
Property cardinality analysis to extract truly tabular
query results fromWikidata
Wolfgang Fahl1, Tim Holzheim1, Andrea Westerinen2, Christoph Lange1,3 and
Stefan Decker1,3

1RWTH Aachen University, Computer Science i5, Aachen, Germany
2OntoInsights LLC, Elkton, MD, United States
3Fraunhofer FIT, Sankt Augustin, Germany

Abstract
Tabular views of data with tables, columns and rows as the key concepts are still a popular basis for
data analysis and storage, used in relational database management systems and spreadsheet software.
Graph based approaches are a superset of the tabular view and use vertices and edges/properties as
the key concepts to manage the data. A common way to store graph data is using subject, predicate
and object triples in a “triple store”. For quite a few use cases, transforming the triple store data to
a tabular view is needed since tabular systems are still widespread. The straightforward approach to
generating such data using a “naive” query will, however, create unexpected results or even fail because
of conceptual differences between the relational and the graph approaches regarding the handling of the
cardinality/multiplicity of properties.

This work shows a systematic approach to analyze the property cardinalities of the graph data in an
RDF/SPARQL triple store and to extract “truly tabular” data (with cardinalities of 1 in each column) by
automatically generating appropriate queries. We propose a SPARQL query builder that simplifies the
generation of queries that limit the result set to such “truly tabular” data.

Keywords
Wikidata, RDF, SPARQL

1. Introduction

In recent years Wikidata [1] has grown from an encyclopedic knowledge graph to a community
curated general knowledge graph with subgraphs for diverse special interest subcommunities,
such as scholarly articles, astronomical objects, people, Wikimedia assets, chemical compounds,
etc., with niches for items such as Pokémon and “Game of Thrones” characters.

The work discussed in this paper is motivated by the frustration we experienced when trying
to extract academic conference data from RDF datasets as supplied by the German National
Library (in its GND dataset) or by Wikidata. Our experience with the GND dump1 as shown in
Table 1 shows that the RDF dataset has content that creates surprising effects when using a
straightforward/naive query to select the intended data. E.g., of the 731K conference entries in

Wikidata’22: Wikidata workshop at ISWC 2022
� 0000-0002-0821-6995 (W. Fahl); 0000-0003-2533-6363 (T. Holzheim); 0000-0002-8589-5573 (A. Westerinen);
0000-0001-9879-3827 (C. Lange); 0000-0001-6324-7164 (S. Decker)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://wiki.bitplan.com/index.php/Truly_Tabular_RDF/GND

https://wiki.bitplan.com/index.php/Truly_Tabular_RDF/GND
https://orcid.org/0000-0002-0821-6995
https://orcid.org/0000-0003-2533-6363
https://orcid.org/0000-0002-8589-5573
https://orcid.org/0000-0001-9879-3827
https://orcid.org/0000-0001-6324-7164
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Table 1
GND authorities-kongress property multiplicity

property gnd total unique min max avg
eventId gnd:gndIdentifier 731651 731651 1 1 1
title gnd:preferredNameForTheConferenceOrEvent 731645 731645 0 1 0.999992
acronym gnd:abbreviatedNameForTheConferenceOrEvent 3537 3206 0 4 0.00483
sameAs owl:sameAs 769120 693077 0 20 1.05
variant gnd:variantNameForTheConferenceOrEvent 632368 229268 0 41 0.86
date gnd:dateOfConferenceOrEvent 710819 704949 0 9 0.971
areaCode gnd:geographicAreaCode 797037 612631 0 11 1.089
place gnd:placeOfConferenceOrEvent 659305 624667 0 18 0.901
topic gnd:topic 5061 3520 0 6 0.00691
homepage gnd:homepage 19011 18702 0 3 0.026
prec gnd:homepage 12182 12106 0 3 0.0166
succ gnd:homepage 11974 11929 0 3 0.0163

the dataset, only 3206 have a unique acronym, only 0.4% of the records have acronyms at all, and
some conferences have up to 4 different ones. When querying the dataset with a “naive” query2,
we had single conferences having 1 query solution (known as a “binding set”), while others
had up to 576 query solutions. We learned that we had to analyze our data for cardinalities and
adapt the SPARQL query accordingly.

The problem showed up again when querying Wikidata, and the research question arose,
“How could duplicate query solutions be avoided and queries be generated for tabular target
systems?”

To better describe the problem, consider a novice user with a “tabular” (SQL) background
attempting to query Wikidata to extract a table full of information of interest - data related
to “Game of Throne” characters. Very likely, they are unfamiliar with the details of SPARQL
multiset semantics (as outlined by Angles [2]).

In Wikidata, a “Game of Thrones” character (such as Jon Snow3) would be linked via an
“instance of”4 property to the type “Game of Thrones” character5. Retrieving all instances of
Game of Thrones characters would simply check for all items of that type (117 at the time of
writing this work). It is natural to now create a query to get a table of all Game of Thrones
characters with columns for their most interesting aspects.

We might start using the Wikidata Query Service [3] and one of its examples. Let us select
the first “Cats” sample from the many examples provided at Wikidata SPARQL examples web
page6. We will refine the example for our purposes with properties related to Jon Snow.

We might thus create a “naive” query7 without aggregates as it would work in SQL out of
the box. The result of executing this query appears to be nicely tabular and can be exported to
CSV to then be imported to our favorite relational database or spreadsheet. However, when

2https://wiki.bitplan.com/index.php/GOTExample2022#NaiveGOTQuery2
3https://www.wikidata.org/wiki/Q3183235
4https://www.wikidata.org/wiki/Property:P31
5https://www.wikidata.org/wiki/Q20086263
6https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples
7https://wiki.bitplan.com/index.php/GOTExample2022#NaiveGOTQuery1

https://wiki.bitplan.com/index.php/GOTExample2022#NaiveGOTQuery2
https://www.wikidata.org/wiki/Q3183235
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Q20086263
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples
https://wiki.bitplan.com/index.php/GOTExample2022#NaiveGOTQuery1

examining the results, the table does not contain 117 entries (all the documented Game of
Thrones characters) but only 28.

SPARQL queries do not return NULL values as a SQL/relational database query language [4]
would. The SPARQL query needs to be amended with the “OPTIONAL” keyword as shown in
the second naive query8 to return either a value or to leave a query variable unbound in case of
no match.

Next, suppose a bit more information is needed and 3 more properties are requested. The
result of this third naive query9 leads to a new surprise for the novice. Suddenly the query
result has 304 rows for our 117 characters. There are duplicate rows for each character and
strange combinations of entries. A troublesome example seems to be Jorah Mormont10 having
8 different values for “occupation”.

Given this problem statement, we explore the basic concepts upon which this work is based
in Section 2. Sections 3 and 4 overview how property cardinality analyses are performed (and
can be automated), as well as the results of analyzing various Wikidata item types. Section 5
discusses related work; Section 6 concludes.

1.1. Data management design choices

Viewing the world in terms of tables vs. graphs makes a major difference in your approach to
data management.

A tabular design is more straightforward than a graph design since it forces dealing with
multi-valued properties in a very explicit manner. In each row, a column has exactly one
entry. In a graph, this restriction is relaxed and multiple values per property (i.e., column)
are possible. This calls for an implicit 1 : 𝑛 relation for the property’s domain and range.
Unfortunately, introducing the 1 : 𝑛 relation is often not an explicit design decision but happens
accidentally (due to multi-valued data being entered by chance) or might be motivated by
specific requirements. Note that the use of multi-valued properties can be a legitimate design
choice.

Choosing a tabular design to avoid complexity is not easy in a graph environment, especially
if data and schema are not well documented or controlled. This is the case with many datasets
in an RDF/SPARQL based system, such as Wikidata or GND [5]11.

Using a “naive” approach for handling data in RDF/SPARQL directly translates SQL thinking to
SPARQL. However, as discussed above, this leads to surprising results. Following the “principle
of least astonishment” [6]12, it is desirable to get a more consistent result by applying the “truly
tabular” approach.

8https://wiki.bitplan.com/index.php/GOTExample2022#NaiveGOTQuery2
9https://wiki.bitplan.com/index.php/GOTExample2022#NaiveGOTQuery3

10https://www.wikidata.org/wiki/Q3810007
11The main catalog of the German National Library has embraced an RDF ontology from 2012
12If a feature is accidentally misapplied by the user and causes what appears to him to be an unpredictable result,

that feature has a high astonishment factor and is therefore undesirable. If a feature has a high astonishment factor,
it may be necessary to redesign the feature

https://wiki.bitplan.com/index.php/GOTExample2022#NaiveGOTQuery2
https://wiki.bitplan.com/index.php/GOTExample2022#NaiveGOTQuery3
https://www.wikidata.org/wiki/Q3810007

2. Basic concepts

2.1. Tables

Relational databases based on tables, columns and rows were proposed by E. F. Codd in 1970 [7].
Codd discusses the relational view (or model): “It appears to be superior in several respects to
the graph or network model . . . It provides a means of describing data with its natural structure
only–that is, without superimposing any additional structure for machine representation purposes”.
The “natural structure” for many use cases thus is a tabular structure with rows and columns.
SQL/SEQUEL [4] is the query language that has been in use for more than four decades for
describing and querying data in a ubiquitous fashion.

• A table 𝑡 is a subset of the cartesian product 𝐷1 × · · · ×𝐷𝑛. 𝑡 has 𝑛 attributes 𝑎1 . . . 𝑎𝑛.
Each attribute 𝑎𝑘 has a domain 𝐷𝑘 , and any given row of 𝑟 is an 𝑛-tuple (𝑡1, . . . , 𝑡𝑛) such
that 𝑡𝑘 ∈ 𝐷𝑘.

• A table is in first normal form (1NF) if all domains 𝐷𝑘 are atomic, i.e., no domain 𝐷𝑘 is
composed of other atoms.

2.2. Graphs

A graph 𝐺 = (𝑉,𝐸) has a set of vertices 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and a set of edges 𝐸 =
{𝑒1, 𝑒2, . . . , 𝑒𝑚} where each edge 𝑒𝑘 is a pair (𝑣𝑖, 𝑣𝑗) defining the connected vertices. Graph
data may be stored in RDF [8] triple stores and queried using the SPARQL query language
defined by the W3C [9].

2.3. Classes/Types

The concepts of classes (also known as types) are defined in the W3C specifications for RDF:
Resources may be divided into groups called classes. The members of a class are known as instances
of the class. Classes are themselves resources [10]. Similarly for OWL, the initial specification
stated that Classes provide an abstraction mechanism for grouping resources with similar charac-
teristics [11]. This evolved in OWL2 to Classes can be understood as sets of individuals [12]. Note
that classes/types are the vertices of a graph.

Wikidata uses the Property P31/“instance of” to assign classes to instances. Properties are
the edges of a graph. SPARQL allows querying instances of a specific class as well as querying
other properties.

2.4. SPARQL query results and cardinalities

A SPARQL query result is a solutions sequence (or “binding sets”), which might be unordered [13,
9]. A solution is defined by a mapping of variables to RDF terms. For in depth-definitions, see
[2].

In the context of this work the concept of the cardinality (also called multiplicity or frequency)
of properties is relevant. We define the cardinality of a property (also called max frequency,
maxf) with respect to an instance as the maximum number of RDF triples selected by the
basic graph pattern, <instanceIdentifier> <propertyIdentifier> ?value. (See GND Query to analyze

https://wiki.bitplan.com/index.php/Truly_Tabular_RDF/GND
https://wiki.bitplan.com/index.php/Truly_Tabular_RDF/GND

multiplicity13: for a concrete SPARQL example.) In general, a SPARQL graph pattern is written
as <subjIdentifierOrVariableName> <propertyIdentifierOrVariableName> <objectIdentifierOrVari-
ableName>.

Expanding on this pattern, all instances of a particular class can be queried using ?item a
<classIdentifier>. However, the problem is a bit more complex. You may want all instances
of the class AND any of its subclasses. This requires using SPARQL property paths, and in
Wikidata is written as ?item wdt:P31/wdt:P279* <classIdentifier> (see Wikidata basic membership
properties14). The query result is then grouped by the ?item to count the property values per
class instance.

2.5. Truly Tabular SPARQL SELECT query results

A Truly tabular SPARQL SELECT query result is a solution sequence where

• each RDF term (column) is functionally dependent on a property of a specific class
• each tuple of RDF terms (row) represents a single instance of a class so that the cardinality

/ entry count is limited by:

𝑛∏︁
col=0

max(entrycount(table, column)) = 1

I.e., for each row (an instance for which data is provided) and column (a property that
has some value) in a table, there is only one value15).

For example, for a list of instances of people (class: human/Q5), there might be properties
indicating their date of birth, their country of residence, a contact phone number and their
marital status. Properties such as date of birth, country of residence and marital status should
be single-valued for any specific person, whereas there may be multiple contact phone numbers.
In this case, the single-valued properties would lead to “truly tabular” query results while the
list of contact phone numbers column needs to be specified by its own RDF term in the solution
mapping using the SPARQL GROUP_CONCAT aggregate to avoid multiple rows per person.

Obtaining such tabular query results directly is much easier than having to post-process the
data to make it compatible with systems expecting tabular data.

Since often only a few instances of a specific class have multi-valued attributes (such as
persons with multiple genders), it is simpler to handle the standard cases with single-valued
attributes and account for the special cases with extra aggregate columns such as COUNT, MIN,
MAX and GROUP_CONCAT.

Combining the tabular standard view on data with the aggregate view containing the special
cases allows handling the special cases with standard tabular tools such as spreadsheets.

Our definition of “truly tabular” corresponds to the first normal form of relational database
theory. In practice it is not clear whether the first normal form (1NF) is violated if an attribute
holds a value that has a datatype that is non relational such as a string but the content is

13https://wiki.bitplan.com/index.php/Truly_Tabular_RDF/GND
14https://www.wikidata.org/wiki/Help:Basic_membership_properties
15Note that the value does not have to be atomic in the pure sense - see comments below

https://wiki.bitplan.com/index.php/Truly_Tabular_RDF/GND
https://wiki.bitplan.com/index.php/Truly_Tabular_RDF/GND
https://wiki.bitplan.com/index.php/Truly_Tabular_RDF/GND
https://www.wikidata.org/wiki/Help:Basic_membership_properties
https://www.wikidata.org/wiki/Help:Basic_membership_properties

SELECT ?count (COUNT(?count) AS ?frequency) WHERE {
SELECT ?item ?itemLabel (COUNT (?value) AS ?count)
WHERE {

instance of Game of Thrones character
?item wdt:P31 wd:Q20086263.
?item rdfs:label ?itemLabel.
FILTER (LANG(?itemLabel) = "en").
cause of death
?item wdt:P509 ?value.

} GROUP BY ?item ?itemLabel
} GROUP BY ?count
ORDER BY DESC (?frequency)

Listing 1: SPARQL Query to count property data availability

multi-valued by using a delimiter separated list of entries. "A,B,C" could be interpreted as an
atomic value or as a list of three items. If the latter, the table would not be in 1NF any more.

IBM DB2 designer Christopher J. Date states that "The 1970 paper fails to define the term
atomic value adequately. This failure led to a massive misunderstanding in the database
community at large as to what exactly it means to say a relation is in first normal form — a
misunderstanding that persists, widely, to the present day." [14]

Therefore, the "true tabularity" of a table is in the eyes of the observer.

3. Analyzing property cardinalities

Analyzing the cardinalities of the properties related to a class is done in three steps. First a
count query determines the total number of instances in the class, then a property count query
selects all properties that any instance of the class might use along with the number of instances
that actually provide data for that property. In the third step, a query per property is performed
that reports the actual cardinality statistics per property. Listing 1 shows an example for the
property “cause of death” of the class “Game of Thrones” character. (Note that the property P279
is not necessary since we know that there are no subclasses defined for the class Q20086263.)

To automate the cardinality analysis, we created a tool that will be enhanced to become a
SPARQL query builder: http://wikidata.bitplan.com16.

Figure 1 shows an exemplary screen shot after starting the analysis for the class Game of
Thrones Character(Q20086263).

16http://wikidata.bitplan.com

http://wikidata.bitplan.com

Figure 1: Truly Tabular Property Cardinality Analysis prototype screenshot

4. Results

4.1. Examples

The two figures 2, 3 show how “truly tabular” the instances of the classes scientific conference
series (Q47258130)17 and academic conference (Q2020153)18 are. The examples are in the focus
of the ConfIDent[15] project that partly funded this work. The explanation of the details of the
columns of the property statistics are available on a wiki page19. 11 properties are available for
more than 20% of the 4244 scientific conference series instances. The external IDs are not unique
for a small percentage of corner cases of less than 0.5%. There may be up to three different titles
in 6 cases.

13 properties are available for more than 20% of the 7765 academic conference instances. The
external IDs are not unique for a small percentage of corner cases of less than 0.2%. There may
be up to 14 different locations in 30 cases and multiple start and end dates and titles in less than
0.3% of the cases.

The distribution of the cardinality of properties for classes is a data quality indicator for how
well the instance data of this class is curated. Table 2 shows a table of classes and the number of
instances available in Wikidata as of 2022-07. The columns total, 80%, 20% and tail denote the
number of properties in total and the number of instances where the percentage of instances
where at least one value is available for the property is higher than 80% versus 20% according
to the pareto principle. The tail column shows the percentage of properties being available in

17https://www.wikidata.org/wiki/Q47258130
18https://www.wikidata.org/wiki/Q2020153
19https://wiki.bitplan.com/index.php/Truly_Tabular_RDF/Info

https://www.wikidata.org/wiki/Q47258130
https://www.wikidata.org/wiki/Q47258130
https://www.wikidata.org/wiki/Q2020153
https://wiki.bitplan.com/index.php/Truly_Tabular_RDF/Info

Figure 2: Truly Tabular analysis for Scientific Conferences Series in Wikidata

Figure 3: Truly Tabular analysis for class Academic Conference (Q2020153) in Wikidata

less than 20% of the cases.
Typically the encyclopedic classes such as country or continent with a small number of

instances to curate have a long list of well defined properties. Alternately, a concept such as
“single” (a record with a single or just a few music items) is an example of a probably crowd-

sourced class that has a lot of instances but only a few well curated properties. Human(Q5) is
one of the classes with the highest number of instances. Only two properties P31/instance of
and P21/sex or gender are available in more than 80% of the cases. There are only 12 properties
which are available in 20% of the cases but 4647 properties in total that makes 99.7% of properties
are rarely available.

Table 2
Pareto comparison of properties of some example classes

class # instances total 80% 20% tail
country (Q6256)20 186 668 143 252 62%
continent (Q5107)21 13 251 9 143 53%
human (Q6256)22 10027613 4647 2 12 99.7%
million city (Q1637706)23 624 661 20 80 87%
single (Q134556)24 99048 451 3 13 97%

5. Related Work

A recent survey by Fiorelli [16] covers several systems for the triplification of tabular data. Such
systems are an alternative to make sure that “truly tabular” results are imported.

Gleim [17] applies a compact trie-based representation of property and type co-occurrences
to recommend properties to be used for items. This means that the recommender proposes
columns that should be filled. The tabularity will only be influenced if more than one entry is
added for the recommended property. The inclusion of the values of properties and especially
their multiplicity are not considered in the property recommendation.

Lisena [18] handles the case when the number of properties that have multiple values grows
(e.g., multilingual names, multilingual descriptions, a set of images, ...). A SPARQL query of
these properties would return many results, one for each combination of values. A merging
procedure is proposed such that the resulting JSON has a tree structure. The intended “list”
aggregate option of our approach creates an equivalent result.

6. Conclusion

Property cardinality analysis is necessary to obtain SPARQL query results appropriate for
tabular view target systems such as relational databases or spreadsheets. Property cardinality
analysis can be useful for various applications such as the development of semantic alignments
using OpenRefine25, the analysis of the completeness of the description of an entity using tools
such as Recoin[19], and the adjustment of the definition of Wikidata statements

We propose a property cardinality analysis and SPARQL query builder tool that simplifies
the generation of queries to limit the result set to “truly tabular” data.

Even in its current experimental state, the analysis and query builder results are a strong
basis for future work. Potential extensions include data quality analysis, instance-level ontology

25https://github.com/OpenRefine/OpenRefine

https://www.wikidata.org/wiki/Q6256
https://www.wikidata.org/wiki/Q5107
https://www.wikidata.org/wiki/Q6256
https://www.wikidata.org/wiki/Q1637706
https://www.wikidata.org/wiki/Q134556
https://github.com/OpenRefine/OpenRefine

validation and benchmarking of SPARQL endpoints.
Further details and example are made available at https://wiki.bitplan.com/index.php/Truly_

Tabular_RDF.

Acknowledgements. This research has been partly funded by a grant of the Deutsche
Forschungsgemeinschaft (DFG). 26

References

[1] D. Vrandečić, M. Krötzsch, Wikidata, Communications of the ACM 57 (2014) 78–85.
doi:10.1145/2629489.

[2] R. Angles, C. Gutiérrez, The multiset semantics of SPARQL patterns, in: P. Groth, E. Simperl,
A. J. G. Gray, M. Sabou, M. Krötzsch, F. Lécué, F. Flöck, Y. Gil (Eds.), The Semantic Web -
ISWC 2016 - 15th International Semantic Web Conference, Kobe, Japan, October 17-21, 2016,
Proceedings, Part I, volume 9981 of Lecture Notes in Computer Science, 2016, pp. 20–36. URL:
https://doi.org/10.1007/978-3-319-46523-4_2. doi:10.1007/978-3-319-46523-4_2.

[3] Wikimedia Foundation, Wikidata query service, 2022. URL: https://query.wikidata.org/.
[4] D. D. Chamberlin, R. F. Boyce, SEQUEL: A structured english query language, in:

G. Altshuler, R. Rustin, B. D. Plagman (Eds.), Proceedings of 1974 ACM-SIGMOD Work-
shop on Data Description, Access and Control, Ann Arbor, Michigan, USA, May 1-3,
1974, 2 Volumes, ACM, 1974, pp. 249–264. URL: https://doi.org/10.1145/800296.811515.
doi:10.1145/800296.811515.

[5] A. Haffner, GND ontology, 2012. URL: https://d-nb.info/standards/elementset/gnd.
[6] M. Cowlishaw, The design of the REXX language, ACM SIGPLAN Notices 22 (1987) 26–35.

doi:10.1145/24686.24687.
[7] E. F. Codd, A relational model of data for large shared data banks, Communications of the

ACM 13 (1970) 377–387. doi:10.1145/362384.362685.
[8] R. Cyganiak, D. Wood, M. Lanthaler, RDF 1.1 concepts and abstract syntax, 2014. URL:

https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.
[9] S. Harris, A. Seaborne, SPARQL 1.1 query language, 2013. URL: https://www.w3.org/TR/

sparql11-query/.
[10] D. Brickley, R. Guha, RDF schema 1.1: Classes, 2014. URL: https://www.w3.org/TR/

rdf-schema/#ch_classes.
[11] S. Bechhofer, et al., OWL web ontology language reference, 2004. URL: https://www.w3.

org/TR/owl-ref/#Class.
[12] C. Bock, A. Fokoue, P. Haase, et al., OWL 2 web ontology language structural specifi-

cation and functional-style syntax (second edition), 2012. URL: https://www.w3.org/TR/
owl2-syntax/#Classes.

[13] E. Prud’hommeaux, A. Seaborne, SPARQL query language for rdf, 2008. URL: https://www.
w3.org/TR/rdf-sparql-query/.

[14] C. J. Date, Codd’s first relational papers: a critical analysis, 2015. URL: https://www.dcs.
warwick.ac.uk/~hugh/TTM/CJD-on-EFC%27s-First-Two-Papers.pdf.

26ConfIDent project; see https://gepris.dfg.de/gepris/projekt/426477583

https://wiki.bitplan.com/index.php/Truly_Tabular_RDF
https://wiki.bitplan.com/index.php/Truly_Tabular_RDF
http://dx.doi.org/10.1145/2629489
https://doi.org/10.1007/978-3-319-46523-4_2
http://dx.doi.org/10.1007/978-3-319-46523-4_2
https://query.wikidata.org/
https://doi.org/10.1145/800296.811515
http://dx.doi.org/10.1145/800296.811515
https://d-nb.info/standards/elementset/gnd
http://dx.doi.org/10.1145/24686.24687
http://dx.doi.org/10.1145/362384.362685
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/rdf-schema/#ch_classes
https://www.w3.org/TR/rdf-schema/#ch_classes
https://www.w3.org/TR/owl-ref/#Class
https://www.w3.org/TR/owl-ref/#Class
https://www.w3.org/TR/owl2-syntax/#Classes
https://www.w3.org/TR/owl2-syntax/#Classes
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://www.dcs.warwick.ac.uk/~hugh/TTM/CJD-on-EFC%27s-First-Two-Papers.pdf
https://www.dcs.warwick.ac.uk/~hugh/TTM/CJD-on-EFC%27s-First-Two-Papers.pdf
https://gepris.dfg.de/gepris/projekt/426477583

[15] Technische Informationsbibliothek (TIB), ConfIDent – a service for open research infor-
mation on conferences, 2020. URL: https://projects.tib.eu/en/confident/.

[16] M. Fiorelli, A. Stellato, Lifting tabular data to RDF: A survey, in: Metadata and
Semantic Research, Springer International Publishing, 2021, pp. 85–96. doi:10.1007/
978-3-030-71903-6_9.

[17] L. C. Gleim, R. Schimassek, D. Hüser, M. Peters, C. Krämer, M. Cochez, S. Decker,
SchemaTree: Maximum-likelihood property recommendation for wikidata, in: The
Semantic Web, Springer International Publishing, 2020, pp. 179–195. doi:10.1007/
978-3-030-49461-2_11.

[18] P. Lisena, A. Meroño-Peñuela, T. Kuhn, R. Troncy, Easy web API development with SPARQL
Transformer, in: C. Ghidini, O. Hartig, M. Maleshkova, V. Svátek, I. Cruz, A. Hogan, J. Song,
M. Lefrançois, F. Gandon (Eds.), The Semantic Web – ISWC 2019, Springer International
Publishing, Cham, 2019, pp. 454–470. doi:10.1007/978-3-030-30796-7_28.

[19] V. Balaraman, S. Razniewski, W. Nutt, Recoin, in: Companion of the The Web Conference
2018 on The Web Conference 2018 - WWW '18, ACM Press, 2018, p. 1787.–1792. doi:10.
1145/3184558.3191641.

https://projects.tib.eu/en/confident/
http://dx.doi.org/10.1007/978-3-030-71903-6_9
http://dx.doi.org/10.1007/978-3-030-71903-6_9
http://dx.doi.org/10.1007/978-3-030-49461-2_11
http://dx.doi.org/10.1007/978-3-030-49461-2_11
http://dx.doi.org/10.1007/978-3-030-30796-7_28
http://dx.doi.org/10.1145/3184558.3191641
http://dx.doi.org/10.1145/3184558.3191641

	1 Introduction
	1.1 Data management design choices

	2 Basic concepts
	2.1 Tables
	2.2 Graphs
	2.3 Classes/Types
	2.4 SPARQL query results and cardinalities
	2.5 Truly Tabular SPARQL SELECT query results

	3 Analyzing property cardinalities
	4 Results
	4.1 Examples

	5 Related Work
	6 Conclusion

