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Abstract
Classical instance queries over an ontology only consider explicitly named individuals. Concept referring
expressions (CREs) also allow for returning answers in the form of concepts that describe implicitly given

individuals in terms of their relation to an explicitly named one. Existing approaches, e.g., based on tree

automata, can neither be integrated into state-of-the-art OWL reasoners nor are they directly amenable

for an efficient implementation. To address this, we devise a novel algorithm that uses highly optimized

OWL reasoners as a black box. In addition to the standard criteria of singularity and certainty for CREs,

we devise and consider the criterion of uniqueness of CREs for Horn 𝒜ℒ𝒞 ontologies. The evaluation of

our prototypical implementation shows that computing CREs for the most general concept (⊤) can be

done in less than one minute for ontologies with thousands of individuals and concepts.
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1. Introduction

Regarding Description Logic (DL) ontologies, automated reasoning systems derive implicit

consequences of explicitly stated information, e.g., when answering queries for concept instances.

Classically, answers to such queries consist of individual names that are used in the knowledge

base. Consider, for example, a knowledge base that states that "every person has a mother
who is a person" and that "John is a person" (in DL syntax: Person ⊑ ∃hasMother.Person and

Person(john)). Obviously, john is an answer to the query for instances of the concept Person and

such names are also called referring expressions as they refer to elements in the models of the

knowledge base. In each model of the knowledge base, however, there is also an element that

represents "the mother of John". This anonymous element can be described by a concept referring
expression (CRE) [1, 2, 3], i.e., by a concept that describes an anonymous element w.r.t. a named

individual. For our example, we can use the CRE "the person who is the mother of John" (as DL

concept: Person ⊓ ∃hasMother−.{john}). The reasoning task of generalized instance retrieval
refers to computing entailed named and anonymous answers in the form of CREs for a concept

instance query, which allows for more comprehensive query results.

Usually, CREs are meant to identify a single element (e.g., "John’s mother" and not some set

of elements as, e.g., the concept Person itself). While some approaches for computing CREs rely

on functionality of roles and of role paths in order to guarantee singularity, e.g., [2], we do not
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make this restriction as also the recent work of Toman and Weddell [3]. Another challenge

when computing CREs is describing all entailed answers to (concept instance) queries. While

the approach of Toman and Weddell based on tree automata addresses this problem, it is not

well-suited for an efficient implementation. Moreover, the applied constraints that ensure the

construction of only singular CREs are actually too strict, thus neglecting query answers in some

cases, while an explicit prevention of duplicate answers referring to different, but semantically

equivalent, CREs is also not provided. In this paper, we address these issues and present the

first practical method for generalized instance retrieval that uses highly optimized reasoners as

a black box for computing CREs.

At first, we shortly introduce necessary definitions regarding DLs and CREs. We then present

the algorithm for computing answers to generalized instance queries and prove its properties in

Section 3. In Section 4, we show the results of our empirical evaluation, followed by a discussion

of related work in Section 5 and conclusions in Section 6.

2. Preliminaries

Before we can describe our algorithm, we first have to consider some relevant definitions

concerning ontologies and CREs. However, since we assume the reader to be familiar with DLs,

we only focus on selected aspects.

2.1. Description Logics

The syntax of the DL 𝒜ℒ𝒞ℐ𝒪 is defined using a vocabulary consisting of countably infinite

disjoint sets NC of atomic concepts, NR of atomic roles, and NI of individuals. A role is either an

atomic or an inverse role 𝑟−, 𝑟 ∈ NR . An 𝒜ℒ𝒞ℐ𝒪 concept is defined as

𝐶 ::= ⊤ | ⊥ | 𝐴 | {𝑜} | ¬𝐶 | 𝐶1 ⊓ 𝐶2 | 𝐶1 ⊔ 𝐶2 | ∀𝑅.𝐶 | ∃𝑅.𝐶,

where 𝐴 ∈ NC , 𝑜 ∈ NI , and 𝑅 is a role. The DL 𝒜ℒ𝒞 is obtained from 𝒜ℒ𝒞ℐ𝒪 by disallowing

the use of nominals ({𝑜}) and inverse roles. In the remainder, we use 𝑎, 𝑏 for individuals, 𝐴,𝐵
for atomic and 𝐶,𝐷 for (possibly) complex concepts, and 𝑟 for an atomic and 𝑅 for a (possibly)

non-atomic role.

A TBox is a set of concept inclusion axioms 𝐶 ⊑ 𝐷. An ABox is a set of (concept and

role) assertions of the form 𝐶(𝑎) and 𝑅(𝑎, 𝑏), respectively. A knowledge base (or ontology)

𝒦 = 𝒯 ∪ 𝒜 consists of a TBox 𝒯 and an ABox 𝒜. We use 𝐶 ≡ 𝐷 to abbreviate 𝐶 ⊑ 𝐷 and

𝐷 ⊑ 𝐶 . With cons(𝒦), rols(𝒦), and inds(𝒦), we denote the sets of atomic concepts, atomic

roles, and individuals occurring in 𝒦, respectively. Interpretations and models are defined in

the standard way (see e.g. [4]).

For a knowledge base 𝒦 = 𝒯 ∪ 𝒜, we say that 𝒦 is (concept) materialized if 𝒦 |= 𝐴(𝑎)
implies 𝐴(𝑎) ∈ 𝒦 for each 𝐴 ∈ cons(𝒦) ∪ {⊤} and 𝑎 ∈ inds(𝒦); 𝒜 is reduced if there is no

𝒜′ ⊂ 𝒜 with {𝑟(𝑎, 𝑏) | 𝑟(𝑎, 𝑏) ∈ 𝒜} ⊂ 𝒜′
such that 𝒜′ ∪ {𝐵(𝑎) | 𝐴(𝑎) ∈ 𝒜 and 𝒦 |= 𝐴 ⊑

𝐵,𝐴,𝐵 ∈ cons(𝒦)} is materialized, i.e., a reduced ABox is materialized with the most specific

atomic concepts.

An 𝒜ℒ𝒞 knowledge base 𝒦 = 𝒯 ∪ 𝒜 is Horn and in normalized form if 𝐶 ∈ NC for every

𝐶(𝑎) ∈ 𝒦, and every 𝐶 ⊑ 𝐷 ∈ 𝒦 is in one of the forms ⊤ ⊑ 𝐴,𝐴 ⊑ 𝐵,𝐴 ⊑ ⊥, 𝐴 ⊓ 𝐵 ⊑



𝐴′, ∃𝑟.𝐴 ⊑ 𝐵,𝐴 ⊑ ∃𝑟.𝐵,𝐴 ⊑ ∀𝑟.𝐵, where 𝐴,𝐴′, 𝐵 ∈ NC and 𝑟 ∈ NR . We use 𝒦∃ to

denote the set {∃𝑟.𝐵 | 𝐴 ⊑ ∃𝑟.𝐵 ∈ 𝒯 } and 𝒦∀ to denote {∀𝑟.𝐵 | 𝐴 ⊑ ∀𝑟.𝐵 ∈ 𝒯 }. W.l.o.g.,

we assume in the remainder that Horn 𝒜ℒ𝒞 knowledge bases are normalized by applying a

structural transformation (see e.g. [5]) and that the ABox is reduced.

Each consistent Horn 𝒜ℒ𝒞 knowledge base 𝒦 has a so-called universal model 𝒰 which is

minimal and unique, and contains all the implied facts. In particular, the universal model has

a tree-like form of role-connected (anonymous) individuals with named individuals as roots

where individuals are only made equal if it is necessarily entailed by the knowledge base. For

query answering, it suffices to consider this universal model [3].

2.2. Concept Referring Expressions

Principally, referring expressions serve the purpose of uniquely identifying an object in a certain

context through its properties, that also include relations to other objects [6]. In DLs, this can

be realized by a conjunction of concepts with relations modeled as existential restrictions over

inverse roles, which relate an anonymous individual to a named one (expressed as nominal):

Definition 1. Let𝒦 be a normalized ontology,𝐶 = 𝐴1⊓. . .⊓𝐴𝑛 with𝐴𝑖 ∈ cons(𝒦), 𝑟 ∈ rols(𝒦),
and 𝑎 ∈ inds(𝒦), then a concept referring expression 𝐸 is defined as

𝐸 ::= {𝑎} 𝐸 ::= 𝐶 ⊓ ∃𝑟−.(𝐸)

and we call 𝑎 the base individual of 𝐸.

The reason for describing referring expressions this way lies in the tree model property of

DLs, which allows us to identify an anonymous object in terms of a named individual (the base

individual) and the (inverse) role path that connects the former to the latter [3]. Consider the

example taken from Toman and Weddell [3]:

Example 1. Let 𝒦 = 𝒯 ∪ 𝒜 consist of 𝒯 = {𝐴 ⊑ ∃𝑟.𝐶, 𝐴 ⊑ ∃𝑟.𝐷, 𝐴 ⊑ ∀𝑟.𝐵} and
𝒜 = {𝐴(𝑎)}, with the three (tree) models of 𝒦:

𝑎𝐴

𝐵,𝐶 𝐵,𝐶 𝐵,𝐷

𝑟 𝑟 𝑟
𝑎𝐴

𝐵,𝐶 𝐵,𝐷

𝑟 𝑟
𝑎𝐴

𝐵,𝐶,𝐷

𝑟

The model in the middle is the universal model as it can be embedded into any other model of 𝒦.
When we consider the generalized instance query for the concept 𝐵, the universal model makes
it reasonable to consider the 𝑟-successor of 𝑎 labeled 𝐶 and the 𝑟-successor of 𝑎 labeled 𝐷 as
singular certain answers to the query. We can describe these answers as the CREs 𝐶 ⊓ ∃𝑟−.{𝑎}
and 𝐷 ⊓ ∃𝑟−.{𝑎}, respectively. Note that we use an𝒜ℒ𝒞ℐ𝒪 concept to describe the CRE, whereas
𝒦 is in Horn 𝒜ℒ𝒞.

For a CRE to qualify as an answer to a generalized instance query, we impose some require-

ments, following the definition of Toman and Weddell [3] for singularity and certainty:

Definition 2. A generalized instance query is an atomic concept 𝑄 ∈ NC . A set ans(𝑄) of CREs
is an answer to 𝑄 over a consistent ontology 𝒦 if, for each 𝐸,𝐸′ ∈ ans(𝑄),



certainty 𝒦 |= 𝐸 ⊑ 𝑄 and |𝐸ℐ | > 0 for all models ℐ of 𝒦,

singularity |𝐸𝒰 | = 1 in the universal model 𝒰 of 𝒦, and

uniqueness 𝐸𝒰 ̸= 𝐸′𝒰 in the universal model 𝒰 of 𝒦

completeness for every CRE 𝐹 with 𝒦 |= 𝐹 ⊑ 𝑄 there exists some 𝐸 ∈ ans(𝑄) s.t. 𝐸 ≡ 𝐹 .

Here, the additional uniqueness property ensures that we do not obtain any duplicate answers,

since we are only interested in the individual (semantically) represented by some CRE rather

than the actual (syntactic) form of the latter. Besides, note that the above definition of singularity

is a weakening of the property defined by Borgida et al. [2], where a CRE was required to denote

a singleton set in all models of the knowledge base. This weakening, however, is essential in

DLs that do not support counting (e.g., through number restrictions or functional roles) such as

𝒜ℒ𝒞ℐ𝒪. Note also that unreachable objects cannot be certain answers. Furthermore, a complex

concept may still be considered as query if it can be represented by means of a new atomic

concept and additional appropriate axioms in the ontology, like ⊤ ⊑ 𝐴, for instance.

Example 2 (Ex. 1 cont.). Consider again the knowledge base 𝒦 of Example 1. Formally, the
set {𝐶 ⊓ ∃𝑟−.{𝑎}, 𝐷 ⊓ ∃𝑟−.{𝑎}} is an answer to the generalized instance query 𝐵 as both
concept expressions are singular certain answers that identify different anonymous individuals.
The CRE ∃𝑟−.{𝑎} does not satisfy the singularity requirement and the CRE 𝐶 ⊓𝐷 ⊓ ∃𝑟−.{𝑎}
violates the certainty requirement. Note that if we were to add 𝐶 ≡ 𝐷 to 𝒯 , the universal
model would be the right-most model of Example 1. In addition to the two CREs from above, also
𝐶 ⊓𝐷 ⊓ ∃𝑟−.{𝑎} becomes a certain singular answer. All three CREs, however, identify the same
anonymous individual in the universal model (in different syntactic variants) and our proposed
uniqueness criterion requires that ans(𝑄) consists of only one of them.

3. Answering Generalized Instance Queries

We propose an algorithm for computing CREs for a generalized instance query given by an

atomic concept 𝑄 over a (normalized) Horn 𝒜ℒ𝒞 ontology 𝒦 = 𝒯 ∪ 𝒜 with reduced ABox 𝒜.

An important aspect of the algorithm is that it employs an OWL reasoner as a black box as only

standard reasoning tasks (e.g., as foreseen in the OWL API [7]) are required and the concrete

approach being applied to answer generalized instance queries is not known to the reasoner.

For example, we retrieve super-concepts of a concept or the most specific concepts (w.r.t. to the

subsumption hierarchy) that an individual is an instance of (corresponding to those concepts in

a reduced ABox). This provides great flexibility concerning the choice of the applied reasoner

and allows for using optimized strategies for different ontologies.

To construct CREs serving as answers for𝑄we start with a CRE𝐸 = {𝑎} for each 𝑎 ∈ inds(𝒦)
and a corresponding current concept 𝐶𝑎 = 𝐴1 ⊓ . . .⊓𝐴𝑛 using every 𝐴𝑖(𝑎) ∈ 𝒜. We then look

for suitable existential restrictions ∃𝑟.𝐷 which satisfy 𝒦 |= 𝐶𝑎 ⊑ ∃𝑟.𝐷 and, thus, allow us to

extend the current CRE to 𝐸′ = 𝐷 ⊓ ∃𝑟−.(𝐸). This procedure is repeated and each time the

newly related 𝐷 is chosen as next current concept until no more appropriate restrictions can be

found to further extend the generated CREs. Here, a current concept 𝐶 does not just enable us



Algorithm 1 Answering generalized instance queries

procedure GeneralizedInstanceQuery(𝒦, 𝑄)

input: 𝒦 = 𝒯 ∪ 𝒜: an ontology, 𝑄: a generalized instance query

output: ans(𝑄)
1: ans← ∅
2: for all 𝑎 ∈ inds(𝒦) do
3: 𝐶𝑎 ←

d
𝐴(𝑎)∈𝒜𝐴

4: ans← ans ∪ getCREs(𝒦, 𝑄, 𝐶𝑎, {𝑎}, ∅)
5: return ans

to further expand a CRE, but moreover serves as an indicator if the latter represents an answer

for the query 𝑄, which is the case if 𝒦 |= 𝐶 ⊑ 𝑄 as shown later in Lemma 1.

Initialization: Algorithm 1 describes the main algorithm that constructs, for each individual

𝑎 occurring in the knowledge base, the initial current concept and then calls the algorithm to

generate CREs w.r.t. this (base) individual.

Constructing Concept Referring Expressions: Algorithm 2 uses five steps to construct

CREs for a given base individual that serve as answers for the considered query:

Step 1: At first, in Line 2, we look for suitable existential restrictions ∃𝑟.𝐵 that allow us to

relate the current concept 𝐶 to the concept 𝐵 in order to establish a link to a new anonymous

individual, thus requiring 𝒦 |= 𝐶 ⊑ ∃𝑟.𝐵. Since we are interested in producing singular CREs,

a restriction ∃𝑟.𝐵 should only be considered if there is no ∃𝑟.𝐴 (using the same role 𝑟) such

that 𝒦 |= 𝐴 ⊑ 𝐵. We capture this by introducing reduced (sets of) existential restrictions:

Definition 3 (Reduced Existential Restrictions). Let 𝒦 be a normalized Horn 𝒜ℒ𝒞 ontology
and 𝐶 a concept, then 𝒦∃(𝐶) = {∃𝑟.𝐵 | 𝒦 |= 𝐶 ⊑ ∃𝑟.𝐵,𝐵 ∈ NC , 𝑟 ∈ NR}. We denote with
𝒦min

∃ (𝐶) a smallest subset of 𝒦∃(𝐶) such that, for each ∃𝑟.𝐵 ∈ 𝒦∃(𝐶) ∖ 𝒦min
∃ (𝐶), there is some

∃𝑟.𝐴 ∈ 𝒦min
∃ (𝐶) s.t. 𝒦 |= 𝐴 ⊑ 𝐵.

Note that an instance of ∃𝑟.𝐵 ∈ 𝒦∃(𝐶) ∖ 𝒦min
∃ (𝐶) is connected to more than one instance

of 𝐵, which means that a CRE using this existential restriction is non-singular as it represents

more than one individual. Moreover, if there are two candidates ∃𝑟.𝐴, ∃𝑟.𝐵 ∈ 𝒦∃(𝐶) such that

𝒦 |= 𝐴 ≡ 𝐵, only one of them should be chosen in order to prevent duplicate answers.

Step 2: For each selected existential restriction that induces a successor for an instance of the

current concept 𝐶 , we next consider universal restrictions that further specify these successors

(see Lines 4–5) and we add these concepts to the set of successor concepts for the role in the

sc relation. After this step, each (𝑟, 𝑆) ∈ sc is such that 𝒦 |= 𝐶 ⊑ ∃𝑟.(𝐵1 ⊓ . . . ⊓ 𝐵𝑛) for

𝑆 = {𝐵1, . . . , 𝐵𝑛}.
Step 3: In this step of the algorithm, we determine those existential restrictions that can

actually be applied to further construct CREs leading to singular, unique answers of the query

and collect them in the set next. If we encounter an entry (𝑟, 𝑆) ∈ sc for which we already have

another entry (𝑟, 𝑆′) ∈ next such that 𝒦 |=
d

𝐵∈𝑆 𝐵 ≡
d

𝐵′∈𝑆′ 𝐵′
, we do not consider (𝑟, 𝑆)



Algorithm 2 Computing CREs for a base individual

procedure getCREs(𝒦, 𝑄, 𝐶 , 𝐸, used)

input: 𝒦 = 𝒯 ∪ 𝒜: an ontology, 𝑄: a query, 𝐶 : the current concept, 𝐸: the current CRE,

used: a set of already applied existential restrictions

output: CREs from ans(𝑄) that build upon 𝐸
1: // Step 1: find suitable existential restrictions
2: sc← {(𝑟, {𝐵}) | ∃𝑟.𝐵 ∈ 𝒦min

∃ (𝐶)}
3: // Step 2: find related universal restrictions
4: for all (𝑟, 𝑆) ∈ sc do
5: 𝑆 ← 𝑆 ∪ {𝐵 | ∀𝑟.𝐵 ∈ 𝒦∀ and 𝒦 |= 𝐶 ⊑ ∀𝑟.𝐵}
6: // Step 3: filter found existential restrictions
7: next← ∅
8: for all (𝑟, 𝑆) ∈ sc do
9: // check for potential duplicates

10: sc′← {(𝑟, 𝑆′) ∈ next | 𝒦 |=
d

𝐵∈𝑆 𝐵 ≡
d

𝐵′∈𝑆′ 𝐵′}
11: if sc′ = ∅ then
12: if 𝐸 = {𝑎} then
13: if {𝑏 | 𝑟(𝑎, 𝑏) ∈ 𝒜, ∀𝐵 ∈ 𝑆 : 𝒦 |= 𝐵(𝑏)} = ∅ then
14: next← next ∪ {(𝑟, 𝑆)}
15: else
16: // look for cycle in current CRE
17: if (𝑟, 𝑆) ∈ used then
18: 𝐸 ← markCycle(𝐸, 𝑟, 𝑆)

19: else
20: next← next ∪ {(𝑟, 𝑆)}
21: // Step 4: check if current CRE is an answer
22: ans← ∅
23: if 𝒦 |= 𝐶 ⊑ 𝑄 then
24: ans← ans ∪ {𝐸}
25: // Step 5: extend CRE recursively
26: for all (𝑟, 𝑆) ∈ next do
27: 𝐶 ′ ←

d
𝐵∈𝑆 𝐵

28: 𝐸′ ← 𝐶 ′ ⊓ ∃𝑟−.(𝐸)
29: ans← ans ∪ getCREs(𝒦, 𝑄, 𝐶 ′

, 𝐸′
, used ∪ {(𝑟, 𝑆)})

30: return ans

any further to prevent duplicate answers, i.e., if the check in Line 11 fails, the entry (𝑟, 𝑆) is

not added to the set next. Even though we already consider only the reduced set of existential

restrictions in Step 1, this check is still necessary. Consider, for example, that 𝒦 |= 𝐶 ⊑ ∃𝑟.𝐴
and 𝒦 |= 𝐶 ⊑ ∃𝑟.𝐵 for the current concept 𝐶 and 𝒦 ̸|= 𝐴 ≡ 𝐵. Hence, we have two entries

(𝑟, {𝐴}) and (𝑟, {𝐵}) ∈ sc. Assume, furthermore, that 𝒦 |= 𝐶 ⊑ ∀𝑟.𝐴 and 𝒦 |= 𝐶 ⊑ ∀𝑟.𝐵.

This means, however, that for both (𝑟, {𝐴}), (𝑟, {𝐵}) ∈ sc, we have 𝒦 |= 𝐶 ⊑ ∃𝑟.(𝐴 ⊓𝐵).



To guarantee the uniqueness property, an existential restriction should also be ignored for

the initial extension of a CRE only consisting of a nominal {𝑎} if the existential restriction is

already satisfied through a (named) individual 𝑏. This situation is handled in Line 13. Note that

due to the tree model property this situation can only occur for the initial CREs.

For cyclic knowledge bases, it may be the case that for two, possibly equal, current concepts 𝐶
and 𝐶 ′

that occur during the algorithm processing, the same existential restriction is applicable.

This may lead to an arbitrarily long repetition of the same sequence of existential restrictions

that originally led from 𝐶 to 𝐶 ′
, hence, giving rise to an infinitely large number of possible CREs

(of increasing length). Analogous to blocking in tableau algorithms [4], we ensure termination

of the algorithm by detecting such cycles and by preventing the reuse of an already processed

existential restriction. Instead, we compactly represent such CREs using a cycle notation in

form of surrounding square brackets "[...]+" to mark the sequence that may occur several times

repeatedly (indicated by a call to the procedure markCycle in Line 18). For an example, consider

𝒦 = 𝒯 ∪ 𝒜 with 𝒯 = {𝐴 ⊑ ∃𝑟.𝐴} and 𝒜 = {𝐴(𝑎)}, where [𝐴 ⊓ ∃𝑟−.(]+{𝑎}) is an answer

for the generalized instance query 𝐴 and serves as single representative for the infinitely many

CREs of the form 𝐴 ⊓ ∃𝑟−.(𝐴 ⊓ ∃𝑟−.(...{𝑎}).
Step 4: In this step, we check if the current CRE already represents an answer for the query

𝑄. For a standard instance query, this would usually require to check 𝒦 |= 𝑄(𝑎) for a named

individual 𝑎, but since we are considering anonymous individuals represented by some CRE 𝐸,

we want to know whether 𝒦 |= 𝐸 ⊑ 𝑄. This is actually realized by checking 𝒦 |= 𝐶 ⊑ 𝑄 in

Line 23 for the related current concept 𝐶 based on the following lemma.

Lemma 1. Given a Horn 𝒜ℒ𝒞 ontology 𝒦, a generalized instance query 𝑄, a CRE 𝐸 and its
associated (Horn 𝒜ℒ𝒞) current concept 𝐶 , where 𝐶 = 𝐴1 ⊓ . . . ⊓𝐴𝑛 using every 𝐴𝑖(𝑎) ∈ 𝒜 if
𝐸 = {𝑎}, or 𝐶 = 𝐷 if 𝐸 = 𝐷 ⊓ ∃𝑟−.(...), then 𝒦 |= 𝐸 ⊑ 𝑄⇔ 𝒦 |= 𝐶 ⊑ 𝑄.

Proof sketch. (⇒) 𝒦 |= 𝐶 ⊑ 𝑄 requires that 𝐶 is at least as specific as 𝑄. Therefore, we

show that the current concept 𝐶 is actually the most specific (Horn 𝒜ℒ𝒞) concept such that

𝒦 |= 𝐸 ⊑ 𝐶 and that for any other most specific candidate 𝐷 with 𝒦 |= 𝐸 ⊑ 𝐷, we have

𝒦 |= 𝐶 ≡ 𝐷, which is mainly based on the fact that we only work with reduced existential

restrictions (see Algorithm 2, Line 2 and Definition 3).

(⇐) Per definition, a current concept 𝐶 of some CRE 𝐸 always satisfies 𝒦 |= 𝐸 ⊑ 𝐶 .

Step 5: Even if an answer has been identified, the processing of the CRE does still proceed,

because it may be possible that the continuing construction leads to another answer later on.

Therefore, the algorithm is eventually called recursively using appropriately updated arguments,

like an extended CRE 𝐸′
and the new current concept 𝐶 ′

.

3.1. Properties

In the following, we discuss why the described algorithm works properly in the way that

for a generalized instance query, only certain, singular, and unique answers are produced

w.r.t. Definition 2. Additionally, we show that the algorithm returns every such answer and,

furthermore, always terminates. Due to space limitations, we mainly provide proof sketches,



while more details are given in an online appendix.
1

Certainty. In Line 23 of Algorithm 2, a CRE 𝐸 is selected as answer if 𝒦 |= 𝐶 ⊑ 𝑄, which

implies 𝒦 |= 𝐸 ⊑ 𝑄 according to Lemma 1. In addition, a CRE basically describes a chain of

linked individuals where the existence of one individual ensures the presence of the next one

being referenced through an existential restriction. Since we start with an explicitly present

individual as base for 𝐸, there is always at least one element in 𝐸ℐ
for each model ℐ .

Singularity. For an initial CRE 𝐸 = {𝑎}, we directly get |𝐸𝒰 | = 1 for the universal model

𝒰 . In the more general case 𝐸 = 𝐶 ⊓ ∃𝑟−.(𝐸′) with 𝐸′
as the (recursive) part leading to the

base individual, we show that the non-singular situation |𝐸𝒰 | > 1 is never achieved: This

would require that there is some part 𝐶 ′ ⊓ ∃𝑟′−.(𝐸′′) in 𝐸 where one individual from 𝐸′′𝒰

has 𝑟′-relations to (at least) two different individuals in 𝐶 ′𝒰
. The necessary conditions for this

are described in Lemma 2 below (with 𝐶 ′
as 𝐷), but since the algorithm only selects reduced

existential restrictions w.r.t. Definition 3, i.e., some ∃𝑟.𝐵 is only chosen if there is no candidate

∃𝑟.𝐴 with 𝒦 |= 𝐴 ⊑ 𝐵, this situation never occurs.

Lemma 2. Let 𝒦 be a Horn 𝒜ℒ𝒞 ontology, 𝒰 the universal model of 𝒦, and assume that
⟨𝑐, 𝑎⟩, ⟨𝑐, 𝑏⟩ ∈ 𝑟𝒰 for some role 𝑟, and (anonymous individuals) 𝑎, 𝑏 ∈ 𝐷𝒰 for some concept
𝐷. We have 𝑎 ̸= 𝑏 iff there exist some concepts 𝐴,𝐵,𝐶 such that 𝑐 ∈ 𝐶𝒰 , 𝒦 |= 𝐶 ⊑ ∃𝑟.𝐴,
𝒦 |= 𝐶 ⊑ ∃𝑟.𝐵, 𝒦 |= 𝐴 ⊑ 𝐷, 𝒦 |= 𝐵 ⊑ 𝐷, and 𝒦 ̸|= 𝐴 ≡ 𝐵.

Proof sketch. This basically follows from the characteristics of the universal model 𝒰 .

Uniqueness. Considering the tree-like universal model 𝒰 , having two different CREs 𝐸,𝐸′

with 𝐸𝒰 = 𝐸′𝒰
means that i) they both describe the same path in the tree using different

concepts or ii) one refers to a sub-path of the other leading to the same anonymous individual:

i) Because an edge in a tree path relates to some ∃𝑟.𝐵, 𝐸′
might describe the same path as

𝐸 if it uses some ∃𝑟.𝐵′
with 𝐵 ⊑ 𝐵′

(including 𝐵 ≡ 𝐵′
) for the associated edge instead.

In Algorithm 2, this is prevented in Lines 2 and 11. ii) Assuming that 𝑎 and 𝑎′ are the base

individuals of 𝐸 and 𝐸′
, respectively, there must be some 𝑟(𝑎, 𝑎′) ∈ 𝒜 such that 𝐸′

refers to a

sub-path of 𝐸. If 𝑎′𝒰 ∈ 𝐵𝒰
for some 𝐵, some ∃𝑟.𝐵 would describe the same edge as 𝑟(𝑎, 𝑎′),

given that 𝑎𝒰 ∈ (∃𝑟.𝐵)𝒰 , which is why such existential restrictions are not chosen (Line 13).

Completeness. It is not required to construct every possible CRE that represents an answer

for the stated query, but rather to find one unique, singular CRE for every, possibly anonymous,

individual that serves as an answer. For that, we assume there may exist some CRE 𝐸 describing

a correct, singular and unique answer, but which cannot be constructed by the algorithm and

prove that this is not possible: Since the considered 𝐸 is not generated by the algorithm, it

must possess a unique subpart that does not occur in any of the constructed answers. As

we already consider all individuals during the initialization, this part must be of the form

"𝐶 ′ ⊓ ∃𝑟−.(𝐶 ⊓ . . .)", where the existential restriction ∃𝑟.𝐶 ′
was applied for the concept 𝐶 . By

1

https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2022/IlGl22a_appendix.pdf
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considering all the cases in the algorithm where 𝐶 is not used as current concept or ∃𝑟.𝐶 ′
is

not selected (or constructed), respectively, we can see that either the certainty, singularity or

uniqueness property would be violated by regarding 𝐸 as an answer. Besides, the employed

cycle notation may be seen as a compromise to implicitly return a possibly infinite number of

CREs in form of just one compact instance in order to ensure the termination of the algorithm.

Termination. As the given ontology always consists of a finite number of axioms and concepts,

all the applied search and iteration processes come to a halt. Therefore, non-termination may

only be realized by the repeated usage of an existential restriction during a recursive call, which,

however, is prevented by the cycle detection in Line 17 of Algorithm 2.

4. Implementation and Evaluation

A prototypical Java implementation of our algorithm is available online on GitHub
2

and also

includes some optimizations. One of them refers to the ordering of existential and universal

restrictions by means of separate subsumption hierarchies. This allows us to reduce the number

of performed subsumption tests in the way that if, for example, 𝒦 ̸|= 𝐶 ⊑ ∃𝑟.𝐵, we do not

need to further check 𝒦 |= 𝐶 ⊑ ∃𝑟′.𝐴 for any ∃𝑟′.𝐴 that is below ∃𝑟.𝐵 in the hierarchy,

i.e., for which 𝒦 |= ∃𝑟′.𝐴 ⊑ ∃𝑟.𝐵. Usually, reasoners are only concerned with computing

subsumption hierarchies for atomic concepts, referred to as classification (see e.g. [4]). Therefore,

we introduce a new atomic concept for each existential (or universal) restriction such that the

reasoner can (internally) compute the hierarchies for those new atomic concepts, based on

which the actual hierarchies for existential (or universal) restrictions can then be derived. Due

to the associated additional overhead, we also implemented the (explicit) Enhanced Traversal

Method [8] to efficiently deal with smaller number of elements.

Another improvement is achieved by combining base individuals into one set if they share an

equivalent initial current concept and furthermore possess analogous given role assertions. Since

these properties result in the same computations for each individual, we can avoid unnecessary

repetitions by calling the algorithm only once for such a combined set and just generate different

versions of the constructed CRE for each base individual in the end.

For a general performance assessment, the implementation was tested on different ontologies

listed in Table 1 with codinteraction-A and the separate ore_ont_2608/4516/3313 being part of

the ORE 2015 Reasoner Competition Corpus [9], while HAO (v2021-03-05), VO (v1.1.171) and

DTO (v1.1.1) were taken from BioPortal
3
. If necessary, axioms not adhering to Horn 𝒜ℒ𝒞 were

removed and ontologies merged with their imports to obtain one complete ontology.

Tests showed that subsumption checking has a huge influence on the performance, which

is why we considered two different reasoners, namely HermiT
4

(v1.3.8) and JFact
5

(v5.0.3). In

general, HermiT achieved better runtime results than JFact, except for the larger ontologies VO

and DTO, where JFact was faster in determining the earlier mentioned subsumption hierarchies.

2

https://github.com/M-Illich/Computing-CREs.git

3

https://bioportal.bioontology.org/ontologies

4

http://www.hermit-reasoner.com/

5

http://jfact.sourceforge.net/
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Table 1
Overview of adapted ontologies with their number of atomic concepts (#con), individuals (#ind), com-
bined individual sets (#sets), considered existential/universal restrictions (#∃/#∀), average runtime in
ms for ⊤ as query, number of answers (#ans) and their percentage distribution w.r.t. their depth, i.e.,
number of contained inverse existential restrictions (*no subsumption hierarchies)

Ontology #con #ind #sets #∃ #∀ Runtime #ans depth (%)
[ms] 0 1 2-4 5-7 8-10 11-12

codinteraction-A 6 21 13 3 0 71 30 70 30 - - - -
ore_ont_2608 453 212 212 10 10 265 279 76 24 - - - -
ore_ont_4516 509 217 217 10 10 185 284 76 24 - - - -
ore_ont_3313 865 2,070 858 114 0 57,966 9,734 21 8 34 27 9 1
HAO 2,548 2,764 687 522 1 37,965 2,764 100 - - - - -
VO 6,828 167 4 1,513 237 460* 176 95 5 - - - -
DTO 10,075 3 1 7,958 114 738* 3 100 - - - - -

Since both VO and DTO, however, possess many existential restrictions but only few individuals

(especially in form of combined sets), the performance was actually best if no subsumption

hierarchies are computed. Table 1 shows the obtained runtime measurements (average of five

runs) for computing all CREs, i.e., using⊤ as query, with HermiT as reasoner, based on an AMD

Ryzen 7 3700X 3.59 GHz processor with 16 GB RAM on Windows 10 (64-Bit).

5. Related Work

Krahmer and van Deemter [6] provide a survey on referring expressions and their computa-

tional generation, given by a historic overview of research developments. Here, the problem

of generating referring expressions is defined as finding a description in form of combined

properties that uniquely identify a given individual in a certain context, which differs from

our work in that we intend to describe unknown, anonymous individuals rather than explicitly

named ones.

A related approach that works with DL is provided by Areces et al. [1] introducing an

algorithm that takes as input a modelℳ and tries to find formulas (concepts) that represent

the individuals inℳ. The basic idea here is that, starting with ⊤ as formula for which the

interpretation contains every domain element, new formulas are created by successively refining

the already given ones through appending new conjuncts with the intention to reduce the

number of elements in the formulas’ interpretations. At first, only atomic concepts are added as

conjuncts, before existential restrictions relating to already computed formulas are considered

until the formulas’ interpretations are singular or no further adaptations are possible.

Unlike in our work, the individuals to be described are already stated and the occurrence

of cycles in referring expressions is not considered. However, both approaches make use of

relations between individuals, but with the distinction that Areces et al. start from the individual

𝑎 described by the referring expression and go to another one 𝑏, while we utilize the inverse

case where another (present) individual 𝑏 refers to 𝑎, the (anonymous) one being described.

The work that comes closest to ours is given by Toman and Weddell [3] dealing with (gen-

eralized) instance retrieval queries on (Horn 𝒜ℒ𝒞) ontologies, based on a tree automaton for



which a state 𝑆 is given by a set of atomic concepts, while transitions are defined by so-called

matching tuples (𝑆, 𝑆0, ..., 𝑆𝑘) stating that some 𝑆𝑖 with 0 ⩽ 𝑖 ⩽ 𝑘 can be reached when

in the current state 𝑆 a certain existential restriction ∃𝑟𝑖.𝐶𝑖 is applied. Starting with a set

𝑆𝑎 = {𝐴 | 𝐴(𝑎) ∈ 𝒜} for some individual 𝑎, a tree can be unfolded using those matching

tuples. In order to answer a query 𝐵, this tree is traversed beginning with some 𝑆𝑎 until a

state 𝑆𝑘 is reached where 𝒦 |=
d

𝐴∈𝑆𝑘
𝐴 ⊑ 𝐵, for which the sequence 𝑟1𝐴1...𝑟𝑘𝐴𝑘 (called

certain path) referring to the applied existential restrictions is then transformed into a CRE

𝐴𝑘 ⊓ ∃𝑟−𝑘 .(... 𝐴1 ⊓ ∃𝑟−1 .{𝑎}) serving as answer for 𝐵.

Like in our algorithm, the tree automaton starts the construction of CREs with a given

individual and also takes care of occurring cycles. Furthermore, both approaches only use

minimal existential restrictions to ensure singularity, although the definitions for minimality are

different: While Toman and Weddell rely on the general subsumption of the whole restriction

∃𝑟.𝐶 , we consider subsumption for the inner concept 𝐶 instead w.r.t. Definition 3, because only

then singularity can be guaranteed (based on Lemma 2). In this respect, the tree automaton

approach does not fulfill the completeness property due to only working with the most specific

existential restrictions, even though some other ones might lead to singular CREs, too, as

illustrated in Example 3 below. Besides, we are only interested in producing unique CREs, which

is not explicitly handled by Toman and Weddell.

Example 3. Let 𝒦 = 𝒯 ∪ 𝒜 consist of 𝒜 = {𝐴(𝑎)} and 𝒯 = {𝐴 ⊑ ∃𝑟.𝐶, ∃𝑟.𝐶 ⊑
𝐵,𝐵 ⊑ ∃𝑟.𝐷,𝐶 ⊑ 𝑄,𝐷 ⊑ 𝑄}. For the generalized instance query 𝑄, we get ans(𝑄) =
{𝐶 ⊓ ∃𝑟−.{𝑎}, 𝐷 ⊓ ∃𝑟−.{𝑎}}, even though ∃𝑟.𝐷 is not minimal w.r.t. subsumption due to
𝒦 |= ∃𝑟.𝐶 ⊑ ∃𝑟.𝐷.

6. Conclusion

We presented an algorithm that generates concept referring expressions to identify both named

and anonymous individuals serving as certain, singular and unique answers for an instance

retrieval query on a Horn 𝒜ℒ𝒞 ontology. For that, we start with a named individual and

recursively determine appropriate existential restrictions to create a chain of relations that

defines an implicitly given individual based on its connection to an explicit one. A crucial factor

here is the selection based on reduced existential restrictions (cf. Definition 3), enabling us

to construct every desired singular CRE. Besides, the black box consideration of the applied

reasoner provides more flexibility in choosing optimal reasoning approaches for different

situations.

Future Research. In general, the question which reasoner should be selected for the consid-

ered ontologies is not an easy one and requires further investigations. On the other side, there

may be some advantages of directly integrating the algorithm into a particular reasoner as the

algorithm can then utilize the reasoner’s internal data structures and be optimized accordingly.

Moreover, it may be of interest to consider extensions of Horn 𝒜ℒ𝒞, too. While some features

might be already supported with none or only small adaptations in the algorithm, others prob-

ably require more examination, especially since we might lose the existence of the tree-like

universal model and thus can no longer make use of our original singularity definition.
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