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Abstract
Propositional SAT solvers have been a popular way of computing justifications for ontological entailment–
minimal subsets of axioms of the ontologies that entail a given conclusion. Most SAT encodings proposed
for Description Logics (DLs), translate the inferences obtained by a consequence-based procedure to
propositional Horn clauses, using which entailments from subsets of axioms can be effectively checked,
and use modified SAT solvers to systematically search over these subsets. To avoid repeated discovery of
subsets with already checked entailment, the modified SAT solvers add special blocking clauses that
prevent generating truth assignments corresponding to these subsets, the number of which can be
exponential, even if the number of justifications is small. In this paper, we propose alternative SAT
encodings that avoid generation of unnecessary blocking clauses. Unlike the previous methods, the
inferences are used not only for checking entailment from subsets of axioms, but also, as a part of the
encoding, to ensure that the SAT solver generates truth assignments corresponding only to justifications.
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1. Introduction

Most Description Logic Reasoners, such as CEL [1], ELK [2], FacT++ [3], HermiT [4], Konclude
[5], and Pellet [6], can answer yes/no questions about ontological entailment, but very few
reasoners can explain why the entailment holds or does not hold. Axiom pinpointing methods
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] try to explain entailments by determining (some or all)
minimal subsets of axioms in the ontology that cause the entailment—the so-called justifications
or minimal axiom sets (MinAs). A dual notion to justification is a repair or minimal correction
set (MCS)—a minimal set of axioms the removal of which breaks the entailment.

One usually distinguishes between black-box and glass-box axiom pinpointing procedures.
Black-box procedures use only the yes/no answers provided by the reasoner, whereas glass-
box procedures also use other information, such as the set of inferences applied during the
entailment test. The set of inferences can be generated using consequence-based procedures
[19, 20, 21, 22] implemented by reasoners, such as CEL [1], CB [20], ELK [2], ConDOR [21],
or Sequoia [23]. Using a set of inferences, for example, one can quickly test entailments from
subsets of the ontology without using the reasoner. One of the popular approaches is to encode
inferences as propositional Horn clauses and use propositional satisfiability (SAT) solvers to
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test entailments from candidate subsets [9, 14, 15, 18]. To avoid generation of subsets that have
been already tested (or for which the answer already follows from previous tests), the methods
add blocking clauses, which force the SAT solver to generate new models. However, in general,
the number of blocking clauses can be exponential in the number of justifications. In this paper,
we propose alternative SAT encodings that use the inferences to avoid generation of models
(and hence of blocking clauses) that are not relevant for computing justifications or repairs.

2. Preliminaries

We assume the standard syntax and semantics of Description Logics (DLs) such as 𝒜ℒ𝒞 (see,
e.g., [24]). Suppose that |= is an entailment relation between an ontology 𝒪 and an axiom 𝛼. A
justification for the entailment 𝒪 |= 𝛼 is a minimal subset 𝑀 ⊆ 𝒪 such that 𝑀 |= 𝛼. A repair
for 𝒪 |= 𝛼 is a minimal subset 𝑀 ⊆ 𝒪 such that 𝒪 ∖𝑀 ̸|= 𝛼.

Example 1. Consider the ontology 𝒪 = {𝐴 ⊑ 𝐵, 𝐵 ⊑ 𝐶, 𝐴 ⊑ 𝐷, 𝐵 ⊓ 𝐶 ⊑ ⊥} and 𝛼 =
𝐴 ⊑ 𝐶 ⊓𝐷. The entailment 𝒪 |= 𝛼 has 2 justifications: 𝑗1 = {𝐴 ⊑ 𝐵, 𝐵 ⊑ 𝐶, 𝐴 ⊑ 𝐷} and
𝑗2 = {𝐴 ⊑ 𝐵, 𝐵 ⊑ 𝐶, 𝐵 ⊓ 𝐶 ⊑ ⊥}, and 3 repairs: 𝑟1 = {𝐴 ⊑ 𝐵}, 𝑟2 = {𝐵 ⊑ 𝐶}, and
𝑟3 = {𝐴 ⊑ 𝐷, 𝐵 ⊓ 𝐶 ⊑ ⊥}.

An inference is an expression inf of the form ⟨𝛼1, . . . , 𝛼𝑛 ⊢ 𝛼⟩where 𝛼1, . . . , 𝛼𝑛 is a (possibly
empty) sequence of axioms called the premises of inf , and 𝛼 is an axiom called the conclusion of
inf . An inference ⟨𝛼1, . . . , 𝛼𝑛 ⊢ 𝛼⟩ is sound if {𝛼1, . . . , 𝛼𝑛} |= 𝛼.

Let I be a set of inferences. An I-derivation from 𝒪 is a sequence of inferences 𝑑 =
⟨inf1, . . . , inf𝑘⟩ from I such that for every 𝑖 with 1 ≤ 𝑖 ≤ 𝑘, and each premise 𝛼 of inf𝑖
that is not in 𝒪, there exists 𝑗 < 𝑖 such that 𝛼 is the conclusion of inf𝑗 . An axiom 𝛼 is
derivable from 𝒪 using I (notation: 𝒪 ⊢I 𝛼) if either 𝛼 ∈ 𝒪 or there exists an I-derivation
𝑑 = ⟨inf1, . . . , inf𝑘⟩ from 𝒪 such that 𝛼 is the conclusion of inf𝑘. A set of inferences I is
complete for the entailment 𝒪 |= 𝛼 if 𝑀 |= 𝛼 implies 𝑀 ⊢I 𝛼 for every subset 𝑀 ⊆ 𝒪.

Example 2 (Example 1 continued). Consider a set I consisting of the following inferences:

inf1: ⟨𝐴 ⊑ 𝐵, 𝐵 ⊑ 𝐶 ⊢ 𝐴 ⊑ 𝐶⟩,
inf2: ⟨𝐴 ⊑ 𝐶, 𝐴 ⊑ 𝐷 ⊢ 𝐴 ⊑ 𝐶 ⊓𝐷⟩,
inf3: ⟨𝐴 ⊑ 𝐵, 𝐴 ⊑ 𝐶 ⊢ 𝐴 ⊑ 𝐵 ⊓ 𝐶⟩,

inf4: ⟨𝐴 ⊑ 𝐵 ⊓ 𝐶, 𝐵 ⊓ 𝐶 ⊑ ⊥ ⊢ 𝐴 ⊑ ⊥⟩,
inf5: ⟨ ⊢ ⊥ ⊑ 𝐶 ⊓𝐷⟩,
inf6: ⟨𝐴 ⊑ ⊥, ⊥ ⊑ 𝐶 ⊓𝐷 ⊢ 𝐴 ⊑ 𝐶 ⊓𝐷⟩.

Inference inf5 has no premises; all other inferences have 2 premises. Clearly, all inferences are
sound. For axiom 𝛼, and justifications 𝑗1 and 𝑗2 from Example 1, we have 𝑗1 ⊢I 𝛼 and 𝑗2 ⊢I 𝛼 due
to the derivation 𝑑1 = ⟨inf1, inf2⟩ and 𝑑2 = ⟨inf1, inf3, inf4, inf5, inf6⟩ respectively. Therefore, I
is complete for the entailment 𝒪 |= 𝛼.

Note that if 𝒪 ̸|= 𝛼 then the entailment 𝒪 |= 𝛼 has no justification, has a single repair 𝑟 = ∅
and any set of inferences I is complete for 𝒪 |= 𝛼.



3. SAT-Based Axiom Pinpointing

In this section, we describe the MARCO algorithm for computing justifications and repairs [25].
This algorithm can be regarded sa a common basis of most SAT-based axiom pinpointing tools
such as EL+SAT [9, 26], EL2MUS [14], SATPin [15, 18], and BEACON [27]. Although these
methods are frequently regarded as glass-box procedures, the additional information provided by
the reasoner is used only to speed up the entailment tests performed by the MARCO algorithm.

Given an ontology 𝒪 and an axiom 𝛼 the algorithm computes the set of all justifications
𝐽 and minimal repairs 𝑅 for the entailment 𝒪 |= 𝛼 (which may or may not hold). The basic
idea is as follows. Each found justification 𝑗 ∈ 𝐽 determines subsets 𝑀 ⊆ 𝒪 of the ontology
such that 𝑀 |= 𝛼, namely all 𝑀 ⊆ 𝒪 such that 𝑗 ⊆ 𝑀 . Similarly, each found repair 𝑟 ∈ 𝑅
determines subsets 𝑀 ⊆ 𝒪 such that 𝑀 ̸|= 𝛼, namely those 𝑀 ⊆ 𝒪 such that 𝑀 ∩ 𝑟 = ∅. The
SAT solver is used to discover the remaining subsets 𝑀 ⊆ 𝒪, namely those 𝑀 ⊆ 𝒪 such that
(1) 𝑗 ̸⊆𝑀 for every 𝑗 ∈ 𝐽 and (2) 𝑀 ∩ 𝑟 ̸= ∅ for every 𝑟 ∈ 𝑅. As we will see, using each such
subset 𝑀 either a new justification or a new minimal repair can be found.

To find a subset 𝑀 ⊆ 𝒪 for which the entailment 𝑀 |= 𝛼 is not yet known, Conditions (1)
and (2) are encoded using propositional formulas. Specifically, each axiom 𝛼 ∈ 𝒪 is assigned
to a distinguished propositional variable 𝑝𝛼. Then each propositional assignment ℐ of these
variables describes a subset 𝑀(ℐ) = {𝛼 ∈ 𝒪 | 𝑝ℐ𝛼 = 1}. The goal, therefore, is to construct a
formula 𝐹 such that for each model ℐ of 𝐹 the subset 𝑀(ℐ) satisfies (1) and (2).

To encode Condition (1), for each 𝑗 ∈ 𝐽 we add a new blocking clause
⋁︀
{¬𝑝𝛽 | 𝛽 ∈ 𝑗} to

𝐹 . This clause ensures that if 𝐹 ℐ = 1 then 𝑝ℐ𝛽 = 0 for some 𝛽 ∈ 𝑗, hence 𝛽 /∈ 𝑀(ℐ), and so
𝑗 ̸⊆ 𝑀(ℐ). Similarly, to encode Condition (2), for each 𝑟 ∈ 𝑅, we add a new blocking clause⋁︀
{𝑝𝛽 | 𝛽 ∈ 𝑟}. This clause ensures that 𝛽 ∈𝑀(ℐ) for some 𝛽 ∈ 𝑟. Hence 𝑀(ℐ) ∩ 𝑟 ̸= ∅.
The construction of the resulting formula 𝐹 as well as of new justifications and repairs is

described by Algorithm 1. We start with the empty set of justifications 𝐽 and repairs 𝑅, as well
as a tautological formula 𝐹 whose models ℐ describe all subsets 𝑀(ℐ) ⊆ 𝒪 (Line 1). Then
we repeatedly search for models of this formula using a SAT solver (Lines 2–12). For each
such model ℐ (Line 3), we extract the corresponding subset 𝑀 = 𝑀(ℐ) (Line 4) and test the
entailment 𝑀 |= 𝛼, e.g., using a reasoner (Line 5). If the entailment holds, this means that
there exists a minimal subset 𝑗 ⊆𝑀 such that 𝑗 |= 𝛼, i.e., a justification. This subset is found
using function Minimize(𝑀 |= 𝛼) (Line 6) to be discussed next. Due to Condition (1), 𝑗 must be
different from any justifications in 𝐽 found so far. Hence, we add this justification to 𝐽 (Line 7)
and add to 𝐹 the encoding of (1) for this justification (Line 8). If 𝑀 ̸|= 𝛼, we can compute a
maximal superset 𝑀 ′ ⊇𝑀 of 𝑀 such that 𝑀 ′ ̸|= 𝛼, and, consequently, a repair 𝑟 = 𝒪 ∖𝑀 ′

(Line 10). Again, due to Condition (2), 𝑟 must be different from any repairs from 𝑅 found so far.
Hence, we add 𝑟 to 𝑅 (Line 11) and add its encoding to 𝐹 (Line 12).

Minimizing entailments and maximizing non-entailments are preformed using two functions
Minimize(𝑀 |= 𝛼) and Maximize(𝑀 ̸|= 𝛼) shown in Algorithm 1. For minimizing 𝑀 |= 𝛼,
we repeatedly remove from 𝑀 axioms 𝛽 ∈𝑀 unless this breaks the entailment. For maximizing
𝑀 |= 𝛼, we repeatedly add remaining axioms 𝛽 ∈ 𝒪∖𝑀 unless this causes the entailment. Note
that the results depend on the order in which the axioms 𝛽 are iterated, however, correctness of
Algorithm 1 does not depend on the choice of minimal subsets or maximal supersets of 𝑀 .



Algorithm 1: Computing all justifications and minimal repairs using a SAT solver
SAT-Pinpointing(𝒪, 𝛼):
input :ontology 𝒪 and axiom 𝛼
output : the set 𝐽 of all justifications and 𝑅 of all minimal repairs for 𝒪 |= 𝛼

1 𝐽 ← ∅, 𝑅← ∅, 𝐹 ← ⊤;
2 while {ℐ | 𝐹 ℐ = 1} ≠ ∅ do
3 ℐ ← ℐ : 𝐹 ℐ = 1;
4 𝑀 ← {𝛽 ∈ 𝒪 | 𝑝ℐ𝛽 = 1};
5 if 𝑀 |= 𝛼 then
6 𝑗 ← Minimize(𝑀 |= 𝛼);
7 𝐽 ← 𝐽 ∪ {𝑗};
8 𝐹 ← 𝐹 ∧

⋁︀
{¬𝑝𝛽 | 𝛽 ∈ 𝑗};

9 else
10 𝑟 ← 𝒪 ∖Maximize(𝑀 ̸|= 𝛼);
11 𝑅← 𝑅 ∪ {𝑟};
12 𝐹 ← 𝐹 ∧

⋁︀
{𝑝𝛽 | 𝛽 ∈ 𝑟};

13 return 𝐽 , 𝑅;

Minimize(𝑀 |= 𝛼):
14 for 𝛽 ∈𝑀 do
15 if 𝑀 ∖ {𝛽} |= 𝛼 then
16 𝑀 ←𝑀 ∖ {𝛽};

17 return 𝑀 ;

Maximize(𝑀 ̸|= 𝛼):
18 for 𝛽 ∈ 𝒪 ∖𝑀 do
19 if 𝑀 ∪ {𝛽} ̸|= 𝛼 then
20 𝑀 ←𝑀 ∪ {𝛽};

21 return 𝑀 ;

Example 3. Let us see how Algorithm 1 computes justifications 𝑗1, 𝑗2 and repairs 𝑟1, 𝑟2, 𝑟3 for
the entailment 𝒪 |= 𝛼 in Example 1. We start by assigning propositional variables to axioms in
𝒪 as follows: 𝐴 ⊑ 𝐵 ⇝ 𝑝1, 𝐵 ⊑ 𝐶 ⇝ 𝑝2, 𝐴 ⊑ 𝐷 ⇝ 𝑝3, 𝐵 ⊓ 𝐶 ⊑ ⊥⇝ 𝑝4. Assume that each
iteration of the while loop (Lines 2–12) returns a model shown in the first column of the table:

𝑝ℐ1 𝑝ℐ2 𝑝ℐ3 𝑝ℐ4 min(𝑀) |= 𝛼 / max(𝑀) ̸|= 𝛼 just/rep new clause

0 0 0 0 ∅ ∪ {𝐴 ⊑ 𝐵, 𝐵 ⊑ 𝐶} ̸|= 𝛼 𝑟3 𝑝3 ∨ 𝑝4
0 0 1 0 {𝐴 ⊑ 𝐷} ∪ {𝐴 ⊑ 𝐵, 𝐵 ⊓ 𝐶 ⊑ ⊥} ̸|= 𝛼 𝑟2 𝑝2
0 1 1 0 {𝐵 ⊑ 𝐶, 𝐴 ⊑ 𝐷} ∪ {𝐵 ⊓ 𝐶 ⊑ ⊥} ̸|= 𝛼 𝑟1 𝑝1
1 1 1 0 {𝐴 ⊑ 𝐵, 𝐵 ⊑ 𝐶, 𝐴 ⊑ 𝐷} ∖ ∅ |= 𝛼 𝑗1 ¬𝑝1 ∨ ¬𝑝2 ∨ ¬𝑝3
1 1 0 1 {𝐴 ⊑ 𝐵, 𝐵 ⊑ 𝐶, 𝐵 ⊓ 𝐶 ⊑ ⊥} ∖ ∅ |= 𝛼 𝑗2 ¬𝑝1 ∨ ¬𝑝2 ∨ ¬𝑝4

The second column shows the resulting set 𝑀 and its minimization (if 𝑀 |= 𝛼) or maximization (if
𝑀 ̸|= 𝛼). For example, the model in the first row corresponds to 𝑀 = ∅ ̸|= 𝛼, which is maximized
by adding axioms 𝐴 ⊑ 𝐵 and 𝐵 ⊑ 𝐶 . The third column shows the corresponding justification or
repair from Example 1. The fourth column shows the clause resulting by encoding Conditions (1)
and (2) for the found justification or repair. Each next propositional assignment in the first column
must be a model of all previous clauses. After adding the 5 clauses in the table, the formula 𝐹
becomes unsatisfiable and Algorithm 1 terminates returning the content of the third column.

An advantage of Algorithm 1 is that it can compute justifications as well as repairs. However,
in applications when only the computation of justifications is of main interest, e.g., for ontology
debugging, the additional overhead for computing repairs can be significant. Indeed, as next
example shows, the number of repairs can be exponential in the number of justifications.



Example 4. Consider the ontology 𝒪 = {𝐴 ⊑ 𝐵𝑖, 𝐵𝑖 ⊑ 𝐶 | 1 ≤ 𝑖 ≤ 𝑛}. Clearly, each subset
𝑗𝑖 = {𝐴 ⊑ 𝐵𝑖, 𝐵𝑖 ⊑ 𝐶} (1 ≤ 𝑖 ≤ 𝑛) is a justification for the entailment 𝒪 |= 𝐴 ⊑ 𝐶 , and each
subset containing exactly one axiom from each 𝑗𝑖 (1 ≤ 𝑖 ≤ 𝑛) is a repair. To compute these repairs,
Algorithm 1 performs 2𝑛 calls to the SAT solver, each resulting in a new blocking clause.

Note that any black-box procedure that computes all justifications must perform an expo-
nential number of entailment tests for the ontology 𝒪 in Example 4 because an entailment test
must be performed for the complement of every repair to rule out further justifications. As seen
from Example 4, Algorithm 1 is particularly problematic if many, mostly independent, subsets
of the ontology are responsible for the entailment. A similar example can be constructed when
there are exponentially-many justifications but only linearly-many repairs (see, e.g., Example 23
in [28]). Next, we describe alternative SAT encodings using which only justifications or only
repairs can be computed. Unlike Algorithm 1, the encodings are truly glass-box since inferences
are used not only for checking entailments, but also, as a part of the encoding, to ensure that
the SAT solver returns models corresponding to only justifications or only repairs.

4. Computing Just Repairs

Assume that we have a set of sound inferences I that is complete for the entailment 𝒪 |= 𝛼.
That is, 𝑀 ⊢I 𝛼 iff 𝑀 |= 𝛼 for every 𝑀 ⊆ 𝒪 (see Section 2). To find a repair for 𝒪 |= 𝛼,
we need to find a subset 𝑀 ⊆ 𝒪 such that 𝑀 ⊬I 𝛼, i.e., 𝛼 is not derivable from 𝑀 using the
inferences in I. According to the definition of derivability, this means that (1) 𝛼 /∈𝑀 , and (2) for
every inference ⟨𝛽1, . . . , 𝛽𝑛 ⊢ 𝛼⟩ ∈ I, some of the premises 𝛽𝑖 is not derivable as well. This
simple observation is a basis of our new SAT encoding for computing repairs.

Let us assign to each axiom 𝛽 appearing in I (as a premise or a conclusion) a distinct propo-
sitional variable 𝑏𝛽 . Intuitively, each propositional interpretation ℐ describes axioms 𝛽 with
𝑏ℐ𝛽 = 1 that should not be derived from 𝑀 . We call these axioms broken (hence the variable
name 𝑏𝛽). According to Condition (1) above, we should have 𝛽 /∈𝑀 for all broken 𝛽, so we take
𝑀 = 𝑀(ℐ) = {𝛽 ∈ 𝒪 | 𝑏ℐ𝛽 = 0} to be all non-broken axioms in 𝒪. According to Condition
(2), if ⟨𝛽1, . . . , 𝛽𝑛 ⊢ 𝛽⟩ ∈ I and 𝛽 is broken then one of the premises 𝛽𝑖 must be broken as well
(1 ≤ 𝑖 ≤ 𝑛). We can encode this condition using a clause ¬𝑏𝛽 ∨ 𝑏𝛽1 ∨ · · · ∨ 𝑏𝛽𝑛 . Let 𝐹 be the
conjunction of all such clauses for inferences in I plus 𝑏𝛼. Then for every model ℐ of 𝐹 , we
have 𝑀 = 𝑀(ℐ) ⊬I 𝛼, which implies 𝑀 ̸|= 𝛼 since I is complete for 𝒪 |= 𝛼. Hence we can
extract a repair of 𝒪 |= 𝛼 by maximizing the non-entailment 𝑀 ̸|= 𝛼 just like in Algorithm 1.

Algorithm 2 describes the above encoding and computations. We start with the empty set
of repairs 𝑅 and initialize the formula 𝐹 as conjunction of 𝑏𝛼 and clauses for inferences in I
as described above (Line 1). So long 𝐹 is satisfiable (Lines 2–7), we take a model of 𝐹 (Line 3),
extract the subset 𝑀 = 𝑀(ℐ) of non-broken axioms in 𝒪 (Line 4) for which our encoding
guarantees that 𝑀 ̸|= 𝛼. Then we maximize this non-entailment and extract the resulting
repair just like in Algorithm 1 (Line 5), add this repair to 𝑅 (Line 6), and add the corresponding
blocking clause (Line 7) to 𝐹 to ensure that this repair is not found by subsequent models.

Example 5. Let us see how Algorithm 2 computes the repairs 𝑟1, 𝑟2, and 𝑟3 for the entailment
𝒪 |= 𝛼 in Example 1 using the set of 6 (sound and complete) inferences I from Example 2. Given
these parameters, the function InitRepairs(𝛼, I) creates a conjunction 𝐹 of the following clauses:



Algorithm 2: Computing all repairs using a SAT solver
SAT-Repair(𝒪, 𝛼, I):
input :ontology 𝒪, 𝛼 an axiom, I a set of sound inferences complete for 𝒪 |= 𝛼
output : the set 𝑅 of all repairs for 𝒪 |= 𝛼

1 𝑅← ∅, 𝐹 ← InitRepairs(𝛼, I);
2 while {ℐ | 𝐹 ℐ = 1} ≠ ∅ do
3 ℐ ← ℐ : 𝐹 ℐ = 1;
4 𝑀 ← {𝛽 ∈ 𝒪 | 𝑏ℐ𝛽 = 0};
5 𝑟 ← 𝒪 ∖Maximize(𝑀 ̸|= 𝛼);
6 𝑅← 𝑅 ∪ {𝑟};
7 𝐹 ← 𝐹 ∧

⋁︀
{¬𝑏𝛽 | 𝛽 ∈ 𝑟};

8 return 𝑅;

InitRepairs(𝛼, I):
9 𝐹 ← 𝑏𝛼;

10 foreach ⟨𝛽1, . . . , 𝛽𝑛 ⊢ 𝛽⟩ ∈ I do
11 𝐹 ← 𝐹 ∧ (¬𝑏𝛽 ∨

⋁︀
{𝑏𝛽𝑖
| 1 ≤ 𝑖 ≤ 𝑛})

12 return 𝐹 ;

1. 𝑏𝐴⊑𝐶⊓𝐷 2. ¬𝑏𝐴⊑𝐶 ∨ 𝑏𝐴⊑𝐵 ∨ 𝑏𝐵⊑𝐶

3. ¬𝑏𝐴⊑𝐶⊓𝐷 ∨ 𝑏𝐴⊑𝐶 ∨ 𝑏𝐴⊑𝐷

4. ¬𝑏𝐴⊑𝐵⊓𝐶 ∨ 𝑏𝐴⊑𝐵 ∨ 𝑏𝐴⊑𝐶

5. ¬𝑏𝐴⊑⊥ ∨ 𝑏𝐴⊑𝐵⊓𝐶 ∨ 𝑏𝐵⊓𝐶⊑⊥
6. ¬𝑏⊥⊑𝐶⊓𝐷
7. ¬𝑏𝐴⊑𝐶⊓𝐷 ∨ 𝑏𝐴⊑⊥ ∨ 𝑏⊥⊑𝐶⊓𝐷

We highlighted in bold the variables assigned to axioms in 𝒪 since propositional assignments of
these variables determine the subsets 𝑀 and the resulting repairs. The table below shows examples
of models of 𝐹 and the resulting repairs obtained at each iteration of Algorithm 2:

𝑏ℐ𝛽 = 1 repair new clause

𝑏𝐴⊑𝐶⊓𝐷 𝑏𝐴⊑𝐶 𝑏𝐴⊑𝐵 𝑏𝐴⊑⊥ 𝑏𝐴⊑𝐵⊓𝐶 𝑟1 ¬𝑏𝐴⊑𝐵

𝑏𝐴⊑𝐶⊓𝐷 𝑏𝐴⊑𝐶 𝑏𝐵⊑𝐶 𝑏𝐴⊑⊥ 𝑏𝐴⊑𝐵⊓𝐶 𝑟2 ¬𝑏𝐵⊑𝐶

𝑏𝐴⊑𝐶⊓𝐷 𝑏𝐴⊑𝐷 𝑏𝐴⊑⊥ 𝑏𝐵⊓𝐶⊑⊥ 𝑟3 ¬𝑏𝐴⊑𝐷 ∨ ¬𝑏𝐵⊓𝐶⊑⊥

The first column lists all variables corresponding to the broken axioms. For the set 𝑀 of the
remaining axioms from 𝒪, our encoding guarantees that 𝑀 ̸|= 𝛼. In our example, the sets 𝑀
are already maximal, so their complements (Line 5) correspond to repairs shown in the second
column. Each of these repairs produces a new clause shown in the last column, which is added as a
conjunction to 𝐹 . The algorithm, therefore, produces overall 7 + 3 = 10 clauses.

The main advantage of Algorithm 2 over Algorithm 1 is that generation of subsets of 𝑀 ⊆ 𝒪
with 𝑀 |= 𝛼 is completely avoided. The initial formula 𝐹 obtained by InitRepairs(𝛼, I),
which has a linear size in the number of inferences in I, has the same effect as (potentially
exponentially-many in the size of𝒪) blocking clauses for justifications added to𝐹 in Algorithm 2.
A disadvantage of Algorithm 2 is that the new SAT encoding now involves more propositional
variables (due to new axioms appearing in inferences), which could increase the search space of
the SAT solver. Also, if the set of inferences I is considerably larger than the size of 𝒪, the new
translation might not pay off, particularly, if the number of justifications is relatively small.



5. Computing Just Justifications

We now extend the ideas used in the encoding for repairs in Section 4, to compute all justifications
without computing repairs. Our goal is to construct a formula 𝐹 whose models correspond to
only subsets 𝑀 ⊆ 𝒪 such that 𝑀 |= 𝛼, or, equivalently, 𝑀 ⊢I 𝛼. Recall that 𝛼 is derivable by
inferences in I from 𝒪 if (1) 𝛼 ∈ 𝒪, or (2) there exists an inference ⟨𝛽1, . . . , 𝛽𝑛 |= 𝛼⟩ ∈ I such
that all premises 𝛽1, . . . , 𝛽𝑛 of this inference are derivable. To handle Condition (1) as a special
case of (2), we extend the set I by adding, for every axiom 𝛽 ∈ 𝒪, an “asserted axiom” inference
⟨ ⊢ 𝛽⟩, which means that any axiom in 𝒪 can be derived from no premises.

To express Condition (2) using a propositional formula, to each axiom 𝛽 appearing in I, we
assign a distinguished propositional variable 𝑑𝛽 expressing that 𝛽 appears in the derivation
of 𝛼. In addition, to every inference inf ∈ I we, likewise, assign a distinguished variable 𝑑inf
expressing that this inference has been applied in the derivation of 𝛼. Then Condition (2) is
expressed using two types of clauses:

1. ¬𝑑𝛽 ∨ 𝑑inf1 ∨ · · · ∨ 𝑑inf𝑚 , where inf1, . . . , inf𝑚 are all inferences in I with conclusion 𝛽,
2. ¬𝑑inf ∨ 𝑑𝛽 , where 𝛽 is a premise of inf .

Let 𝐹 be the conjunction of all clauses above for all axioms 𝛽 and inferences inf appearing in I
plus the unit clause 𝑑𝛼 expressing that 𝛼 must be derived. Similarly to the encoding for repairs in
Section 4, we define a subset 𝑀 ⊆ 𝒪 using a model ℐ of 𝐹 by 𝑀 = 𝑀(ℐ) = {𝛽 ∈ 𝒪 | 𝑑ℐ𝛽 = 1}.
The main question: does our encoding guarantee that 𝑀 |= 𝛼?

Example 6. Let us apply the described translation for the entailment 𝒪 |= 𝛼 from Example 1 and
the set of inferences I from Example 2. First, we extend I with inferences deriving axioms in 𝒪:
inf7: ⟨ ⊢ 𝐴 ⊑ 𝐵⟩, inf8: ⟨ ⊢ 𝐵 ⊑ 𝐶⟩, inf9: ⟨ ⊢ 𝐴 ⊑ 𝐷⟩, inf10: ⟨ ⊢ 𝐵 ⊓ 𝐶 ⊑ ⊥⟩.
Then our encoding produces a formula 𝐹 , which is the conjunction of the following 20 clauses:

1. 𝑑𝐴⊑𝐶⊓𝐷
2. ¬𝑑𝐴⊑𝐶 ∨ 𝑑inf1
3. ¬𝑑𝐴⊑𝐶⊓𝐷 ∨ 𝑑inf2 ∨ 𝑑inf6
4. ¬𝑑𝐴⊑𝐵⊓𝐶 ∨ 𝑑inf3
5. ¬𝑑𝐴⊑⊥ ∨ 𝑑inf4
6. ¬𝑑⊥⊑𝐶⊓𝐷 ∨ 𝑑inf5
7. ¬𝑑𝐴⊑𝐵 ∨ 𝑑inf7

8. ¬𝑑𝐵⊑𝐶 ∨ 𝑑inf8
9. ¬𝑑𝐴⊑𝐷 ∨ 𝑑inf9

10. ¬𝑑𝐵⊓𝐶⊑⊥ ∨ 𝑑inf10
11. ¬𝑑inf1 ∨ 𝑑𝐴⊑𝐵

12. ¬𝑑inf1 ∨ 𝑑𝐵⊑𝐶

13. ¬𝑑inf2 ∨ 𝑑𝐴⊑𝐶

14. ¬𝑑inf2 ∨ 𝑑𝐴⊑𝐷

15. ¬𝑑inf3 ∨ 𝑑𝐴⊑𝐵

16. ¬𝑑inf3 ∨ 𝑑𝐴⊑𝐶

17. ¬𝑑inf4 ∨ 𝑑𝐴⊑𝐵⊓𝐶
18. ¬𝑑inf4 ∨ 𝑑𝐵⊓𝐶⊑⊥
19. ¬𝑑inf6 ∨ 𝑑𝐴⊑⊥
20. ¬𝑑inf6 ∨ 𝑑⊥⊑𝐶⊓𝐷

As before, bold variables correspond to axioms from 𝒪. By checking satisfiability of 𝐹 , we may
obtain the models shown in the first column of the following table:

𝑑ℐ𝛽 = 1 justification new clause

𝑑𝐴⊑𝐶⊓𝐷 𝑑inf2 𝑑𝐴⊑𝐶 𝑑𝐴⊑𝐷 𝑑inf1
𝑑inf9 𝑑𝐴⊑𝐵 𝑑𝐵⊑𝐶 𝑑inf7 𝑑inf8

𝑗1 ¬𝑑𝐴⊑𝐷 ∨¬𝑑𝐴⊑𝐵 ∨¬𝑑𝐵⊑𝐶

𝑑𝐴⊑𝐶⊓𝐷 𝑑inf6 𝑑𝐴⊑⊥ 𝑑⊥⊑𝐶⊓𝐷 𝑑inf4
𝑑inf5 𝑑𝐴⊑𝐵⊓𝐶 𝑑𝐵⊓𝐶⊑⊥ 𝑑inf3 𝑑inf10

𝑑𝐴⊑𝐵 𝑑𝐴⊑𝐶 𝑑inf1 𝑑𝐵⊑𝐶

𝑗2 ¬𝑑𝐴⊑𝐵 ∨¬𝑑𝐵⊑𝐶 ∨¬𝑑𝐵⊓𝐶⊑⊥



The sets 𝑀 = 𝑀(ℐ) extracted from these models consist of axioms corresponding to the bold
variables and, as can be seen, correspond to justifications 𝑗1 and 𝑗2 from Example 1. If we now
extend 𝐹 by adding the corresponding blocking clauses for these justifications shown in the third
column, 𝐹 becomes unsatisfiable. Hence, no further sets 𝑀 and justifications can be produced.

Example 7. Let us see how the new translation can avoid computing exponentially-many repairs
for the entailment 𝒪 |= 𝐴 ⊑ 𝐶 from Example 4. Assume that we are given a set of inferences
I = {inf𝑖 = ⟨𝐴 ⊑ 𝐵𝑖, 𝐵𝑖 ⊑ 𝐶 ⊢ 𝐴 ⊑ 𝐶⟩ | 1 ≤ 𝑖 ≤ 𝑛}, which is, clearly, complete for this
entailment. First, I is extended with inf ′𝑖 = ⟨ ⊢ 𝐴 ⊑ 𝐵𝑖⟩ and inf ′′𝑖 = ⟨ ⊢ 𝐵𝑖 ⊑ 𝐶⟩ (1 ≤ 𝑖 ≤ 𝑛).
The translation creates Clauses 1 and 2 plus Clauses 3–6 for each 𝑖 with 1 ≤ 𝑖 ≤ 𝑛:

1. 𝑑𝐴⊑𝐶

2. ¬𝑑𝐴⊑𝐶 ∨
⋁︀
{𝑑inf𝑖 | 1 ≤ 𝑖 ≤ 𝑛}

3. ¬𝑑inf𝑖 ∨ 𝑑𝐴⊑𝐵𝑖

4. ¬𝑑inf𝑖 ∨ 𝑑𝐵𝑖⊑𝐶

5. ¬𝑑𝐴⊑𝐵𝑖
∨ 𝑑inf′𝑖

6. ¬𝑑𝐵𝑖⊑𝐶 ∨ 𝑑inf′′𝑖

After each call, due to Clauses 1–4, the SAT solver returns a model with 𝑑ℐinf𝑖 = 𝑑ℐ𝐴⊑𝐵𝑖
= 𝑑ℐ𝐵𝑖⊑𝐶 =

1 for some 𝑖 (1 ≤ 𝑖 ≤ 𝑛) from which the justification 𝑗𝑖 = {𝐴 ⊑ 𝐵𝑖, 𝐵𝑖 ⊑ 𝐶} can be extracted.
The added blocking clause ¬𝑑𝐴⊑𝐵𝑖 ∨ ¬𝑑𝐵𝑖⊑𝐶 ensures that infℐ𝑖 = 0 in the subsequent models ℐ
(due to Clauses 3 and 4). Hence, the procedure terminates after adding exactly 𝑛 additional clauses.

Examples 6 and 7 may suggest that 𝑀 |= 𝛼 always holds for subsets 𝑀 extracted from
models of 𝐹 . However, this is true only if the set of inferences I is acyclic. An inference cycle
(of length 𝑛) is a sequence of inferences [inf1; inf2; . . . ; inf𝑛] such that the conclusion of inf𝑖 is
a premise of inf𝑖+1 (1 ≤ 𝑖 < 𝑛) and the conclusion of inf𝑛 is a premise of inf1. The cycle is
elementary if all of its inferences have different conclusions. Clearly, each (non-elementary) cycle
[inf1; inf2; . . . ; inf𝑛] contains an elementary sub-cycle [inf𝑘; . . . ; inf𝑚] with 1 ≤ 𝑘 ≤ 𝑚 ≤ 𝑛.
A set of inferences I is cyclic if there is a cycle of inferences from I. Otherwise I is acyclic.

Example 8. Let us extend the set of inferences I from Example 6 with two additional inferences:
inf11: ⟨𝐴 ⊑ 𝐵 ⊓ 𝐶 ⊢ 𝐴 ⊑ 𝐵⟩, inf12: ⟨𝐴 ⊑ 𝐵 ⊓ 𝐶 ⊢ 𝐴 ⊑ 𝐶⟩.

The resulting set of inferences has 2 elementary cycles: 𝑐1 = [inf3; inf11] and 𝑐2 = [inf3; inf12].
Updating the encoding of the formula 𝐹 from Example 6 to the two additional inferences results in
two modified clauses 2, 7, and two additional clauses 20, 21 shown below:

2. ¬𝑑𝐴⊑𝐶 ∨ 𝑑inf1 ∨ 𝑑inf 12
7. ¬𝑑𝐴⊑𝐵 ∨ 𝑑inf7 ∨ 𝑑inf 11

20. ¬𝑑inf11 ∨ 𝑑𝐴⊑𝐵⊓𝐶
21. ¬𝑑inf12 ∨ 𝑑𝐴⊑𝐵⊓𝐶

The models of 𝐹 obtained in Example 6 are also models of the new clause set, however, there is also
a new model shown below:

𝑑ℐ𝛽 = 1 cycle new clause

𝑑𝐴⊑𝐶⊓𝐷 𝑑inf2 𝑑𝐴⊑𝐶 𝑑𝐴⊑𝐷 𝑑inf12
𝑑inf9 𝑑𝐴⊑𝐵⊓𝐶 𝑑inf3 𝑑𝐴⊑𝐵 𝑑inf7

𝑐2 ¬ inf3 ∨¬ inf12

Notice that 𝑀 = 𝑀(ℐ) = {𝐴 ⊑ 𝐷, 𝐴 ⊑ 𝐵} ̸|= 𝛼 = 𝐴 ⊑ 𝐶 ⊓𝐷, so why did this happen in
our translation? Note that the new model is similar to the first model in Example 6. The main
difference is that to satisfy the (updated) clause 2, we now chose to make 𝑑inf12 true instead of 𝑑inf1 .



Algorithm 3: Computing all justifications using a SAT solver
SAT-Justification(𝒪, 𝛼, I):
input :ontology 𝒪, 𝛼 an axiom, I a set of sound inferences complete for 𝒪 |= 𝛼
output : the set 𝐽 of all justifications for 𝒪 |= 𝛼

1 𝐽 ← ∅;
2 I← I ∪ {⟨⊢ 𝛽⟩ | 𝛽 ∈ 𝒪};
3 𝐹 ← InitJustifications(𝛼, I);
4 𝐹 ← 𝐹 ∧ InitCycles(I);
5 while {ℐ | 𝐹 ℐ = 1} ≠ ∅ do
6 ℐ ← ℐ : 𝐹 ℐ = 1;
7 𝑀 ← {𝛽 ∈ 𝒪 | 𝑑ℐ𝛽 = 1};
8 if 𝑀 |= 𝛼 then
9 𝑗 ← Minimize(𝑀 |= 𝛼);

10 𝐽 ← 𝐽 ∪ {𝑗};
11 𝐹 ← 𝐹 ∧

⋁︀
{¬𝑑𝛽 | 𝛽 ∈ 𝑗};

12 else
13 I∘ ← {inf ∈ I | infℐ = 1};
14 𝑐← FindCycle(𝛼, I∘);
15 𝐹 ← 𝐹 ∧

⋁︀
{¬𝑑inf | inf ∈ 𝑐};

16 return 𝐽 ;

InitJustifications(𝛼, I):
17 𝐹 ← 𝑑𝛼;
18 foreach 𝛽 occurring in I do
19 𝐹 ← 𝐹 ∧

(¬𝑑𝛽 ∨
⋁︀
{𝑑inf | inf = ⟨· · · ⊢ 𝛽⟩ ∈ I});

20 foreach inf = ⟨𝛽1, . . . , 𝛽𝑛 ⊢ 𝛽⟩ ∈ I do
21 𝐹 ← 𝐹 ∧

⋀︀
1≤𝑖≤𝑛(¬𝑑inf ∨ 𝑑𝛽𝑖

);

22 return 𝐹 ;

FindCycle(𝛼, I∘):
23 Visited← ∅, 𝐿← [ ], 𝛽 ← 𝛼;
24 while 𝛽 /∈ Visited do
25 Visited← Visited ∪ {𝛽};
26 inf ← ⟨𝛽1, . . . , 𝛽𝑛 ⊢ 𝛽⟩ ∈ I∘;
27 𝐿← [inf] + 𝐿;
28 𝛽 ← 𝛽𝑖 : ∅ ⊬I∘ 𝛽𝑖 (1 ≤ 𝑖 ≤ 𝑛);

29 return [. . . ; inf𝑖] ⊆ 𝐿 : inf𝑖 = ⟨· · · ⊢ 𝛽⟩;

This, intuitively, means that we chose to derive 𝐴 ⊑ 𝐶 by inference inf12 instead of inf1. To apply
inf12, we need to derive 𝐴 ⊑ 𝐵 ⊓ 𝐶 first, so we make 𝑑𝐴⊑𝐵⊓𝐷 true. This axiom, in turn, can be
derived using inf3 from 𝐴 ⊑ 𝐵 and 𝐴 ⊑ 𝐶 , so we make 𝑑inf3 , 𝑑𝐴⊑𝐵 and 𝑑𝐴⊑𝐶 true. However,
we now came back to 𝐴 ⊑ 𝐶 . This happened because of the inference cycle 𝑐2 = [inf3; inf12].

We can prevent generating models with cycle 𝑐2 by adding a blocking clause similar to blocking
clauses for justifications shown in the last column. After adding this clause to 𝐹 the resulting
formula becomes unsatisfiable, at which point we know that all justifications have been computed.

Algorithm 3 formalizes the overall procedure for computing justifications. We start with the
empty set of justifications (Line 1), and extend the set of inferences I for axioms in 𝒪 (Line 2).
Then we initialize our formula 𝐹 (Line 3) by adding the clauses for 𝛼 (Line 17), for each axiom in
I (Line 19), and each inference in I (Line 21). For now, ignore Line 4 assuming that InitCycles(I)
returns ⊤. Then, as usual, so long 𝐹 is satisfiable (Line 5), we take the model ℐ returned by the
SAT solver (Line 6), determine the candidate subset of axioms 𝑀 = 𝑀(ℐ) ⊆ 𝒪 (Line 7), and
check the entailment 𝑀 |= 𝛼 (Line 8). If the entailment holds, we extract a new justification
from 𝑀 as usual (Lines 8–11). If not, this can happen only due to a cyclic subset of inferences
I∘ chosen by the model (Line 13), as we prove next. Note that 𝑀 ̸|= 𝛼 implies ∅ ⊬I∘ 𝛼.

To find a cycle in I∘ (Line 14), we traverse these inferences backwards starting from the
conclusion 𝛼. To detect the cycle, we add conclusions to the set Visited, while collecting the
expanded inferences in the list 𝐿, both initially empty (Line 23). Our invariant is that 𝑑ℐ𝛽 = 1 but



∅ ⊬I∘ 𝛽 for every 𝛽 ∈ Visited, which clearly holds for the initial 𝛽 = 𝛼. Having such 𝛽, we first
check that it was not already visited (Line 24) and add it to Visited (Line 25). Then we take any
inference inf ∈ I∘ with conclusion 𝛽 (Line 26), which must exist due to the added clause for 𝛽
(Line 19) since 𝐹 ℐ = 1 and 𝑑ℐ𝛽 = 1. We prepend this inference to the list 𝐿 (Line 27). Finally, we
choose the premise 𝛽𝑖 of inf such that ∅ ⊬I∘ 𝛽𝑖. Note that such a premise exists since otherwise
∅ ⊢I∘ 𝛽, which would contradict our invariant. Note also that 𝑑ℐ𝛽𝑖

= 1 for all premises of inf
due to the initial translation for inf (Line 21). We reassign 𝛽 to the found premise 𝛽𝑖 (Line 28)
and continue the while loop. Eventually we obtain 𝛽 ∈ Visited since the number of axioms
is bounded, which means that a premise 𝛽 of the first inference in 𝐿 is a conclusion of some
inference inf𝑖 in 𝐿. We traverse the list 𝐿 to find this inference inf𝑖, and return the prefix of
𝐿 ending with this inference (Line 29), which will be the elementary inference cycle we were
looking for. After finding this cycle, we add the corresponding blocking clause to 𝐹 (Line 11),
which makes sure that this cycle will not be a part of subsequent models of 𝐹 .

How many cycles could be encountered during a run of Algorithm 3? Since FindCycle(𝛼, I∘)
produces only elementary cycles, the length of cycles is bounded by the number of inferences
in I. Further, the set of inferences in each returned cycle is unique due to the added blocking
clause in Line 11. Hence the number of cycles and such blocking clauses is at most exponential
in the size of I. It may seem that Algorithm 3 suffers from the same problem as Algorithm 1:
instead of enumerating possibly exponentially-many repairs we may need to enumerate possibly
exponentially-many cycles in order to compute all justifications. As we show next, it is possible
to extend the initial formula 𝐹 of the encoding to prevent cyclic models completely.

6. Blocking of Cycles using a Transitive Closure Encoding

Let I be a set of inferences. Consider the binary relation on axioms appearing in I defined by
the set of pairs 𝐸 = 𝐸(I) = {⟨𝛽𝑖, 𝛽⟩ | ⟨𝛽1, . . . , 𝛽𝑛 ⊢ 𝛽⟩ ∈ I, 1 ≤ 𝑖 ≤ 𝑛}. It is easy to see that I
is cyclic iff the transitive closure 𝐸+ of 𝐸 contains a reflexive pair ⟨𝛽, 𝛽⟩ for some axiom 𝛽.

Example 9. Let I be the set of (cyclic) inferences from Example 8. For conciseness, we number all
axioms appearing in I and use these numbers instead of the original axioms:

𝐴 ⊑ 𝐵 ⇝ 1
𝐵 ⊑ 𝐶 ⇝ 2
𝐴 ⊑ 𝐷 ⇝ 3

𝐵 ⊓ 𝐶 ⇝ 4
𝐴 ⊑ 𝐶 ⇝ 5
𝐴 ⊑ 𝐵 ⊓ 𝐶 ⇝ 6

𝐴 ⊑ ⊥ ⇝ 7
⊥ ⊑ 𝐶 ⊓𝐷 ⇝ 8
𝐴 ⊑ 𝐶 ⊓𝐷 ⇝ 9

Then the set of inferences I defines the set 𝐸 = 𝐸(I) of pairs
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of numbers corresponding to these axioms shown in the right
picture by solid lines. As can be seen, nodes 1 and 6 as well as
nodes 5 and 6 form cycles in this graph. The transitive closure
𝐸+ of 𝐸 extends this relation with the additional pairs shown by
the dashed red lines. As can be seen, the extended graph contains
3 reflexive pairs: ⟨1, 1⟩, ⟨5, 5⟩, and ⟨6, 6⟩.

Let 𝐸 = 𝐸(I) be the set of pairs induced by inferences from I. For each pair ⟨𝛼, 𝛽⟩ ∈ 𝐸+ we
introduce a distinguished propositional variable 𝑑⟨𝛼,𝛽⟩. Consider the following clauses:



1. ¬𝑑inf ∨ 𝑑⟨𝛽𝑖,𝛽⟩ for every inf = ⟨𝛽1, . . . , 𝛽𝑛 ⊢ 𝛽⟩ ∈ I and 1 ≤ 𝑖 ≤ 𝑛,
2. ¬𝑑⟨𝛼,𝛽⟩ ∨ ¬𝑑⟨𝛽,𝛾⟩ ∨ 𝑑⟨𝛼,𝛾⟩ for every ⟨𝛼, 𝛽⟩ ∈ 𝐸+ and ⟨𝛽, 𝛾⟩ ∈ 𝐸,
3. ¬𝑑⟨𝛼,𝛼⟩ for every ⟨𝛼, 𝛼⟩ ∈ 𝐸+.

Intuitively, clauses of Form 1 express that if an inference ⟨𝛽1, . . . , 𝛽𝑛 ⊢ 𝛽⟩ ∈ I is selected by the
model, then all pairs ⟨𝛽𝑖, 𝛽⟩ ∈ 𝐸 (1 ≤ 𝑖 ≤ 𝑛) must be selected by this model as well. Clauses
of Form 2 express that the pairs selected by the model are transitively closed. Finally, clauses of
Form 3 express that no reflexive pair from 𝐸+ can be selected by the model.

Suppose that the function InitCycles(I) produces the conjunction of all clauses of Forms 1-3
as described above. By using this function in Line 4 of Algorithm 3, we make sure that for every
model ℐ of 𝐹 , the set of inferences I(ℐ) = {inf ∈ I | 𝑑ℐinf = 1} is acyclic. Hence the else-part of
the algorithm (Lines 12–15) never applies, and each model found by the SAT solver corresponds
to a new justification. Clearly, the number of clauses of Form 1 is linear in the size of I. Since
the number of axioms 𝛼 appearing in I and the number of pairs ⟨𝛽, 𝛾⟩ ∈ 𝐸 are linear in the size
of I, the number of clauses of Form 2 is quadratic in the size of I and the number of clauses of
Form 3 is linear. Thus, the maximal number of clauses generated by Algorithm 3 can be reduced
from exponential to quadratic.

7. Outlook

In this paper, we have described new SAT-based procedures for computing repairs and justi-
fications from a set of inferences. Unlike the previous methods, we use inferences not only
for entailment checks, but also to avoid generating unnecessary models. While for computing
repairs our encoding requires a linear number of additional clauses, computing justifications
may require a quadratic number of clauses in order to block cyclic models.

There appears to be a strong connection between our encodings and reductions of Answer
Set Programming (ASP) to SAT [29, 30, 31, 32, 33, 34]. In particular, our encoding for computing
justifications is closely related to Clark’s Completion [35], which bridges the ASP semantics
and the classical (model-theoretic) semantics. Just like in our case, Clark’s Completion works
only for acyclic logic programs called tight [36]. Cyclic programs are dealt with using one shot
quadratic [29, 30] or O(𝑛 · log2 𝑛) encodings [33, 34], or using (possibly exponentially-many)
looping formulas that block cycles only when they are discovered [31, 32].

For some ontologies, such as OpenGALEN [37], for which the generated proofs can be very
large and cyclic [16], a quadratic number of clauses can still be prohibitively large. To reduce
the number of clauses even further, it is possible to adapt the O(𝑛 · log2 𝑛) encoding for ASP
mentioned above, and use further optimizations, such as lazy encoding, which delays creation
of clauses until cycles are actually found.

By combining encoding for repairs and justifications, it is also possible to obtain a procedure
for computing the unions of justifications (= the unions of repairs), which were recently of
some interest [38, 39, 40]. This procedure can compute the unions using at most 𝑛 calls of the
SAT solver, where 𝑛 is the size of the resulting union. This is optimal since the membership
problem for unions of justifications is already NP-Complete (see Theorem 7 in [41]). Our
preliminary empirical experiments on some selected difficult examples have been very promising.
Unfortunately, we have no space left in this paper to discuss these results in detail.
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