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Abstract
It is known that the problems of deciding the existence of Craig interpolants and of explicit definitions
of concepts are both 2ExpTime-complete for standard description logics with nominals and/or role
inclusions. These complexity results depend on the presence of an ontology. In this article, we first
consider the case without ontologies (or, in the case of role inclusions, ontologies only containing
role inclusions) and show that both the existence of Craig interpolants and of explicit definitions of
concepts become coNExpTime-complete for DLs such as 𝒜ℒ𝒞𝒪 and 𝒜ℒ𝒞ℋ. Secondly, we make a few
observations regarding the size and computation of interpolants and explicit definitions.
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1. Introduction

Craig interpolants and explicit definitions have many potential applications in ontology engi-
neering and ontology-based information systems. Examples include the extraction of equivalent
acyclic TBoxes from ontologies [1, 2], the computation of referring expressions (or definite
descriptions) for individuals [3], concept separability and learning [4, 5], the equivalent rewrit-
ing of ontology-mediated queries into concepts or formulas [6, 7, 8, 9, 10], the construction
of alignments between ontologies [11], and the decomposition of ontologies [12]. For logics
enjoying the Craig interpolation property (CIP) the existence of a Craig interpolant follows from
the validity of the defining subsumption and for logics enjoying the projective Beth definability
property (PBDP) the existence of an explicit definition of a concept follows from its implicit
definability. For such logics, deciding the existence of a Craig interpolant or an explicit definition
of a concept are therefore not harder than subsumption and can be decided in ExpTime for DLs
such as 𝒜ℒ𝒞, 𝒜ℒ𝒞ℐ , 𝒜ℒ𝒞𝒬ℐ (which enjoy the CIP/PBDP [2]) if an ontology is present, and in
PSpace without ontology.

This paper is a part of a research program with the goal of understanding Craig interpolants
and explicit definitions for logics that do not enjoy the CIP/PBDP [13, 14]. The two most basic
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constructors that lead to DLs without the CIP and PBDP are nominals and role inclusions.
In fact, it is known that the complexity of deciding the existence of Craig interpolants and
explicit definitions are both 2ExpTime complete for standard DLs containing 𝒜ℒ𝒞𝒪 or 𝒜ℒ𝒞ℋ
and contained in the extension of 𝒜ℒ𝒞ℋℐ𝒪 with the universal role, in the presence of an
ontology [15]. The case without ontology remained open. Note that nothing interesting happens
for DLs containing the universal role or both nominals and inverse roles as it is known that then
the ontology can be ‘internalized’, and thus there is no difference between the case with and
without ontology. For DLs such as 𝒜ℒ𝒞𝒪, 𝒜ℒ𝒞ℋ, and 𝒜ℒ𝒞ℋℐ , however, this is not the case.
In fact, it is known that subsumption checking becomes PSpace-complete without ontology
while it is ExpTime-complete with ontology. In the first part of this paper we investigate the
complexity of deciding the existence of Craig interpolants and explicit definitions without
ontologies for these DLs and show that it becomes coNExpTime-complete. Hence we observe
again a significant increase in complexity compared to subsumption checking. Note that for
𝒜ℒ𝒞ℋ and 𝒜ℒ𝒞ℋℐ we assume an ontology containing role inclusions only as otherwise they
cannot be introduced and are not relevant.

In practice, of course, one is interested in the actual interpolants or the explicit definition.
Unfortunately, the decision procedures for the existence problems provided in this paper and
in [15] are non-constructive in the sense that they do not return an interpolant (an explicit
definition) in case it exists. To address this problem, we (slightly) modify the decision procedure
from [15] and show how to read off interpolants / explicit definitions from a run of the procedure,
at least for DLs with role inclusions. In doing so, we take inspiration from a recent note on a
type elimination based computation of interpolants in modal logic [16] which was originally
provided for the guarded fragment [17].

For a discusson of further related work on interpolation, Beth definability, interpolant exis-
tence, and explicit definition existence we refer the reader to [13, 15]. Detailed proofs for this
article are provided in the full version [18].

2. Preliminaries

We first introduce standard DL definitions and notation [19]. Let NC, NR, and NI be mutually
disjoint and countably infinite sets of concept, role, and individual names. A role is a role name 𝑠
or an inverse role 𝑠−, with 𝑠 a role name and (𝑠−)− = 𝑠. We use 𝑢 to denote the universal role.
A nominal takes the form {𝑎}, with 𝑎 ∈ NI. An 𝒜ℒ𝒞ℐ𝒪𝑢-concept is defined by the syntax rule

𝐶,𝐷 ::= ⊤ | 𝐴 | {𝑎} | ¬𝐶 | 𝐶 ⊓𝐷 | ∃𝑟.𝐶

where 𝑎 ∈ NI, 𝐴 ∈ NC, and 𝑟 is a role. We use 𝐶 ⊔𝐷 as abbreviation for ¬(¬𝐶 ⊓¬𝐷), 𝐶 → 𝐷
for ¬𝐶 ⊔ 𝐷, and ∀𝑟.𝐶 for ¬∃𝑟.¬𝐶 . We also consider the following fragments of 𝒜ℒ𝒞ℐ𝒪𝑢:
𝒜ℒ𝒞ℐ𝒪, obtained by dropping the universal role; 𝒜ℒ𝒞𝒪𝑢, obtained by dropping inverse roles;
𝒜ℒ𝒞𝒪, obtained from 𝒜ℒ𝒞𝒪𝑢 by dropping the universal role; and 𝒜ℒ𝒞, obtained from 𝒜ℒ𝒞𝒪
by dropping nominals. If ℒ is any of the DLs defined above, then an ℒ-concept inclusion (ℒ-CI)
takes the form 𝐶 ⊑ 𝐷, with 𝐶 and 𝐷 ℒ-concepts. An ℒ-ontology is a finite set of ℒ-CIs. We
also consider DLs with role inclusions (RIs), expressions of the form 𝑟 ⊑ 𝑠, where 𝑟 and 𝑠 are
roles. As usual, the addition of RIs is indicated by adding the letter ℋ to the name of the DL,



where inverse roles occur in RIs only if the DL admits inverse roles. Thus, for example, 𝒜ℒ𝒞ℋ-
ontologies are finite sets of 𝒜ℒ𝒞-CIs and RIs not using inverse roles and 𝒜ℒ𝒞ℋℐ𝒪𝑢-ontologies
are finite sets of 𝒜ℒ𝒞ℐ𝒪𝑢-CIs and RIs. In the following, we use DLnr to denote the set of DLs
𝒜ℒ𝒞𝒪, 𝒜ℒ𝒞ℐ𝒪, 𝒜ℒ𝒞ℋ, 𝒜ℒ𝒞ℋ𝒪, 𝒜ℒ𝒞ℋℐ𝒪, and their extensions with the universal role.
To simplify notation we do not drop the letter ℋ when speaking about the concepts and CIs
of a DL with RIs. Thus, for example, we sometimes use the expressions 𝒜ℒ𝒞ℋ𝒪-concept and
𝒜ℒ𝒞ℋ𝒪-CI to denote 𝒜ℒ𝒞𝒪-concepts and CIs, respectively.

The semantics is given in terms of interpretations ℐ = (Δℐ , ·ℐ), defined as usual [19]. An
interpretation ℐ satisfies an ℒ-CI 𝐶 ⊑ 𝐷 if 𝐶ℐ ⊆ 𝐷ℐ and an RI 𝑟 ⊑ 𝑠 if 𝑟ℐ ⊆ 𝑠ℐ . We say
that ℐ is a model of an ontology 𝒪 if it satisfies all inclusions in it. We say that an inclusion
𝛼 follows from an ontology 𝒪, in symbols 𝒪 |= 𝛼, if every model of 𝒪 satisfies 𝛼. We write
𝒪 |= 𝐶 ≡ 𝐷 if 𝒪 |= 𝐶 ⊑ 𝐷 and 𝒪 |= 𝐷 ⊑ 𝐶 . We write |= 𝐶 ⊑ 𝐷 if 𝒪 |= 𝐶 ⊑ 𝐷 for the
empty ontology 𝒪. A concept 𝐶 is satisfiable w.r.t. an ontology 𝒪 if there is a model ℐ of 𝒪
with 𝐶ℐ ̸= ∅.

A signature Σ is a set of symbols, i.e., concept, role, and individual names. As standard in the
literature, the universal role is not regarded as a symbol, but as a logical connective, and as such
it is not contained in any signature. We use sig(𝑋) to denote the set of symbols used in any
syntactic object 𝑋 such as a concept or an ontology. An ℒ(Σ)-concept is an ℒ-concept 𝐶 with
sig(𝐶) ⊆ Σ, and a Σ-role is a role 𝑟 such that 𝑟 or 𝑟− is in Σ.

We require a model-theoretic characterization of when nodes are indistinguishable by ℒ(Σ)-
concepts. A pair ℐ, 𝑑 with ℐ an interpretation and 𝑑 ∈ Δℐ is called a pointed interpretation. For
pointed interpretations ℐ, 𝑑 and 𝒥 , 𝑒 and a signature Σ, we write ℐ, 𝑑 ≡ℒ,Σ 𝒥 , 𝑒 and say that
ℐ, 𝑑 and 𝒥 , 𝑒 are ℒ(Σ)-equivalent if 𝑑 ∈ 𝐶ℐ iff 𝑒 ∈ 𝐶𝒥 , for all ℒ(Σ)-concepts 𝐶 . An ℒ(Σ)-
bisimulation 𝑆 is a relation 𝑆 ⊆ Δℐ ×Δ𝒥 satisfying the standard back-and-forth conditions
required by the constructors of ℒ, we refer the reader to [20, 21]. We write ℐ, 𝑑 ∼ℒ,Σ 𝒥 , 𝑒 and
call ℐ, 𝑑 and 𝒥 , 𝑒 ℒ(Σ)-bisimilar if there exists an ℒ(Σ)-bisimulation 𝑆 such that (𝑑, 𝑒) ∈ 𝑆.
Then the following holds for all 𝜔-saturated interpretations ℐ and 𝒥 (for the “if”-direction, the
𝜔-saturatedness condition can be dropped):1 ℐ, 𝑑 ≡ℒ,Σ 𝒥 , 𝑒 if and only if ℐ, 𝑑 ∼ℒ,Σ 𝒥 , 𝑒.

3. Basic Notions and Results

Let ℒ be a DL, let 𝒪1,𝒪2 be ℒ-ontologies, and let 𝐶1, 𝐶2 be ℒ-concepts. We set sig(𝒪, 𝐶) =
sig(𝒪) ∪ sig(𝐶), for any ontology 𝒪 and concept 𝐶 . Following [2], an ℒ-concept 𝐷 is called
an ℒ-interpolant for 𝐶1 ⊑ 𝐶2 under 𝒪1 ∪ 𝒪2 if: (𝑖) sig(𝐷) ⊆ sig(𝒪1, 𝐶1) ∩ sig(𝒪2, 𝐶2); (𝑖𝑖)
𝒪1 ∪ 𝒪2 |= 𝐶1 ⊑ 𝐷; (𝑖𝑖𝑖) 𝒪1 ∪ 𝒪2 |= 𝐷 ⊑ 𝐶2. ℒ-interpolant existence is the problem to
decide the existence of an interpolant for 𝐶1 ⊑ 𝐶2 under 𝒪1 ∪ 𝒪2. In logics with the Craig
Interpolation Property (CIP) (such as, for instance, 𝒜ℒ𝒞 and 𝒜ℒ𝒞ℐ [2]) the existence of an
ℒ-interpolant for 𝐶1 ⊑ 𝐶2 under 𝒪1 ∪𝒪2 is equivalent to the entailment 𝒪1 ∪𝒪2 |= 𝐶1 ⊑ 𝐶2

and thus reduces to standard subsumption checking (which is, for instance, ExpTime-complete
for 𝒜ℒ𝒞 and 𝒜ℒ𝒞ℐ). This is not the case for the DLs considered here; in fact the following
increase in complexity by one exponential is shown in [15].

1See [22] for the definition of 𝜔-saturated interpretations.



Theorem 1. Let ℒ ∈ DLnr. Then ℒ-interpolant existence is 2ExpTime-complete.

In this article we consider interpolant existence with either empty ontologies or ontologies
containing RIs only. In detail, ontology-free ℒ-interpolant existence is the problem to decide
ℒ-interpolant existence for empty ontologies. Note that for logics with the CIP ontology-free
interpolant existence reduces to checking |= 𝐶1 ⊑ 𝐶2 and hence is PSpace-complete for DLs
such as 𝒜ℒ𝒞 and 𝒜ℒ𝒞ℐ . If ℒ admits RIs, then we consider ontology-free ℒ-interpolant existence
with RIs, the problem to decide ℒ-interpolant existence for ontologies containing RIs only. We
observe that DLs in DLnr do not enjoy the CIP, even without ontologies (ontologies containing
RIs only, respectively).

Example 1. Consider 𝐶1 = {𝑎} ⊓ ∃𝑟.{𝑎} and 𝐶2 = {𝑏} → ∃𝑟.{𝑏}. Then |= 𝐶1 ⊑ 𝐶2 but there
does not exist any 𝒜ℒ𝒞𝒪-interpolant for 𝐶1 ⊑ 𝐶2 (see Example 5 for a proof). An example using
RIs instead of nominals can be constructed from Example 3 below.

We next introduce explicit definitions. We call an ℒ(Σ)-concept 𝐷 an explicit ℒ(Σ)-definition
of 𝐶0 under an ontology 𝒪 if 𝒪 |= 𝐶0 ≡ 𝐷. ℒ-explicit definition is the problem to decide
the existence of an ℒ(Σ)-definition of an ℒ-concept under an ℒ-ontology. In logics with the
appropriate projective Beth Definability Property (PBDP) [2, 15] the existence of an explicit
ℒ(Σ)-definition of a concept follows from its implicit definability according to which the
extension of the concept is determined by the extension of symbols in Σ. The latter condition
can be decided using subsumption checking and is therefore ExpTime-complete for DLs with
the PBDP such as 𝒜ℒ𝒞 and 𝒜ℒ𝒞ℐ [2]. Similarly to the interpolant existence problem, this is
not the case for the DLs considered here and we have again an increase in complexity by one
exponential [15].

Theorem 2. Let ℒ ∈ DLnr. Then explicit definition existence is 2ExpTime-complete.

In this article we consider explicit definition existence without ontologies and ontologies
containing RIs only. If 𝐶 and 𝐶0 are concepts and Σ a signature, then we call 𝐷 an explicit
ℒ(Σ)-definition of 𝐶0 under 𝐶 if |= 𝐶 ⊑ (𝐶0 ↔ 𝐷).

Remark 2. Explicit definitions under a concept 𝐶 can be regarded as a ‘local’ version of explicit
definitions under ontologies. If 𝒪 is an ontology, then let 𝑁𝑛 be the concept stating that 𝒪 is true
in all nodes reachable in at most 𝑛 steps. Then a concept 𝐷 is an ℒ(Σ)-definition of 𝐶0 under 𝒪
iff there exists an 𝑛 ≥ 0 such that 𝐷 is an ℒ(Σ)-definition of 𝐶0 under 𝑁𝑛.

Then ontology-free ℒ-definition existence is the problem to decide for ℒ-concepts 𝐶 and 𝐶0,
and a signature Σ whether there exists an explicit ℒ(Σ)-definition of 𝐶0 under 𝐶 . If ℒ admits
RIs, then ontology-free ℒ-definition existence with RIs is the problem to decide for an ontology 𝒪
containing RIs only, ℒ-concepts 𝐶 and 𝐶0, and a signature Σ whether there exists an explicit
ℒ(Σ)-definition 𝐷 of 𝐶0 under 𝒪 and 𝐶 , that is 𝒪 |= 𝐶 ⊑ (𝐶0 ↔ 𝐷). For DLs with the PBDP
such as 𝒜ℒ𝒞 and 𝒜ℒ𝒞ℐ ontology-free ℒ-definition existence reduces to subsumption checking
without ontologies and is thus PSpace-complete. We next observe that the DLs in DLnr do not
enjoy the PBDP without ontologies (ontologies containing RIs only).



Example 3. Consider 𝒪 = {𝑟 ⊑ 𝑟1, 𝑟 ⊑ 𝑟2} and let 𝐶 be the conjunction of (¬∃𝑟.⊤⊓∃𝑟1.𝐴) →
∀𝑟2.¬𝐴 and (¬∃𝑟.⊤ ⊓ ∃𝑟1.¬𝐴) → ∀𝑟2.𝐴. Let Σ = {𝑟1, 𝑟2}. Then there does not exist an
explicit 𝒜ℒ𝒞(Σ)-definition of ∃𝑟.⊤ under 𝒪 and 𝐶 (see Example 6 below for a proof). The concept
∃𝑟1 ∩ 𝑟2.⊤, however, is an explicit definition of ∃𝑟.⊤ under 𝒪 and 𝐶 in the extension of 𝒜ℒ𝒞
with role intersection (with semantics defined in the obvious way). As any concept with an explicit
definition in FO is implicitly definable, ∃𝑟.⊤ is implicitly definable.

We conclude this section with a few observations on the relationship between the existence
problems introduced above. It has been observed in [15] already that ℒ-explicit definition
existence is polyomial time reducible to ℒ-interpolant existence. This also holds for the ontology-
free versions.

Lemma 3. Let ℒ ∈ DLnr. Then ontology-free ℒ-definition existence (with RIs) can be reduced in
polynomial time to ontology-free ℒ-interpolant existence (with RIs).

By applying a standard encoding of ontologies into concepts one can show that for DLs in
DLnr containing the universal role or both inverse roles and nominals dropping the ontology
does not affect the complexity of explicit definition existence.

Lemma 4. Let ℒ ∈ DLnr contain the universal role or both inverse roles and nominals. Then
ℒ-explicit definition existence can be reduced in polynomial time to ontology-free ℒ-definition
existence (with RIs if ℒ admits RIs).

We obtain the following complexity result as a consequence of Theorems 1-2 and Lemmas 3-4.

Theorem 5. Let ℒ ∈ DLnr contain the universal role or both inverse roles and nominals. Then
ontology-free interpolant existence (with RIs) and ontology-free explicit definition existence (with
RIs) are both 2ExpTime-complete.

4. Joint Consistency

The first main concern of the present paper is to study the computational complexity of the
ontology-free interpolant and explicit definition existence problems. We show the upper bound
for a generalization of interpolant existence. Generalized ℒ-interpolant existence is the problem
to decide for an ℒ ontology 𝒪, ℒ-concepts 𝐶1, 𝐶2 and signature Σ whether there exists an
ℒ(Σ)-interpolant for 𝐶1 ⊑ 𝐶2 under 𝒪, that is, an ℒ(Σ)-concept 𝐷 such that 𝒪 |= 𝐶1 ⊑ 𝐷
and 𝒪 |= 𝐷 ⊑ 𝐶2. The ontology-free version and the version with ontologies containing RIs
only are defined in the obvious way. Note that ℒ-interpolant existence is indeed a special case of
generalized ℒ-interpolant existence by setting 𝒪 = 𝒪1∪𝒪2 and Σ = sig(𝒪1, 𝐶1)∩sig(𝒪2, 𝐶2).
As a preliminary step, we provide model-theoretic characterizations in terms of bisimulations
as captured in the following central notion.

Definition 4 (Joint consistency). Let ℒ ∈ DLnr, 𝒪 be an ℒ-ontology, 𝐶1, 𝐶2 be ℒ-concepts, and
Σ ⊆ sig(𝒪, 𝐶1, 𝐶2) be a signature. Then 𝐶1, 𝐶2 are called jointly consistent under 𝒪 modulo
ℒ(Σ)-bisimulations if there exist pointed models ℐ1, 𝑑1 and ℐ2, 𝑑2 such that ℐ𝑖 is a model of 𝒪,
𝑑𝑖 ∈ 𝐶ℐ𝑖

𝑖 , for 𝑖 = 1, 2, and ℐ1, 𝑑1 ∼ℒ,Σ ℐ2, 𝑑2.



The associated decision problem, joint consistency modulo ℒ-bisimulations, is defined in the
expected way. The following result characterizes the existence of interpolants using joint
consistency modulo ℒ(Σ)-bisimulations and is proved in [15].

Theorem 6. Let ℒ ∈ DLnr. Let 𝒪 be an ℒ-ontology, 𝐶1, 𝐶2 be ℒ-concepts, and Σ ⊆
sig(𝒪, 𝐶1, 𝐶2). Then the following conditions are equivalent:

1. there is no ℒ(Σ)-interpolant for 𝐶1 ⊑ 𝐶2 under 𝒪;

2. 𝐶1,¬𝐶2 are jointly consistent under 𝒪 modulo ℒ(Σ)-bisimulations.

Example 5. From Example 1, let 𝐶1 = {𝑎} ⊓ ∃𝑟.{𝑎}, 𝐶2 = {𝑏} → ∃𝑟.{𝑏}, Σ = {𝑟}. Interpreta-
tions ℐ1, ℐ2 below show that 𝐶1 and ¬𝐶2 are jointly consistent modulo 𝒜ℒ𝒞𝒪(Σ)-bisimulations.

ℐ1

𝑎

𝐶1

𝑏

𝑟
ℐ2

𝑎𝑏¬𝐶2

𝑑

𝑟

𝑟
∼𝒜ℒ𝒞𝒪,Σ

∼𝒜ℒ𝒞𝒪,Σ

The existence of explicit definitions can be characterized as follows.

Theorem 7. Let ℒ ∈ DLnr. Let 𝒪 be an ℒ-ontology, 𝐶 and 𝐶0 ℒ-concepts, and Σ ⊆ sig(𝒪, 𝐶) a
signature. Then the following conditions are equivalent:

1. there is no explicit ℒ(Σ)-definition of 𝐶0 under 𝒪 and 𝐶 ;

2. 𝐶 ⊓ 𝐶0 and 𝐶 ⊓ ¬𝐶0 are jointly consistent under 𝒪 modulo ℒ(Σ)-bisimulations.

Example 6. Consider 𝒪, 𝐶 , and Σ from Example 3. The interpretations ℐ1, ℐ2 depicted below show
that 𝐶 ⊓ ∃𝑟.⊤ and 𝐶 ⊓ ¬∃𝑟.⊤ are jointly consistent under 𝒪 modulo 𝒜ℒ𝒞ℋ(Σ)-bisimulations.

ℐ1

𝑑1

𝐶 ⊓ ∃𝑟.⊤

𝑒1

𝑟, 𝑟1, 𝑟2
ℐ2

𝑑2

𝐶 ⊓ ¬∃𝑟.⊤

𝑒2 𝑒′2
𝐴

𝑟1 𝑟2

∼𝒜ℒ𝒞ℋ,Σ

∼𝒜ℒ𝒞ℋ,Σ

∼𝒜ℒ𝒞ℋ,Σ

5. Complexity

We formulate our main complexity result about the problem of deciding the existence of
interpolants and explicit definitions.



Theorem 8. Let ℒ ∈ DLnr not contain the universal role and not contain both inverse roles
and nominals simultaneously. Then ontology-free generalized ℒ-interpolant existence (with RIs),
ontology-free ℒ-interpolant existence (with RIs), and ontology-free ℒ-definition existence (with RIs)
are all coNExpTime-complete.

We show the upper bound for generalized ℒ-interpolant existence by proving that joint
consistency is in NExpTime (Theorem 6) and we show the lower bound by proving NExpTime-
hardness for the version of joint consistency formulated in Theorem 7 (with empty ontology or,
respectively, ontologies containing RIs only).

To show these results, we first require the following definitions. The depth of a concept 𝐶 is
the number of nestings of restrictions in 𝐶 . For instance, a concept name 𝐵 has depth 0 and
∃𝑟.∃𝑟.𝐵 has depth 2. Given an ontology 𝒪 and concepts 𝐶1, 𝐶2, let Ξ = sub(𝒪, 𝐶1, 𝐶2) denote
the closure under single negation of the set of subconcepts of concepts in 𝒪, 𝐶1, 𝐶2. A Ξ-type
𝑡 is a subset of Ξ such that there exists an interpretation ℐ and 𝑑 ∈ Δℐ with 𝑡 = tpΞ(ℐ, 𝑑),
where tpΞ(ℐ, 𝑑) = {𝐶 ∈ Ξ | 𝑑 ∈ 𝐶ℐ} is the Ξ-type realized at 𝑑 in ℐ . For a signature
Σ ⊆ sig(𝒪, 𝐶1, 𝐶2) and 𝑖 ∈ {1, 2}, the mosaic defined by 𝑑 ∈ Δℐ𝑖 in ℐ1, ℐ2 is the pair
(𝑇1(𝑑), 𝑇2(𝑑)) such that 𝑇𝑗(𝑑) = {tpΞ(ℐ𝑗 , 𝑒) | 𝑒 ∈ Δℐ𝑗 , ℐ𝑖, 𝑑 ∼ℒ,Σ ℐ𝑗 , 𝑒}, for 𝑗 = 1, 2. We
say that a pair (𝑇1, 𝑇2) of sets 𝑇1, 𝑇2 of types is a mosaic defined by ℐ1, ℐ2 if there exists
𝑑 ∈ Δℐ1 ∪Δℐ2 such that (𝑇1,𝑇2) = (𝑇1(𝑑), 𝑇2(𝑑)).

Example 7. From Example 5, consider 𝐶1, 𝐶2, as well as ℐ1, ℐ2. The set Ξ consists of the concepts
{𝑎}, ∃𝑟.{𝑎}, {𝑏}, ∃𝑟.{𝑏}, 𝐶1, 𝐶2, and negations thereof. We have that:

• tpΞ(ℐ1, 𝑎ℐ1) = {{𝑎}, ∃𝑟.{𝑎},¬{𝑏},¬∃𝑟.{𝑏}, 𝐶1, 𝐶2};

• tpΞ(ℐ2, 𝑏ℐ2) = {¬{𝑎},¬∃𝑟.{𝑎}, {𝑏},¬∃𝑟.{𝑏},¬𝐶1,¬𝐶2};

• tpΞ(ℐ2, 𝑑) = {¬{𝑎},¬∃𝑟.{𝑎},¬{𝑏},¬∃𝑟.{𝑏},¬𝐶1, 𝐶2}.

The mosaic defined by 𝑎ℐ1 in ℐ1, ℐ2 is (𝑇1(𝑎
ℐ1), 𝑇2(𝑎

ℐ1)), where 𝑇1(𝑎
ℐ1) = {tpΞ(ℐ1, 𝑎ℐ1)} and

𝑇2(𝑎
ℐ1) = {tpΞ(ℐ2, 𝑏ℐ2), tpΞ(ℐ2, 𝑑)}.

A mosaic is nominal generated if some type in it contains a nominals. Consider 𝑝 =
(𝑇1(𝑑), 𝑇2(𝑑)) and 𝑞 = (𝑇1(𝑑

′), 𝑇2(𝑑
′)) such that there exists a role name 𝑟 ∈ Σ with

(𝑑, 𝑑′) ∈ 𝑟ℐ𝑖 , for some 𝑖 ∈ {1, 2}. Then define, for every role name 𝑠 and 𝑖 ∈ {1, 2}, re-
lations 𝑅𝑠,𝑖

𝑝,𝑞 ⊆ 𝑇𝑖(𝑑) × 𝑇𝑖(𝑑
′) by setting (𝑡, 𝑡′) ∈ 𝑅𝑠,𝑖

𝑝,𝑞 if there exist 𝑒, 𝑒′ realizing 𝑡 and 𝑡′,
respectively, with (𝑇1(𝑒), 𝑇2(𝑒)) = 𝑝 and (𝑇1(𝑒

′), 𝑇2(𝑒
′)) = 𝑞, such that (𝑒, 𝑒′) ∈ 𝑠ℐ𝑖 .

The upper bound follows from the following exponential size model property result.

Lemma 9. Let ℒ ∈ DLnr not contain the universal role and not contain both inverse roles and
nominals simultaneously. Let 𝒪 be a set of RIs , 𝐶1, 𝐶2 ℒ-concepts, and Σ a signature. If 𝐶1

and ¬𝐶2 are jointly consistent under 𝒪 modulo ℒ(Σ)-bisimulations, then there exist models of
exponential size witnessing this; in more detail, there exist pointed models ℐ, 𝑑 and 𝒥 , 𝑒 of 𝒪 of at
most exponential size such that 𝑑 ∈ 𝐶ℐ

1 , 𝑒 ̸∈ 𝐶𝒥
2 , and ℐ, 𝑑 ∼ℒ,Σ 𝒥 , 𝑒.

Proof. Assume that 𝐶1 and ¬𝐶2 are jointly consistent under 𝒪 modulo ℒ(Σ)-bisimulations.
By definition, there exist pointed models ℐ1, 𝑑1 and ℐ2, 𝑑2 of 𝒪 such that 𝑑1 ∈ 𝐶ℐ1

1 , 𝑑2 ̸∈ 𝐶ℐ2
2 ,

and ℐ1, 𝑑1 ∼ℒ,Σ ℐ2, 𝑑2. Let 𝑘 be the maximum depth of 𝐶1, 𝐶2.



We consider the case involving nominals and without inverse roles. We construct exponential
size 𝒥1,𝒥2 with the same properties of ℐ1, ℐ2 above. Let ℬ be some minimal set of mosaics
defined by ℐ1, ℐ2 such that: (𝑖) all nominal generated mosaics are in ℬ; (𝑖𝑖) for every type 𝑡
realized in ℐ𝑖 there exists (𝑇1, 𝑇2) ∈ ℬ with 𝑡 ∈ 𝑇𝑖; (𝑖𝑖𝑖) (𝑇1(𝑑1), 𝑇2(𝑑1)) ∈ ℬ. Observe that the
size of ℬ is at most exponential in the size of 𝒪, 𝐶1, 𝐶2. Now select, for any mosaic 𝑝 = (𝑇1, 𝑇2)
defined by ℐ1, ℐ2 and any ∃𝑠.𝐶 ∈ 𝑡 ∈ 𝑇𝑖 such that there exists 𝑟 ∈ Σ with 𝒪 |= 𝑠 ⊑ 𝑟, a mosaic
𝑞 = (𝑇 ′

1, 𝑇
′
2) such that (𝑡, 𝑡′) ∈ 𝑅𝑠,𝑖

𝑝,𝑞 and 𝐶 ∈ 𝑡′, and denote the resulting set by 𝒮(𝑝). Form the
set 𝒯 of sequences 𝜎 = 𝑝0 · · · 𝑝𝑗 = (𝑇 0

1 , 𝑇
0
2 ) · · · (𝑇

𝑗
1 , 𝑇

𝑗
2 ), with 𝑗 ≤ 𝑘, 𝑝0 ∈ ℬ and 𝑝𝑖+1 ∈ 𝒮(𝑝𝑖)

for 𝑖 < 𝑗. Let tail(𝜎) = 𝑝𝑗 and tail𝑖(𝜎) = 𝑇 𝑗
𝑖 . We next define the domain of 𝒥1 and 𝒥2 as

Δ𝒥𝑖 = {(𝑡, 𝑝) | 𝑡 ∈ tail𝑖(𝑝), 𝑝 ∈ ℬ} ∪ {(𝑡, 𝜎) | 𝜎 ∈ 𝒯 , 𝑡 ∈ tail𝑖(𝜎), |𝜎| > 1, 𝑡 has no nominal}.

We define interpretations 𝒥1,𝒥2 in the expected way. It can be shown that they are as required.

• For any individual name 𝑎 and (𝑇1, 𝑇2) ∈ ℬ with {𝑎} ∈ 𝑡 ∈ 𝑇𝑖, we set 𝑎𝒥𝑖 = (𝑡, (𝑇1, 𝑇2)).

• For any concept name 𝐴, (𝑡, 𝜎) ∈ 𝐴𝒥𝑖 iff 𝐴 ∈ 𝑡.

• Let 𝑟 be a role name. Then, we let for 𝜎𝑝 ∈ 𝒯 :

– ((𝑡, 𝜎), (𝑡′, 𝜎𝑝)) ∈ 𝑟𝒥𝑖 if (𝑡, 𝑡′) ∈ 𝑅𝑟,𝑖
tail(𝜎),𝑝 and 𝑡′ contains no nominal;

– ((𝑡, 𝜎), (𝑡′, 𝑝)) ∈ 𝑟𝒥𝑖 if (𝑡, 𝑡′) ∈ 𝑅𝑟,𝑖
tail(𝜎),𝑝 and 𝑡′ contains a nominal.

Next assume that tail(𝜎) = (𝑇1, 𝑇2) and 𝜎 has length 𝑘. If tail(𝜎′) = (𝑇1, 𝑇2) for
some |𝜎′| < 𝑘, then choose as 𝑟-successors of any node of the form (𝑡, 𝜎) exactly the
𝑟-successors of (𝑡, 𝜎′) defined above. If no such 𝜎′ exists, then all nodes of the form
(𝑡, tail(𝜎)) have distance exactly 𝑘 from the roots (since no nominal occurs in any type in
any mosaic in 𝜎) and no successors are added.

It remains to consider existential restrictions ∃𝑟.𝐶 for the role names 𝑟 not entailing any
role name in Σ. If 𝜎 ∈ 𝒯 , ∃𝑟.𝐶 ∈ 𝑡 ∈ 𝑇𝑖 with tail𝑖(𝜎) = 𝑇𝑖 and 𝒪 ̸|= 𝑟 ⊑ 𝑠 for any 𝑠 ∈ Σ,
we add ((𝑡, 𝜎), (𝑡′, 𝑝)) to 𝑟𝒥𝑖 (and all 𝑠𝒥𝑖 with 𝒪 |= 𝑟 ⊑ 𝑠) for some 𝑝 = (𝑇 ′

1, 𝑇
′
2) ∈ ℬ

and 𝑡′ ∈ 𝑇 ′
𝑖 with 𝐶 ∈ 𝑡′ such that there are 𝑒, 𝑒′ realizing 𝑡, 𝑡′ in ℐ𝑖 and (𝑒, 𝑒′) ∈ 𝑟ℐ𝑖 .

A similar construction can be used for the case with inverse roles, but without nominals. ❏

The following example illustrates the construction of 𝒥1,𝒥2 from the proof above, in the case
with nominals and without inverse roles, using the interpretations ℐ1, ℐ2 from Example 5.

Example 8. Let 𝑡0 = tpΞ(ℐ1, 𝑎ℐ1), 𝑡1 = tpΞ(ℐ2, 𝑏ℐ2), 𝑡2 = tpΞ(ℐ2, 𝑑). We ignore the types
realized by 𝑏ℐ1 in ℐ1 and by 𝑎ℐ2 in ℐ2 as not relevant for understanding the construction. Then
only the mosaic 𝑝 = (𝑇1, 𝑇2), with 𝑇1 = {𝑡0}, 𝑇2 = {𝑡1, 𝑡2}, remains. 𝒥1, 𝒥2 are depicted below.

𝒥1

(𝑡0, 𝑝)

𝑟 𝒥2

(𝑡1, 𝑝)

(𝑡2, 𝑝)

(𝑡2, 𝑝)

(𝑡2, 𝑝)

𝑟

𝑟

𝑟

𝑟



For the lower bound, we show that it is NExpTime-hard to decide joint consistency of ℒ-
concepts 𝐶 ⊓ 𝐶0 and 𝐶 ⊓ ¬𝐶0 (under an ontology containing RIs) modulo ℒ(Σ)-bisimulations
and then employ Theorem 7. The proof is via an encoding of an (exponential torus) tiling problem,
known to be NExpTime-complete.

6. The Computation Problem

Unfortunately, the algorithms for deciding the existence of interpolants do not immediately
give rise to a way of computing interpolants in case they exist. Intuitively, this is due to the fact
that compactness is used in the proof of the model-theoretic characterization in Theorem 6. In
this section, we address the computation problem for DLs that do not contain nominals.

Theorem 10. Let ℒ be a DL in DLnr that does not contain nominals, and let 𝒪 be an ℒ-ontology,
𝐶1, 𝐶2 be ℒ-concepts, and Σ be a signature. Then, if there is an ℒ(Σ)-interpolant for 𝐶1 ⊑ 𝐶2

under 𝒪, we can compute the DAG representation of an ℒ(Σ)-interpolant in time 22
𝑝(𝑛)

where 𝑝 is
a polynomial and 𝑛 = ||𝒪||+ ||𝐶1||+ ||𝐶2||.

Note that this implies that the DAG representation is also of double exponential size, and
that a formula representation of the interpolant can be computed in triple exponential time.
Moreover, this also allows us to compute explicit definitions since, given 𝒪, 𝐶 , and Σ, any
ℒ(Σ)-interpolant for 𝐶Σ ⊑ 𝐶 under 𝒪∪𝒪Σ is an explicit ℒ(Σ)-definition of 𝐶 under 𝒪, where
𝒪Σ and 𝐶Σ are obtained from 𝒪 and 𝐶 by replacing all symbols not in Σ by fresh symbols.

Let ℒ, 𝒪, 𝐶1, 𝐶2, and Σ be as in Theorem 10. The computation of the ℒ(Σ)-interpolant (if
it exists) is based on a mosaic elimination procedure for deciding joint consistency, which is a
simplified variant of a procedure that was presented in [15] and which decides a slightly more
general variant of joint consistency. As in Section 5, a mosaic is a pair (𝑇1, 𝑇2) with 𝑇1, 𝑇2 sets
of Ξ-types, where Ξ = sub(𝒪, 𝐶1, 𝐶2). We denote with Tp(Ξ) the set of all Ξ-types. The aim
of the mosaic elimination procedure is to determine all pairs (𝑇1, 𝑇2) ∈ 2Tp(Ξ) × 2Tp(Ξ) such
that all 𝑡 ∈ 𝑇1 ∪ 𝑇2 can be realized in mutually ℒ(Σ)-bisimilar elements of models of 𝒪. In
order to formulate the elimination conditions, we need some preliminary notions. Throughout
the rest of the section, we treat the universal role 𝑢 as a role name contained in Σ, in case ℒ
allows the universal role. Note that 𝑢− is equivalent to 𝑢, and that 𝒪 |= 𝑟 ⊑ 𝑢, for every role 𝑟.

Let 𝑡1, 𝑡2 be Ξ-types. We call 𝑡1, 𝑡2 𝑢-equivalent if for every ∃𝑢.𝐶 ∈ Ξ, we have ∃𝑢.𝐶 ∈ 𝑡1
iff ∃𝑢.𝐶 ∈ 𝑡2. This condition is trivial if ℒ does not use allow the universal role. For a role
𝑟, we call 𝑡1, 𝑡2 𝑟-coherent for 𝒪, in symbols 𝑡1 ⇝𝑟,𝒪 𝑡2, if 𝑡1, 𝑡2 are 𝑢-equivalent and the
following conditions hold for all roles 𝑠 with 𝒪 |= 𝑟 ⊑ 𝑠: (1) if ¬∃𝑠.𝐶 ∈ 𝑡1, then 𝐶 ̸∈ 𝑡2 and
(2) if ¬∃𝑠−.𝐶 ∈ 𝑡2, then 𝐶 ̸∈ 𝑡1. Note that 𝑡 ⇝𝑟,𝒪 𝑡′ iff 𝑡′ ⇝𝑟−,𝒪 𝑡. We lift the definition of
𝑟-coherence from types to mosaics (𝑇1, 𝑇2), (𝑇

′
1, 𝑇

′
2). We call (𝑇1, 𝑇2), (𝑇 ′

1, 𝑇
′
2) 𝑟-coherent, in

symbols (𝑇1, 𝑇2)⇝𝑟 (𝑇
′
1, 𝑇

′
2), if for 𝑖 = 1, 2, (i) for every 𝑡 ∈ 𝑇𝑖 there exists a 𝑡′ ∈ 𝑇 ′

𝑖 such that
𝑡⇝𝑟,𝒪 𝑡′, and (ii) if ℒ allows for inverse roles, then for every 𝑡′ ∈ 𝑇 ′

𝑖 , there is a 𝑡 ∈ 𝑇𝑖 such that
𝑡⇝𝑟,𝒪 𝑡′. Note that (𝑇1, 𝑇2)⇝𝑟 (𝑇

′
1, 𝑇

′
2) iff (𝑇 ′

1, 𝑇
′
2)⇝𝑟− (𝑇1, 𝑇2) if ℒ allows for inverses.

Let 𝒮 ⊆ 2Tp(Ξ)×2Tp(Ξ). We call (𝑇1, 𝑇2) ∈ 𝒮 bad if it violates one of the following conditions.

1. Σ-concept name coherence: 𝐴 ∈ 𝑡 iff 𝐴 ∈ 𝑡′, for every concept name 𝐴 ∈ Σ and any
𝑡, 𝑡′ ∈ 𝑇1 ∪ 𝑇2;



2. Existential saturation: for 𝑖 = 1, 2 and ∃𝑟.𝐶 ∈ 𝑡 ∈ 𝑇𝑖, there exists (𝑇 ′
1, 𝑇

′
2) ∈ 𝒮 such that

(1) there exists 𝑡′ ∈ 𝑇 ′
𝑖 with 𝐶 ∈ 𝑡′ and 𝑡 ⇝𝑟,𝒪 𝑡′ and (2) if 𝒪 |= 𝑟 ⊑ 𝑠 for a Σ-role 𝑠,

then (𝑇1, 𝑇2)⇝𝑠 (𝑇
′
1, 𝑇

′
2).

The mosaic elimination procedure is now as follows. We start with the set 𝒮0 of all mosaics
(𝑇1, 𝑇2) ∈ 2Tp(Ξ) × 2Tp(Ξ) such that, for 𝑖 = 1, 2, 𝑇𝑖 contains only types that are realizable in
some model of 𝒪. Then obtain, for 𝑖 ≥ 0, 𝒮𝑖+1 from 𝒮𝑖 by eliminating all mosaics (𝑇1, 𝑇2) that
are bad in 𝒮𝑖. Let 𝒮* be where the sequence stabilizes. This elimination procedure decides joint
consistency (and thus interpolant existence via Theorem 6) since the following are equivalent:

(A) 𝐶1,¬𝐶2 are jointly consistent under 𝒪 modulo ℒ(Σ)-bisimulations;

(B) there exists (𝑇1, 𝑇2) ∈ 𝒮* and Ξ-types 𝑡1 ∈ 𝑇1, 𝑡2 ∈ 𝑇2 with 𝐶1 ∈ 𝑡1 and ¬𝐶2 ∈ 𝑡2.

We will show how to read off interpolants from the run of the elimination procedure, but we
need one more notion. For a set 𝑇 of Ξ-types, an interpretation ℐ , and a family 𝑑𝑡, 𝑡 ∈ 𝑇 of
domain elements of ℐ , we say that ℐ and 𝑑𝑡, 𝑡 ∈ 𝑇 jointly realize 𝑇 modulo ℒ(Σ)-bisimulations
if, for all 𝑡, 𝑡′ ∈ 𝑇 , tpΞ(ℐ, 𝑑𝑡) = 𝑡 and ℐ, 𝑑𝑡 ∼ℒ,Σ ℐ, 𝑑𝑡′ . The elimination procedure decides
joint realizability since 𝑇 is jointly realizable modulo ℒ(Σ)-bisimulations iff a mosaic (𝑇, ∅)
survives elimination. In what follows, let Real denote the set of all sets of types 𝑇 which are
jointly realizable modulo ℒ(Σ)-bisimulations.

Lemma 11. Let 𝑇1, 𝑇2 ∈ Real. If (𝑇1, 𝑇2) is eliminated in the elimination procedure, then we can
compute an ℒ(Σ)-concept 𝐼𝑇1,𝑇2 such that:

1. for all models ℐ of 𝒪 and elements 𝑑𝑡, 𝑡 ∈ 𝑇1 that realize 𝑇1 modulo ℒ(Σ)-bisimulations,
𝑑𝑡 ∈ 𝐼ℐ𝑇1,𝑇2

for some (equivalently: all) 𝑡 ∈ 𝑇1;

2. for all models ℐ of 𝒪 and elements 𝑑𝑡, 𝑡 ∈ 𝑇2 that realize 𝑇2 modulo ℒ(Σ)-bisimulations,
𝑑𝑡 /∈ 𝐼ℐ𝑇1,𝑇2

for some (equivalently: all) 𝑡 ∈ 𝑇2.

The concepts 𝐼𝑇1,𝑇2 are computed inductively in the order in which the (𝑇1, 𝑇2) got eliminated
in the elimination procedure. We distinguish cases why (𝑇1, 𝑇2) got eliminated.

Suppose first that (𝑇1, 𝑇2) was eliminated because of (failing) Σ-concept name coherence.
Since 𝑇1, 𝑇2 are both jointly realizable, there are two cases:

(a) There is an 𝐴 ∈ Σ with 𝐴 ∈ 𝑡 for all 𝑡 ∈ 𝑇1, but 𝐴 /∈ 𝑡, for all 𝑡 ∈ 𝑇2. Then 𝐼𝑇1,𝑇2 = 𝐴.

(b) There is an 𝐴 ∈ Σ with 𝐴 ∈ 𝑡 for all 𝑡 ∈ 𝑇2, but 𝐴 /∈ 𝑡, for all 𝑡 ∈ 𝑇1. Then 𝐼𝑇1,𝑇2 = ¬𝐴.

Now, suppose that (𝑇1, 𝑇2) was eliminated due to (failing) existential saturation from 𝒮𝑖

during the elimination. Since 𝑇1, 𝑇2 are both jointly realizable, there are two cases:

(a) There exist 𝑡 ∈ 𝑇1, ∃𝑟.𝐶 ∈ 𝑡, and a Σ-role 𝑠 with 𝒪 |= 𝑟 ⊑ 𝑠, such that there is no
(𝑇 ′

1, 𝑇
′
2) ∈ 𝒮𝑖 such that (i) (𝑇1, 𝑇2)⇝𝑠 (𝑇

′
1, 𝑇

′
2) and (ii) there is 𝑡′ ∈ 𝑇 ′

1 with 𝐶 ∈ 𝑡′ and
𝑡⇝𝑟,𝒪 𝑡′. Then, take

𝐼𝑇1,𝑇2 = ∃𝑠.( ⊔
𝑇 ′
1∈Real,

𝑇1⇝𝑠𝑇 ′
1,𝑡⇝𝑟,𝒪𝑡′,𝐶∈𝑡′∈𝑇 ′

1

l

𝑇 ′
2∈Real,
𝑇2⇝𝑠𝑇 ′

2

𝐼𝑇 ′
1,𝑇

′
2
)



(b) There exist 𝑡 ∈ 𝑇2, ∃𝑟.𝐶 ∈ 𝑡, and a Σ-role 𝑠 with 𝒪 |= 𝑟 ⊑ 𝑠, such that there is no
(𝑇 ′

1, 𝑇
′
2) ∈ 𝒮 such that (i) (𝑇1, 𝑇2)⇝𝑠 (𝑇

′
1, 𝑇

′
2) and (ii) there is 𝑡′ ∈ 𝑇 ′

2 with 𝐶 ∈ 𝑡′ and
𝑡⇝𝑟,𝒪 𝑡′. Then, take

𝐼𝑇1,𝑇2 = ∀𝑠.( ⊔
𝑇 ′
1∈Real,
𝑇1⇝𝑠𝑇 ′

1

l

𝑇 ′
2∈Real,

𝑇2⇝𝑠𝑇 ′
2,𝑡⇝𝑟,𝒪𝑡′,𝐶∈𝑡′∈𝑇 ′

2

𝐼𝑇 ′
1,𝑇

′
2
)

We show in the long version that the 𝐼𝑇1,𝑇2 are as required. Observe that we can represent
the 𝐼𝑇1,𝑇2 in DAG shape by using a single node for every 𝐼𝑇1,𝑇2 (plus some auxiliary nodes
connecting them). Overall, we obtain double exponentially many nodes in the DAG and the
DAG can be constructed in double exponential time (both in 𝑝(||𝒪||+ ||𝐶1||+ ||𝐶2||)).

Given Lemma 11 it is relatively straightforward to construct the desired interpolants.

Lemma 12. Suppose the result 𝒮* of the elimination procedure does not contain a pair (𝑇1, 𝑇2) ∈
Real× Real such that 𝐶1 ∈ 𝑡1 and ¬𝐶2 ∈ 𝑡2 for some types 𝑡1 ∈ 𝑇1 and 𝑡2 ∈ 𝑇2. Then,

𝐶 = ⊔
𝑇1∈Real:

there is 𝑡1 ∈ 𝑇1 with 𝐶1 ∈ 𝑡1

l

𝑇2∈Real:
there is 𝑡2 ∈ 𝑇2 with ¬𝐶2 ∈ 𝑡2

𝐼𝑇1,𝑇2

is an ℒ(Σ)-interpolant for 𝐶1 ⊑ 𝐶2 under 𝒪. Moreover, a DAG representation of 𝐶 can be
computed in time 22

𝑝(𝑛)
, for some polynomial 𝑝 and 𝑛 = ||𝒪||+ ||𝐶1||+ ||𝐶2||.

To conclude, we give an intuition as to why the proof of Theorem 10 cannot be easily adapted
to logics from DLnr that allow for nominals. Observe that in any two interpretations ℐ1, ℐ2,
every nominal 𝑎 is realized (modulo bisimulation) in exactly one mosaic. Thus, for the mosaic
elimination procedure to work (in the sense of the equivalence between (A) and (B) above) one
has to “guess” for every 𝑎 exactly one mosaic that describes 𝑎 [15]. Then, there is an interpolant
for 𝐶1 ⊑ 𝐶2 under 𝒪 iff the runs of the mosaic elimination procedure for all possible guesses
of the nominal mosaics in 𝒮0 lead to an 𝒮* which does not satisfy (B). It is, however, unclear
how to combine these different runs in proving analogues of Lemmas 11 and 12.

7. Conclusion and Future Work

We have determined tight complexity bounds for the problem of deciding the existence of
interpolants and explicit definitions in standard DLs with nominals and/or role inclusions, with
and without ontologies. It would be of interest to investigate these decision problems also for
DLs with additional constructors (such as number restrictions and transitive closure) and for
acyclic ontologies.

We have also performed first steps in the analysis of the computation problem, but many
interesting problems remain to be addressed. First, note that our analysis only applies to the
case with ontologies and we expect interpolants in the ontology free case to be one exponential
smaller (if the universal role is not present). Second, we have provided only upper bounds on the
size of interpolants and it remains to see whether the construction is optimal (we conjecture it
to be). Finally, it is of great interest to compute interpolants also in the presence of nominals. An
alternative approach might be to derive them from a suitably constrained proof of 𝒪 |= 𝐶1 ⊑ 𝐶2

in an appropriate proof system, see e.g. [23].
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