
Easily setting up a local Wikidata SPARQL endpoint
using the qEndpoint
Antoine Willerval1, Dennis Diefenbach1,2 and Pierre Maret1,2

1The QA Company SAS, France
2CNRS, Laboratoire Hubert Curien UMR 5516, University of Lyon, France

Abstract
Setting up a local Wikidata SPARQL endpoint is currently technically complex and requires costly
hardware resources. In this paper we propose a novel workflow to index Wikidata and setup a local
SPARQL endpoint which is easy (simple a docker pull), fast (takes less then 3 hours), cheap (can be
executed on a laptop with 16GB of RAM) and efficient (achieves comparable query response times to
the official endpoint). We achieve this by exploiting a newly open source SPARQL endpoint called the
qEndpoint.

Keywords
Wikidata, SPARQL endpoint, qEndpoint, scalability, HDT, RDF4J

1. Introduction

Wikidata[1] has aggregated, thanks to the contribution of currently more than 23,000 active
users1, knowledge from a large collection of sources over very diverse topics (books, stars,
authors, proteins and more). As a consequence Wikidata is one of the largest existing KGs that
is publicly available. Its RDF export contains more than 16 billion triples in the integral version
and more than 7 billion in the truthy version (where only non-reified statements are included,
i.e. statements without qualifiers and references).
As an effect of the size of Wikidata, maintaining the SPARQL query infrastructure is getting
increasingly challenging. This is particularly evident by the fact that Wikimedia, who is
maintaining Wikidata, announced during Wikidata Conference 2021 a disaster mitigation plan2

for the query service. This plan was created since Wikimedia cannot currently guarantee that it
will be able to provide a stable publicly available query service. This is due to the high traffic and
the underlying triple store technology. Currently the query service at https://query.wikidata.org
is using as an infrastructure 11 servers, with 128 GB of RAM and 1.6 TB of space each3. The
only option given by Wikimedia to scale out is to scale vertically which, given the specs of the
machine, is challenging and costly. The difficulty to find viable alternatives for a triplestore is

Wikidata’22: Wikidata workshop at ISWC 2022
$ antoine.willerval@the-qa-company.com (A. Willerval); dennis.diefenbach@the-qa-company.com
(D. Diefenbach); pierre.maret@the-qa-company.com (P. Maret)
� 0000-0003-2186-074X (A. Willerval); 0000-0002-0046-2219 (D. Diefenbach); 0000-0001-5437-7725 (P. Maret)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://www.wikidata.org/wiki/Wikidata:Statistics
2https://www.youtube.com/watch?v=wn2BrQomvFU&t=2h38m48s
3https://www.youtube.com/watch?v=wn2BrQomvFU&t=2h34m03s

https://query.wikidata.org
mailto:antoine.willerval@the-qa-company.com
mailto:dennis.diefenbach@the-qa-company.com
mailto:pierre.maret@the-qa-company.com
https://orcid.org/0000-0003-2186-074X
https://orcid.org/0000-0002-0046-2219
https://orcid.org/0000-0001-5437-7725
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://www.wikidata.org/wiki/Wikidata:Statistics
https://www.youtube.com/watch?v=wn2BrQomvFU&t=2h38m48s
https://www.youtube.com/watch?v=wn2BrQomvFU&t=2h34m03s


also shown in a long standing issue4 to tackle this problem.
One option, suggested also by the community5, is to offer an easier setup to locally run a query
service over Wikidata. This would have mainly two consequences:

• the query service at https://query.wikidata.org would have to handle lower pressure
allowing a better service overall for all users;

• users querying the local setup would not be blocked due to the query limits of the public
endpoint6, and should experience less query timeouts since all the local resources would
be reserved for them.

While this option seems a viable approach it is technically challenging. The instructions provided
by Wikimedia7 to setup a local SPARQL endpoint state that: "it will take about 12 days to get all
data imported (into the triple-store), and another 12 days to make the query service catching up
the lag". Additionally one needs to add the time to download the dump. Moreover considerable
computing resources are necessary8 for the setup, i.e. a server with 100GB of RAM and 16 CPUs.
This explains why this solution is not widespread.
In this paper we present an alternative workflow to setup a local SPARQL endpoint over
Wikidata. In this version we restrict to a SPARQL endpoint over the truthy statements, but we
plan to extend it to the full dump. The workflow allows to setup a local SPARQL endpoint over
Wikidata in 3 hours9 that contains data that is not older then 24h and that can run on a laptop
with 16GB of RAM. This represents a huge improvement over the existing setup. As a side effect
we publish truthy dumps for Wikidata that are more up to date than the once published by
Wikidata itself. We achieve this by implementing a new indexing workflow and use a recently
created open source triple-store, the qEndpoint.

2. Definition

In this article we are using tools and algorithm, in this section we are describing them.

2.1. qEndpoint

The qEndpoint is a new triple-store that aims at making RDF datasets queriable at scale with low
hardware requirements. The qEndpoint combines two established Semantic-Web technologies
namely RDF4J[2]10 and HDT[3]11. RDF4J is a popular Java library that includes SPARQL
querying capabilities. It provides stores that are recommended only for datasets up to 200
million triples. On the other side, HDT is a compressed RDF dataset format scaling to billions of
triples, but it is read-only and it offers only the ability to search triple patterns (without offering

4https://phabricator.wikimedia.org/T206560
5Discussions were raised for example during the Wikidata Workshop at ISWC in 2020
6https://www.mediawiki.org/wiki/Wikidata_Query_Service/User_Manual#Query_limits
7https://www.mediawiki.org/wiki/Wikidata_Query_Service/User_Manual#Standalone_service
8https://addshore.com/2019/10/your-own-wikidata-query-service-with-no-limits/
9assuming a fast internet connection with 10Mb/s

10https://rdf4j.org
11https://www.rdfhdt.org

https://query.wikidata.org
https://phabricator.wikimedia.org/T206560
https://www.mediawiki.org/wiki/Wikidata_Query_Service/User_Manual#Query_limits
https://www.mediawiki.org/wiki/Wikidata_Query_Service/User_Manual#Standalone_service
https://addshore.com/2019/10/your-own-wikidata-query-service-with-no-limits/


full SPARQL support).
By taking inspiration on architectures developed in the relational databases world, the qEndpoint
combines the advantages of both HDT and RDF4J. It is highly scalable thanks to HDT and
supports updates and SPARQL syntax thanks to RDF4J.
The qEndpoint is available as an open source project at https://github.com/the-qa-company/
qEndpoint. It is already used for instance as a part of the infrastructure of the EU Knowledge
Graph[4]12 and is the index used by the question answering system QAnswer[5]1314.

2.2. HDTDiff and HDTCat

The compressed RDF dataset format HDT doesn’t supports updates by default, to fix this issue,
2 methods are available, HDTCat[6] and HDTDiff15.

2.2.1. HDTCat

This method allows to create the UNION of 2 HDT datasets into a new HDT dataset.

HDTCat(ℎ𝑑𝑡1, ℎ𝑑𝑡2) = ℎ𝑑𝑡1 ∪ ℎ𝑑𝑡2

2.2.2. HDTDiff

This method allows to remove triples from an HDT dataset to create a new HDT dataset. We
need to give it an HDT ℎ𝑑𝑡 and a bitmap 𝑏𝑚 of the size the number of triples of ℎ𝑑𝑡 if a bit 𝑖
= 1, the triple at the index 𝑖 in the HDT should be removed.

HDTDiff(ℎ𝑑𝑡, 𝑏𝑚) = {ℎ𝑑𝑡𝑖 | ℎ𝑑𝑡𝑖 ∈ ℎ𝑑𝑡 ∧ 𝑏𝑚𝑖 = 0}

3. Wikidata Indexing Workflow

In the following we describe the workflow that we use to index Wikidata. It makes an intensive
use of HDT and some of its related functions. The steps are depicted in Figure 1.

1. We take the truthy dump of Wikidata 16 at a given time 𝑡0 and we compress it obtaining
𝐻𝐷𝑇𝑡0 .

2. We fetch all the changes since 𝑡0 using the Wikimedia Recent Changes API17 and for each
of the changed entities we download its current turtle representation18. By concatenating
and compressing all these files we create an 𝐻𝐷𝑇𝛿 .

3. We use HDTDiff (2.2.2) to eliminate from 𝐻𝐷𝑇𝑡0 all triples having as a subject one of the
entities we fetched from the recent changes API to obtain 𝐻𝐷𝑇𝑡0−𝑚𝑖𝑛𝑢𝑠.

12https://linkedopendata.eu
13https://app.qanswer.ai
14https://wikidata.qanswer.ai
15https://github.com/rdfhdt/hdt-java/pull/153
16https://dumps.wikimedia.org/wikidatawiki/entities/
17https://www.mediawiki.org/wiki/API:RecentChanges
18for example for the entity Q1 https://www.wikidata.org/wiki/Special:EntityData/Q1.ttl?flavor=simple

https://github.com/the-qa-company/qEndpoint
https://github.com/the-qa-company/qEndpoint
https://github.com/rdfhdt/hdt-java/pull/153
https://dumps.wikimedia.org/wikidatawiki/entities/
https://www.mediawiki.org/wiki/API:RecentChanges
https://www.wikidata.org/wiki/Special:EntityData/Q1.ttl?flavor=simple


Figure 1: Wikidata changes merge workflow.

Step Time 1d (h) Time 3d (h)
Compress 𝑡0 49h
Fetch 𝐻𝐷𝑇𝛿 3h 8h

HDTDiff 2h 2h
HDTCat+Index 8h 8h

Total (no compress) 13h 18h

Table 1
Time to run each steps

4. Using HDTCat (2.2.1) we join 𝐻𝐷𝑇𝑡0−𝑚𝑖𝑛𝑢𝑠 with 𝐻𝐷𝑇𝛿 to obtain an up-to-date HDT.
Finally we compute the corresponding HDT index file.

5. We publish the newly updated Wikidata HDT.
6. We publish a docker image of the qEndpoint that downloads on demand the created

Wikidata HDT.

Note that the steps 1 to 5 are carried out by the publisher. The consumer, i.e. the person that
wants to set up the SPARQL endpoint, just needs to download the HDT file and its associated
index with the qEndpoint. No other loading time is required. In this case we take advantage of
HDT that highly compresses RDF datasets while offering triple pattern query capabilities.

The steps 1 to 5 are published in the Wiki-changes repository at https://github.com/the-qa-company/
wiki-changes/releases. Step 6 is a docker image that is available at https://hub.docker.com/
r/qacompany/qendpoint-wikidata. It bundles the qEndpoint and downloads at start time the
latest HDT index over Wikidata available at https://qanswer-svc4.univ-st-etienne.fr.

4. Experiments

First, we show the time that is necessary to generate a fresh index (i.e. steps 1 to 5). To run
Wiki-changes, we used a server with 32GB of RAM. The results are presented in the Table 1.
We made tests for an 1-day old HDT and a 3-day old HDT. The figures show that once we have
the 𝑡𝑛 HDT we can get a new up-to-date 𝑡𝑛+1 HDT in less than 18 hours (13 hours for a 1-day
old HDT), allowing a maximum difference of 1 day between our HDT and Wikidata.

Next, let’s consider the setup time. On the docker image, the download time of the image of
the qEndpoint is only a few minutes and is negligible. Once the container starts, the wikidata

https://github.com/the-qa-company/wiki-changes/releases
https://github.com/the-qa-company/wiki-changes/releases
https://hub.docker.com/r/qacompany/qendpoint-wikidata
https://hub.docker.com/r/qacompany/qendpoint-wikidata
https://qanswer-svc4.univ-st-etienne.fr


Endpoint # of Queries Total time (s) # of errors # cases faster
Official 3600 2256 3 110
Local 3600 1164 42 3490

Table 2
Difference during the querying over the local and the official endpoints.

index is downloaded from https://qanswer-svc4.univ-st-etienne.fr. The current size of the HDT
Wikidata index is 100GB. With a download speed of 10MB/s the endpoint can be setup in less
than 3 hours. We reproduced this number. Note that this is just 3 times slower then downloading
the full truthy dump19 of wikidata in bz2 format which is 32GB. A consequence of this is also
that the space requirement for the local endpoint is as little as 100GB on disk.

In the next step we analyze the performance of the SPARQL endpoint using the official query
log of Wikidata[7]. For our experiments we take the interval 7 dump20 which contains more
than 82 million queries fired against the endpoint in February and March 2018. We analyzed
the first 100.000 queries in the log. 11.378 contain the http://www.bigdata.com/ prefix. Most
notably this includes the functionality to get the labels of entities21. We exclude these queries
from our experiments since they are not covered by the SPARQL 1.1 standard. By excluding
this queries we obtain 88.622 queries. From these we exclude the once containing the prefix
http://www.wikidata.org/prop/statement/ which indicates a reefied statement which is not
included in the truthy dump. We get 84.250 remaining statements. This in particular means
that a large part of the query log is answerable by querying the truthy dump only.
We choose the first 3.600 queries of the interval 7 dump which satisfy the above criteria and run
them against the official Wikidata SPARQL endpoint and the local docker setup of the qEndpoint
(both configured with a timeout of 60 seconds). For the qEndpoint we configured the JVM to
use at maximum 6GB of memory22. We excluded 3 queries since they were running indefinitely
on the qEndpoint even with the timeout set due to a bug23. The results are depicted in Figure
2. Each square represents a query and the time difference between the answer time over the
qEndpoint and the official endpoint. Squares in green indicate queries that were answered
faster on the qEndpoint, and squares in red the queries that were answered faster on the public
endpoint. The colors are proportional to the time difference. Overall we can see in the Table 2
that for 3490 cases the qEndpoint gives better results in term of speed compared to the official
Wikidata SPARQL endpoint.

5. Conclusion

We have presented an alternative option to set up a local SPARQL endpoint over Wikidata. This
solution is quick (3 hours compared to several weeks), low in hardware requirements (only 6GB

19https://dumps.wikimedia.org/wikidatawiki/entities/
20https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en
21https://en.wikibooks.org/wiki/SPARQL/SERVICE_-_Label
22-Xmx setting of the JVM
23https://github.com/the-qa-company/qEndpoint/issues/80, https://github.com/eclipse/rdf4j/issues/636

https://qanswer-svc4.univ-st-etienne.fr
http://www.bigdata.com/
http://www.wikidata.org/prop/statement/
https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en
https://en.wikibooks.org/wiki/SPARQL/SERVICE_-_Label
https://github.com/the-qa-company/qEndpoint/issues/80
https://github.com/eclipse/rdf4j/issues/636


Figure 2: Comparative duration for 3600 queries over the Wikidata SPARQL endpoint and the local
endpoint. Green (resp. red) indicates that the local endpoint is faster (resp. slower) than the official
endpoint.

of RAM and 100GB of disk compared to 100GB of RAM and TBs of disk) and fast (it can handle
a large amount of real world queries faster than the existing endpoint).

We hope that the easy setup of a local Wikidata endpoint will allow to offer new types of
services around Wikidata that are not bounded by the limits imposed by the official Wikidata
SPARQL service. We hope also that this setup will move part of the workload away from the
public Wikidata endpoint so that it can be hosted in a more decentralized manner.

In future we aim at:

• integrating the above workflow and publishing new dumps regularly;
• releasing the same setup for the full Wikidata dump;
• allow a setup that follows live the changes of Wikidata or Wikibase implementations;
• implementing the SPARQL syntax introduced by Blazegraph in order to allow a full

compatibility in the current Wikibase ecosystem;
• evaluate the endpoint on a larger part of the query log;
• take more advantage of the internals of the qEndpoint for analytic queries which is an

interesting and exciting direction to further exploit the data published in Wikidata.

Acknowledgment: We would like to thank José M. Giménez-García for the discussions we
had while building this work. We would like to thank the HDT community for the amazing work



they have done, in particular the creators of HDT and more in particular Javier D. Fernández.
We would like the RDF4J community that provides a high quality library with amazing code
contributions.

References

[1] D. Vrandečić, M. Krötzsch, Wikidata: a free collaborative knowledgebase, Communications
of the ACM 57 (2014) 78–85.

[2] J. Broekstra, A. Kampman, F. v. Harmelen, Sesame: A generic architecture for storing and
querying rdf and rdf schema, in: International semantic web conference, Springer, 2002, pp.
54–68.

[3] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, M. Arias, Binary rdf
representation for publication and exchange (hdt), Journal of Web Semantics 19 (2013)
22–41.

[4] D. Diefenbach, M. D. Wilde, S. Alipio, Wikibase as an infrastructure for knowledge graphs:
The eu knowledge graph, in: International Semantic Web Conference, Springer, 2021, pp.
631–647.

[5] D. Diefenbach, A. Both, K. Singh, P. Maret, Towards a question answering system over the
semantic web, Semantic Web 11 (2020) 421–439.

[6] D. Diefenbach, J. M. Giménez-García, Hdtcat: let’s make hdt generation scale, in: Interna-
tional Semantic Web Conference, Springer, 2020, pp. 18–33.

[7] S. Malyshev, M. Krötzsch, L. González, J. Gonsior, A. Bielefeldt, Getting the most out of
wikidata: semantic technology usage in wikipedia’s knowledge graph, in: International
Semantic Web Conference, Springer, 2018, pp. 376–394.


	1 Introduction
	2 Definition
	2.1 qEndpoint
	2.2 HDTDiff and HDTCat
	2.2.1 HDTCat
	2.2.2 HDTDiff


	3 Wikidata Indexing Workflow
	4 Experiments
	5 Conclusion

