to that of behaviours, while agents proposing plans are connected with
instances of PlanDescription by means of the object-property requestsPlan. Usually, agents
proposing plans identify the behaviours responsible for their realization beforehand, in such
a way as to completely describe and trace how agent intentions are realized. In this case, the
entities representing the submitted plan are related with the entities describing the responsible
behaviour by exploiting the following relationships:

• The instance of PlanDescription of the plan is connected with the instance of Behavior of
the responsible behaviour through the object-property planDescriptionSubmittedTo.

• The instance of GoalDescription of the plan is connected with the instance of GoalDescrip-
tion of the responsible behaviour through the object-property goalDescriptionSubmittedTo.

• The instance of TaskDescription of the plan is connected with the instance of TaskDescrip-
tion of the responsible behaviour through the object-property taskDescriptionSubmittedTo.

• The instance of TaskObject of the plan is connected with the instance of TaskObject of the
responsible behaviour through the object-property taskObjectSubmittedTo.

• The instance of TaskOperator of the plan is connected with the instance of TaskOperator
of the responsible behaviour through the object-property taskOperatorSubmittedTo.

• The instance of TaskFormalInputParameter of the plan is connected with the instance of
TaskFormalInputParameter of the responsible behaviour by means of the object-property
taskFormalInputParameterSubmittedTo.



• The instance of TaskFormalOutputParameter of the plan is connected with the instance of
TaskFormalOutputParameter of the responsible behaviour by means of the object-property
taskFormalOutputParameterSubmittedTo.

When the agent selected for executing the plan attempts to perform the corresponding actions,
a graph representing the performance is constructed and connected both with the behaviour,
as described above, and with the plan. This ensures that the agent expectation and the plan
realization are mapped and their alignment can be easily verified. Plan and its execution are
related by:

• connecting the instance of the PlanDescription of the plan with the instance of the PlanEx-
ecution of the action by means of the object-property hasPlanExecution;

• connecting the instance of the GoalDescription of the plan with the instance of the
GoalExecution of the action by means of the object-property hasGoalExecution;

• connecting the instance of the TaskDescription of the plan with the instance of the
TaskExecution of the action by means of the object-property hasTaskExecution;

• connecting the instance of the TaskObject of the plan with the instance of the TaskObject
of the action by means of the object-property hasTaskObjectExecution;

• connecting the instance of the TaskFormalInputParameter of the plan with the instance of
the TaskActualInputParameter of the action by means of the object-property hasTaskIn-
putParameterExecution;

• connecting the instance of the TaskFormalOutputParameter of the plan with the instance
of the TaskActualOutputParameter of the action by means of the object-property hasTask-
OutputParameterExecution.

Another aspect related with the multi-agent realm and addressed by the current version
of OASIS concerns the entrustment of agents, namely the capability of some entruster agents
to engage a performer agent to execute a given plan submitted by a requester agent. The
association among the behaviours of entruster, requester, and performer are depicted in Figure
3. Entrustment is introduced by means of a graph that follows a structure analogous to the one
of plan descriptions. Specifically, it is characterized by instances of the class PlanEnstrustment,
which in their turn are connected with one or more instances of the class GoalEntrustment
through the object-property consistsOfGoalEntrustment. Goals are linked with instances of the
class TaskEntrustment by means of the object-property consistsOfTaskEntrustment. Moreover, in
order to associate a plan to the behaviour of the agent selected to perform it, the elements of the
entrustment are connected to a) the related elements of the plan by means of the subproperties
of entrustedBy and to b) the related elements of the behaviour of the performer agent by means
of the subproperty of entrustedFrom. A single plan entrustment may be constituted by many
goal entrustments that in their turn may be constituted by one or more task entrustments,
depending on how the requested plan is structured. In case that the requested plan is constituted
by two or more tasks, each task can be entrusted to different agent behaviours thus ensuring the
representation of cooperative systems, where the effort of solving plans is distributed among
participants. Finally, when the performer agent executes the entrusted plan, a plan execution is
introduced as described above. As a consequence, the plan entrustment is associated with the



Entruster

Agent

Requester

Agent

Performer

Agent

Behavior GoalDescription TaskDescription

(1,1) taskEntrusted

From (0,*)

PlanExecution GoalExecution TaskExecution
(1,*) consistsOfGoal

Execution (1,1)

(1,*) consistsOfTask

Execution (1,1)

PlanDescription GoalDescription TaskDescriptionAgent
(0,*) requests (1,*)

hasTaskExecution

(1,*) consistsOfTask

Description (1,1)

(1,*) consistsOfGoal

Description (1,1)(1,*) hasBehavior (1,*)

Agent
(1,*) performs (1,*)

Agent PlanEntrustment GoalEntrustment TaskEntrustment
(1,*) consistsOfTask

Entrustment (1,1)

(0,*) performs

Entrustment (1,1)

(1
,1

) t
as

kE
nt

ru
st

ed
W

ith
 (0

,*)

(1,*) entrusts (0,*)

(1,*) consistsOfGoal

Entrustment (1,1)

(1
,1

) t
as

kE
nt

ru
st

ed
By

 (0
,*)

(1,*) consistsOfTask

Description (1,1)

(1,*) consistsOfGoal

Description (1,1)

hasGoalExecutionhasPlanExecution

(1,1) goalEntrusted

From (0,*)

(1,1) planEntrusted

From (0,*)

Figure 3: UML diagram of agent entrustments in OASIS

plan execution by connecting the elements of the plan entrustment to the related elements of the
plan execution through the subproperties of entrustedWith. An analogous structure is provided
for the descriptors of TaskEntrustment, namely, TaskObjectEntrustment, TaskOperatorEntrustment
and TasktParameterEntrustment. Additionally, the task of the plan entrustment is associated
with the performer agent by means of the object-property entrusts.

4. Conclusions

This paper presented the latest epistemological choices made on the Ontology for Agents,
Systems and Integration of Services (in short, OASIS) over the years since its first publication,
thereby presenting its advancements. OASIS is a foundational OWL 2 ontology that takes the
behaviouristic approach derived from the Theory of Agents and inherits the related mentalistic
notions to represent multi-agent systems. The focus in this paper was on how OASIS represents
agent templates, concrete agents, agent commitments and entrustments. In particular, it was
outlined how these evolved since the first release of the ontology and as a consequence of its
adoption in the POC4COMMERCE project, funded by the NGI-ONTOCHAIN consortium to
deliver the ontological foundation of a blockchain-oriented e-commerce. Other applications of
OASIS deals with the representation of blockchain smart-contracts and related token exchange
mechanisms.

Representing how agents reach consensus is one of the future challenges, together with the
modelling of their behaviours implementations. We shall consider how to model in OASIS
meta-plans, namely agent strategies designed to be achieved through plans. Moreover, we intend
to apply agent conditionals to represent security constraints for cybersecurity threat contexts,
in particular for the purpose of semantically representing authentication and confidentiality
properties for agents. All these features will be included in the next release of OASIS, namely



OASIS 2, that will also provide many enhancements to the current model. We also consider
how to integrate OASIS with the main frameworks such as JADE [44] to generate code for
agents and artifacts, and how it can exploited by CArtAgO [45], a framework for building shared
computational worlds.

References

[1] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific Amer-
ican 284 (2001) 34–43. URL: http://www.sciam.com/article.cfm?articleID=
00048144-10D2-1C70-84A9809EC588EF21.

[2] P. Hitzler, M. Krötzsch, B. Parsia, P. Patel-Schneider, S. Rudolph, OWL 2 Web Ontology
Language Primer, W3C Recommendation, World Wide Web Consortium, 2009. URL:
http://www.w3.org/TR/owl2-primer/.

[3] F. Baader, I. Horrocks, C. Lutz, U. Sattler, An Introduction to Description Logic, Cambridge
University Press, 2017.

[4] D. Fensel, F. M. Facca, E. P. B. Simperl, I. Toma, Semantic Web Services, Springer, 2011.
[5] N. Jennings, M. Wooldridge (Eds.), Agent Technology: Foundations, Applications, and

Markets, Springer-Verlag, Berlin, Heidelberg, 1998.
[6] Y. Shoham, Agent-oriented programming, Artificial Intelligence 60 (1993) 51–92.
[7] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J. Mylopoulos, Tropos: An agent-oriented

software development methodology, in: Autonomous Agents Multi Agent Systems, volume
8:3, 2004, pp. 203–236.

[8] D. Cantone, C. F. Longo, M. Nicolosi-Asmundo, D. F. Santamaria, C. Santoro, Towards an
Ontology-Based Framework for a Behavior-Oriented Integration of the IoT, in: Proceedings
of the 20th Workshop From Objects to Agents, 26-28 June, 2019, Parma, Italy, CEUR
Workshop Proceeding Vol. 2404, 2019, pp. 119–126.

[9] J. Hendler, Agents and the semantic web, IEEE Intelligent Systems 16 (2001) 30–37.
[10] World Wide Web Consortium, OWL-S: Semantic Markup for Web Services, 2004. URL:

https://www.w3.org/Submission/OWL-S/.
[11] D. Martin, M. Burstein, S. McIlraith, M. Paolucci, K. Sycara, Owl-s and agent-based

systems, in: L. Cavedon, Z. Maamar, D. Martin, B. Benatallah (Eds.), Extending Web
Services Technologies: The Use of Multi-Agent Approaches, Springer US, Boston, MA,
2004, pp. 53–77.

[12] M. Hadzic, E. Chang, P. Wongthongtham, Ontology-Based Multi-Agent Systems, Springer
Publishing Company, Incorporated, 2014.

[13] D. Fritzsche, M. Grüninger, K. Baclawski, M. Bennett, G. Berg-Cross, T. Schneider, R. Sriram,
M. Underwood, A. Westerinen, Ontology Summit 2016 Communique: Ontologies within
semantic interoperability ecosystems, Applied Ontology 12 (2017) 91–111.

[14] Q. Tran, G. Low, MOBMAS: A methodology for ontology-based multi-agent systems
development, in: Inf. Softw. Technol., 50(7-8), 2008, pp. 697–722.

[15] K. H. Dam, M. Winikoff, Comparing Agent-Oriented Methodologies, in: P. Giorgini,
B. Henderson-Sellers, M. Winikoff (Eds.), Agent-Oriented Information Systems, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 78–93.

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.w3.org/TR/owl2-primer/
https://www.w3.org/Submission/OWL-S/


[16] M. Cossentino, M. Gleizes, A. Molesini, A. Omicini, Processes Engineering and AOSE, in:
M.-P. Gleizes, J. J. Gomez-Sanz (Eds.), Agent-Oriented Software Engineering X, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 191–212.

[17] A. Rao, M. Georgeff, BDI agents: from theory to practice, in: Proc. of the First International
Conference on Multi-Agent Systems, ICMAS-95, San Francisco, CA, 1995, pp. 312–319.

[18] L. Fichera, F. Messina, G. Pappalardo, C. Santoro, A Python Framework for Programming
Autonomous Robots Using a Declarative Approach, Science of Computer Programming
139 (2017) 36–55.

[19] M. Bratman, Intentions, Plans and Practical Reason, Harvard University Press, 1987.
[20] A. Freitas, R. H. Bordini, R. Vieira, Model-driven engineering of multi-agent systems based

on ontologies, Applied Ontology 12 (2017) 157–188.
[21] F. García-Sánchez, J. T. Fernández-Breis, R. Valencia-García, J. M. Gómez, R. Martínez-Béjar,

Combining semantic web technologies with multi-agent systems for integrated access
to biological resources, Journal of Biomedical Informatics 41 (2008) 848 – 859. Semantic
Mashup of Biomedical Data.

[22] A. Freitas, A. Panisson, L. Hilgert, F. Meneguzzi, R. Vieira, R. Bordini, Applying ontologies
to the development and execution of multi-agent systems, Web Intelligence 15 (2017)
291–302.

[23] A. Ciortea, S. Mayer, F. Michahelles, Repurposing manufacturing lines on the fly with
multi-agent systems for the web of things, in: Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, International
Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2018, pp.
813–822.

[24] G. Bajaj, R. Agarwal, P. Singh, N. Georgantas, V. Issarny, A study of existing Ontologies in
the IoT-domain, hal-01556256 (2017).

[25] W. Wang, S. De, R. Toenjes, E. Reetz, K. Moessner, A Comprehensive Ontology for
Knowledge Representation in the Internet of Things, in: 11th International Conference on
Trust, Security and Privacy in Computing and Communications, IEEE, 2012, pp. 1793–1798.

[26] S. N. Akshay Uttama Nambi, C. Sarkar, R. V. Prasad, A. Rahim, A Unified Semantic
Knowledge Base for IoT, in: World Forum on Internet of Things (WF-IoT), IEEE, 2014, pp.
575–580.

[27] C. Savaglio, M. Ganzha, M. Paprzycki, C. Bădică, M. Ivanović, G. Fortino, Agent-based
internet of things: State-of-the-art and research challenges, Future Generation Computer
Systems 102 (2020) 1038–1053.

[28] N. Seydoux, K. Drira, N. Hernandez, T. Monteil, Capturing the Contributions of the
Semantic web to the IoT: a Unifying Vision, in: Semantic Web technologies for the Internet
of Things, ISWC, 2017, pp. 1–8.

[29] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, K. Taylor, IoT-Lite: A Lightweight Semantic
Model for the Internet of Things, in: IEEE Conferences on Ubiquitous Intelligence &
Computing, Advanced and Trusted Computing, Scalable Computing and Communications,
Cloud and Big Data Computing, Internet of People, and Smart World Congress, IEEE, 2016,
pp. 475–487.

[30] World Wide Web Consortium, Web of Things (WoT) Thing Description, 2020. URL: https:
//www.w3.org/TR/wot-thing-description/.

https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/


[31] O. Thomas, M. Fellmann, Semantic process modeling – design and implementation of an
ontology-based representation of business processes, Business & Information Systems
Engineering 1 (2009) 438–451.

[32] G. Greco, A. Guzzo, L. Pontieri, D. Saccà, An ontology-driven process modeling frame-
work, in: F. Galindo, M. Takizawa, R. Traunmüller (Eds.), Database and Expert Systems
Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 13–23.

[33] C. Corea, P. Delfmann, Detecting compliance with business rules in ontology-based
process modeling, Wirtschaftsinformatik und Angewandte Informatik (2017).

[34] D. Calvanese, G. De Giacomo, D. Lembo, M. Montali, A. Santoso, Ontology-based gover-
nance of data-aware processes, in: M. Krötzsch, U. Straccia (Eds.), Web Reasoning and
Rule Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 25–41.

[35] D. Cantone, C. Longo, M. Nicolosi Asmundo, D. F. Santamaria, C. Santoro, CLARA, 2019.
URL: https://github.com/dfsantamaria/CLARA.

[36] D. Cantone, C. F. Longo, M. Nicolosi-Asmundo, D. F. Santamaria, C. Santoro, Ontological
Smart Contracts in OASIS: Ontology for Agents, Systems, and Integration of Services, in:
D. Camacho et al. (eds.), Intelligent Distributed Computing XIV, Studies in Computational
Intelligence 1026, Chapter 22, 2022, pp. 237–247.

[37] G. Bella, D. Cantone, C. Longo, M. Nicolosi-Asmundo, D. F. Santamaria, Blockchains
through ontologies: the case study of the Ethereum ERC721 standard in OASIS, in: D.
Camacho et al. (eds.), Intelligent Distributed Computing XIV, Studies in Computational
Intelligence 1026, Chapter 23, 2022, pp. 249–259.

[38] NGI-ONTOCHAIN, Ontochain a new software ecosystem for trusted, traceable & trans-
parent ontological knowledge, 2020. URL: https://ontochain.ngi.eu/.

[39] G. Bella, D. Cantone, C. Longo, M. Nicolosi Asmundo, D. F. Santamaria, Semantic represen-
tation as a key enabler for blockchain-based commerce, K. Tserpes et al. (Eds.): GECON
2021, Springer Lecture Note in Computer Science 13072 (2021) 1–8.

[40] G. Bella, D. Cantone, M. Nicolosi-Asmundo, D. F. Santamaria, A Behaviouristic Semantic
Approach to Blockchain-based E-Commerce, in: unpublished manuscript available from
the authors, 2022, pp. 1–46, submitted.

[41] G. Bella, D. Cantone, C. Longo, M. Nicolosi Asmundo, D. F. Santamaria, POC4COMMERCE
- Practical ONTOCHAIN for E-Commerce - Project Page, 2021. URL: https://github.com/
dfsantamaria/POC4COMMERCE.

[42] G. Bella, D. Cantone, M. Nicolosi-Asmundo, D. F. Santamaria, Taming the Ethereum
blockchain: an ontological behaviouristic perspective, in: unpublished manuscript avail-
able from the authors, 2022, pp. 1–25, submitted.

[43] D. Cantone, C. Longo, M. Nicolosi-Asmundo, D. F. Santamaria, C. Santoro, OASIS-Abox
ontology, 2019. URL: http://www.dmi.unict.it/oasis-abox.owl.

[44] F. Bergenti, G. Caire, S. Monica, A. Poggi, The first twenty years of agent-based software
development with jade, Autonomous Agents and Multi-Agent Systems 34 (2020).

[45] A. Ricci, M. Piunti, M. Viroli, A. Omicini, Environment Programming in CArtAgO, in:
Multi-Agent Programming: Languages, Tools and Applications, Springer US, Boston, MA,
2009, pp. 259–288.

https://github.com/dfsantamaria/CLARA
https://ontochain.ngi.eu/
https://github.com/dfsantamaria/POC4COMMERCE
https://github.com/dfsantamaria/POC4COMMERCE
http://www.dmi.unict.it/oasis-abox.owl

	1 Introduction
	2 Related Works
	3 Contributions and advancements of OASIS
	4 Conclusions

