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Abstract
This paper is about the integration in a unique formalism of knowledge representation languages such
as those provided by description logic languages and rule-based reasoning paradigms such as those
provided by logic programming languages. We aim at creating an hybrid formalism where description
logics constructs are used for defining concepts that are given as arguments to the predicates of the
logic programs.

1. A Short Introduction

A crucial issue in the development of the semantic web is the possibility to combine
rule-based systems and ontologies. There exists already several types of such combina-
tion [23, 24, 30, 32, 35]. These approaches either build rules on top of ontologies allowing
rule-based systems to use the vocabulary specified in ontologies, or build ontologies on top of
rules supplementing ontological definitions by rules. None of them completely answer to the
question of the combination of logic programming with description logics that we are seeking
for: an hybrid formalism where description logics constructs are used for defining concepts
that are given as arguments to the predicates of the logic programs. In this paper, we develop
such an hybrid formalism.

The section-by-section breakdown of this paper is as follows. A case study motivating
the combination of logic programming with description logics that we are seeking for is
presented in Section 2. In Sections 3 and 4, we introduce the syntax and the semantics of our
hybrid formalism. Decision problems are presented in Sections 5, 6 and 7. A research program
is presented in Section 8.

2. A Case Study

Examining role-based access control and organization-based access control, we present a case
study motivating the combination of logic programming with description logics that we are
seeking for.
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Access of subjects to objects in a computer system are permitted in accordance with a
security policy embodied in an access control database. Many computer systems use the access
control matrix model to represent security policies [31]. Formally, an access control matrix is
a structure consisting of a set of subjects (users, processes, etc), a set of objects (files, tables,
etc) and binary relations (𝑝𝑖)𝑖∈𝐼 between objects and subjects giving to subjects permissions
to access objects. In this setting, asserting that subject 𝑎 possesses permission 𝑝𝑖 on object 𝑏
comes down to asserting that 𝑝𝑖 holds for 𝑏 and 𝑎.

Access control with a lot of subjects is space-consuming. To reduce the cost of secu-
rity, within the context of role-based access control (RBAC), it has been proposed that
access control administrators treat sets of subjects as instances of a concept called role1 [38].
Formally, an RBAC-structure consists of a set of subjects, a set of objects, a set of roles,
a binary relation 𝑟 between subjects and roles defining the roles of subjects and binary
relations (𝑝𝑖)𝑖∈𝐼 between objects and roles giving to roles permissions to access objects. In
this setting, asserting that subject 𝑎 has role 𝐴 comes down to asserting that 𝑟 holds for 𝑎
and 𝐴, whereas asserting that role 𝐴 possesses permission 𝑝𝑖 on object 𝑏 comes down to
asserting that 𝑝𝑖 holds for 𝑏 and 𝐴. It is possible to refine the RBAC model by including
the concept of role hierarchy which allows permissions to be inherited through it. This
hierarchy is specified by means of assertions of the form 𝐴′⊑𝐴′′ where 𝐴′ and 𝐴′′ are roles.
To put it simply, the idea behind RBAC is the following: in a computer system, subject 𝑎
possesses a permission 𝑝 on object 𝑏 if and only if there are roles 𝐴0, . . . , 𝐴𝑚 such that 𝑟 holds
for 𝑎 and 𝐴0, for all positive integers 𝑖≤𝑚, 𝐴𝑖−1⊑𝐴𝑖 has been asserted and 𝑝 holds for 𝑏 and 𝐴𝑚.

RBAC with a lot of objects is space-consuming. To reduce the cost of security, within
the context of organization-based access control (OrBAC), it has been proposed that RBAC
administrators treat sets of objects as instances of a concept called view [1]. Formally, an
OrBAC-structure consists of a set of subjects, a set of objects, a set of roles, a set of views, a
binary relation 𝑟 between subjects and roles defining the roles of subjects, a binary relation 𝑣
between objects and views defining the views of objects and binary relations (𝑝𝑖)𝑖∈𝐼 between
views and roles giving to roles permissions to access views. In this setting, asserting that
object 𝑏 has view 𝐵 comes down to asserting that 𝑣 holds for 𝑏 and 𝐵, whereas asserting
that role 𝐴 possesses permission 𝑝𝑖 on view 𝐵 comes down to asserting that 𝑝𝑖 holds for 𝐵
and 𝐴. It is possible to refine the OrBAC model by including the concept of view hierarchy
which allows permissions to be inherited through it. This hierarchy is specified by means of
assertions of the form 𝐵′⊑𝐵′′ where 𝐵′ and 𝐵′′ are views. To put it simply, the idea behind
OrBAC is the following: in a computer system, subject 𝑎 possesses a permission 𝑝 on object
𝑏 if and only if there are roles 𝐴0, . . . , 𝐴𝑚 and there are views 𝐵0, . . . , 𝐵𝑛 such that 𝑟 holds
for 𝑎 and 𝐴0 and 𝑣 holds for 𝑏 and 𝐵0, for all positive integers 𝑖≤𝑚, 𝐴𝑖−1⊑𝐴𝑖 has been as-
serted and for all positive integers 𝑗≤𝑛, 𝐵𝑗−1⊑𝐵𝑗 has been asserted and 𝑝 holds for 𝐵𝑛 and 𝐴𝑚.

1The roles in RBAC should not be mistaken for the roles in description logics. In RBAC security policies, roles
correspond to sets of subjects, whereas in description logic frames, roles correspond to binary relations.



It is a great pity that neither RBAC, nor OrBAC allow atomic assertions of the form
𝑝𝑖(𝐷,𝐶) where 𝐶 and 𝐷 are, respectively, Boolean combinations of roles and Boolean
combinations of views. By using assertions of that form, one may more succinctly define more
precise access control policies. For instance, to say that subjects having the role 𝐴 but not
having the role 𝐴′ possess a permission 𝑝𝑖 on objects having the view 𝐵 but not having the
view 𝐵′, one can simply assert that 𝑝𝑖 holds for 𝐵 ∧ ¬𝐵′ and 𝐴 ∧ ¬𝐴′ instead of asserting that
𝑝𝑖 holds for 𝐵′′ and 𝐴′′ where 𝐴′′ is a new role such that for all subjects 𝑎, 𝑟(𝑎,𝐴′′) if and only
if 𝑟(𝑎,𝐴) and not 𝑟(𝑎,𝐴′) and 𝐵′′ is a new view such that for all objects 𝑏, 𝑣(𝑏, 𝐵′′) if and only
if 𝑣(𝑏, 𝐵) and not 𝑣(𝑏, 𝐵′).

Finally, it is also a great pity that neither RBAC, nor OrBAC allow conditional asser-
tions of the form 𝑝𝑖(𝐷,𝐶)←𝑝𝑗(𝐷

′, 𝐶 ′). By using conditional assertions of that form, one
may more succinctly define more precise access control policies. For instance, to say that
subjects having the role 𝐶 possess a permission 𝑝𝑖 on objects having the view 𝐷 if subjects
having the role 𝐶 ′ possess a permission 𝑝𝑗 on objects having the view 𝐷′, one can simply
say that 𝑝𝑖(𝐷,𝐶)←𝑝𝑗(𝐷

′, 𝐶 ′). This is particularly interesting when 𝑝𝑗 does not denote
a permission, but an obligation corresponding to the permission denoted by 𝑝𝑖

2. In that
case, a conditional assertion like 𝑝𝑖(𝐷,𝐶)←𝑝𝑗(𝐷,𝐶) expresses the deontic rule saying
that subjects having the role 𝐶 possess the permission 𝑝𝑖 on objects having the view 𝐷 if
subjects having the role 𝐶 possess the corresponding obligation 𝑝𝑗 on objects having the view 𝐷.

Knowledge representation languages such as those provided by description logic lan-
guages [5] (allowing expressions of the form 𝐶⊑𝐷 where 𝐶 and 𝐷 are complex concepts) and
rule-based reasoning paradigms such as those provided by logic programming languages [26, 34]
(allowing expressions of the form 𝛼←𝛽1, . . . , 𝛽𝑛 where 𝛼, 𝛽1, . . ., 𝛽𝑛 are atoms) are well-known
and widely used in Computer Science and Artificial Intelligence. Their integration in a
unique formalism would be a natural solution for many application problems requiring the
following features: allowing rule-based systems to use the vocabulary specified in ontologies
and supplementing ontological definitions by rules. Hybrid knowledge bases are the main
approaches proposed so far. They integrate some aspects of description logic and some aspects
of logic programming [23, 24, 32, 35]. Nevertheless, they hardly address all aspects of our aim:
the development of an hybrid formalism where description logics constructs are used for
defining concepts that are given as arguments to the predicates of the logic programs.

3. Syntax

We introduce the syntax of our hybrid formalism.

3.1. Complex Concepts

Let VAR be a countable set of variable concepts (with typical members denoted 𝑋 , 𝑌 , etc). Let
CON be a countable set of constant concepts (with typical members denoted 𝐴, 𝐵, etc) and

2We are assuming the deontic principle saying that permissions are implied by their corresponding obligations [37].



ROL be a countable set of constant roles (with typical members denoted 𝑅, 𝑆, etc). The set of
complex concepts (with typical members denoted 𝐶 , 𝐷, etc) is defined by the rule3

• 𝐶::=𝑋 | 𝐴 | ⊤ | (𝐶⊓𝐷) | ∃𝑅.𝐶 ,

where 𝑋 ranges over VAR, 𝐴 ranges over CON and 𝑅 ranges over ROL. We adopt standard
rules for omission of the parentheses. A complex concept 𝐶 is VAR-free if 𝐶 contains no
occurrence of a variable concept. A complex concept 𝐶 is ROL-free if 𝐶 contains no occurrence
of a constant role. For all 𝑘∈N, the concept construct (∃𝑅.)𝑘 is inductively defined as follows
for each 𝑅∈ROL:

• if 𝑘=0 then (∃𝑅.)𝑘𝐶::=𝐶 ,
• otherwise, (∃𝑅.)𝑘𝐶::=∃𝑅.(∃𝑅.)𝑘−1𝐶 .

3.2. Substitutions

A substitution is a function from VAR to the set of all complex concepts equal to the identity
function on a cofinite subset of VAR [9]. To apply a substitution 𝜎 to a complex concept 𝐶
amounts to replace each occurrence in 𝐶 of a variable concept 𝑋∈VAR by the corresponding
complex concept 𝜎(𝑋).

3.3. Inclusions and Equations

Concept inclusions are expressions of the form 𝐶⊑𝐷 (read “𝐶 is contained in 𝐷”) for all complex
concepts 𝐶,𝐷. Concept equations are expressions of the form 𝐶=𝐷 (read “𝐶 is equal to 𝐷”)
for all complex concepts 𝐶,𝐷.

3.4. Clauses

Let PRE be a countable set of predicate symbols (with typical members denoted 𝑝, 𝑞, etc). For
all 𝑝∈PRE, let ar(𝑝) be the arity of 𝑝. An atom is an expression of the form 𝑝(𝐶1, . . . , 𝐶ar(𝑝))
(read “𝑝 holds for 𝐶1, . . ., 𝐶ar(𝑝)”) where 𝑝 is a predicate symbol and 𝐶1, . . ., 𝐶ar(𝑝) are complex
concepts. Clauses are expressions of the form 𝛼1, . . . , 𝛼𝑚←𝛽1, . . . , 𝛽𝑛 (read “if 𝛽1, . . ., 𝛽𝑛 then
either 𝛼1, . . ., or 𝛼𝑚”) where 𝛼1, . . ., 𝛼𝑚, 𝛽1, . . ., 𝛽𝑛 are atoms. Definite clauses are clauses of
the form 𝛼←𝛽1, . . . , 𝛽𝑛, unit clauses are clauses of the form 𝛼← and definite goals are clauses
of the form←𝛽1, . . . , 𝛽𝑛.

3.5. Assertions

Let IND be a countable set of individual constants (with typical members denoted 𝑎, 𝑏, etc).
A concept assertion is an expression of the form 𝐶:𝑎 (read “𝑎 belongs to 𝐶”) where 𝐶 is a
VAR-free complex concept and 𝑎 is an individual constant. A role assertion is an expression
of the form 𝑅:(𝑎, 𝑏) (read “𝑎 is 𝑅-related to 𝑏”) where 𝑅∈ROL and 𝑎 and 𝑏 are individual
constants.
3The set of complex concepts we define here is the one of description logic ℰℒ [8]. Most of our definitions can be
easily adapted to cases where other description logics are considered instead of description logic ℰℒ [6, 8, 15].



3.6. Deductive Ontologies

A T-box is a finite set of concept inclusions and concept equations. A program is a finite set of
clauses. An A-box is a finite set of concept assertions and role assertions. A deductive ontology
is a triple (𝒯 ,Π,𝒜) consisting of a T-box 𝒯 , a program Π and an A-box 𝒜.

4. Semantics

We introduce the semantics of our hybrid formalism4.

4.1. Frames and Var-interpretations

The semantics is defined in terms of frames, i.e. structures (𝑊,𝐾,𝑅𝑒𝑙) where 𝑊 is a nonempty
set, 𝐾: CON −→ 𝒫(𝑊 ) and 𝑅𝑒𝑙: ROL −→ 𝒫(𝑊×𝑊 ). In a frame (𝑊,𝐾,𝑅𝑒𝑙), for all
𝑅∈ROL,

• the 𝑅-image of a subset 𝑆 of 𝑊 is the set of all 𝑡∈𝑊 such that there exists 𝑠∈𝑆 such that
𝑅𝑒𝑙(𝑅)(𝑠, 𝑡),

• the 𝑅-pre-image of a subset 𝑇 of 𝑊 is the set of all 𝑠∈𝑊 such that there exists 𝑡∈𝑇 such
that 𝑅𝑒𝑙(𝑅)(𝑠, 𝑡),

• the domain of 𝑅 is the set of all 𝑠∈𝑊 such that there exists 𝑡∈𝑊 such that 𝑅𝑒𝑙(𝑅)(𝑠, 𝑡),
• the range of 𝑅 is the set of all 𝑡∈𝑊 such that there exists 𝑠∈𝑊 such that 𝑅𝑒𝑙(𝑅)(𝑠, 𝑡).

Obviously, in a frame (𝑊,𝐾,𝑅𝑒𝑙), for all 𝑅∈ROL, the domain of 𝑅 is the 𝑅-pre-image of
𝑊 and the range of 𝑅 is the 𝑅-image of 𝑊 . A var-interpretation on a frame (𝑊,𝐾,𝑅𝑒𝑙) is a
function 𝑉 : VAR −→ 𝒫(𝑊 ). For all frames (𝑊,𝐾,𝑅𝑒𝑙), the value of the complex concept 𝐶
with respect to a var-interpretation 𝑉 on (𝑊,𝐾,𝑅𝑒𝑙) is the subset ‖𝐶‖𝑉 of 𝑊 defined by

• ‖𝑋‖𝑉 =𝑉 (𝑋),
• ‖𝐴‖𝑉 =𝐾(𝐴),
• ‖⊤‖𝑉 =𝑊 ,
• ‖𝐶⊓𝐷‖𝑉 =‖𝐶‖𝑉 ∩ ‖𝐷‖𝑉 ,
• ‖∃𝑅.𝐶‖𝑉 ={𝑠 ∈𝑊 : there exists 𝑡∈𝑊 such that 𝑅𝑒𝑙(𝑅)(𝑠, 𝑡) and 𝑡∈‖𝐶‖𝑉 }.

Obviously, ‖𝐶‖𝑉 does not depend on 𝑉 when 𝐶 is VAR-free. In that case, ‖𝐶‖𝑉 will be
denoted ‖𝐶‖.

4.2. Pre-interpretations

A pre-interpretation on a frame (𝑊,𝐾,𝑅𝑒𝑙) is a function 𝐼 : PRE −→ 𝒫(𝒫(𝑊 )⋆) such that
for all 𝑝∈PRE, 𝐼(𝑝)⊆𝒫(𝑊 )ar(𝑝). For all frames (𝑊,𝐾,𝑅𝑒𝑙) and for all pre-interpretations 𝐼
on (𝑊,𝐾,𝑅𝑒𝑙), the value of an atom 𝑝(𝐶1, . . . , 𝐶ar(𝑝)) with respect to a var-interpretation 𝑉

on (𝑊,𝐾,𝑅𝑒𝑙) is the element |𝑝(𝐶1, . . . , 𝐶ar(𝑝))|𝐼𝑉 in {0, 1} such that

• if 𝐼(𝑝) contains (‖𝐶1‖𝑉 , . . . , ‖𝐶ar(𝑝)‖𝑉 ) then |𝑝(𝐶1, . . . , 𝐶ar(𝑝))|𝐼𝑉 =1,
• otherwise, |𝑝(𝐶1, . . . , 𝐶ar(𝑝))|𝐼𝑉 =0.

4In this paper, for all sets 𝐸, 𝒫(𝐸) denotes the set of all subsets of 𝐸, 𝐸⋆ denotes the set of all tuples of elements
of 𝐸 and for all 𝑘∈N, 𝐸𝑘 denotes the set of all 𝑘-tuples of elements of 𝐸.



4.3. Ind-interpretations

An ind-interpretation on a frame (𝑊,𝐾,𝑅𝑒𝑙) is a function 𝑔: IND −→ 𝑊 . For all frames
(𝑊,𝐾,𝑅𝑒𝑙) and for all ind-interpretations 𝑔 on (𝑊,𝐾,𝑅𝑒𝑙), the value of a concept assertion
𝐶:𝑎 is the element |𝐶:𝑎|𝑔 in {0, 1} such that

• if ‖𝐶‖ contains 𝑔(𝑎) then |𝐶:𝑎|𝑔=1,
• otherwise, |𝐶:𝑎|𝑔=0,

and the value of a role assertion 𝑅:(𝑎, 𝑏) is the element |𝑅:(𝑎, 𝑏)|𝑔 in {0, 1} such that

• if 𝑅𝑒𝑙(𝑅) contains (𝑔(𝑎), 𝑔(𝑏)) then |𝑅:(𝑎, 𝑏)|𝑔=1,
• otherwise, |𝑅:(𝑎, 𝑏)|𝑔=0.

4.4. Models

For all T-boxes 𝒯 , a 𝒯 -model (or a model of 𝒯 ) is a frame (𝑊,𝐾,𝑅𝑒𝑙) such that for all var-
interpretations 𝑉 on (𝑊,𝐾,𝑅𝑒𝑙),

• for all concept inclusions 𝐶⊑𝐷 in 𝒯 , ‖𝐶‖𝑉⊆‖𝐷‖𝑉 ,
• for all concept equations 𝐶=𝐷 in 𝒯 , ‖𝐶‖𝑉 =‖𝐷‖𝑉 .

For all deductive ontologies (𝒯 ,Π,𝒜), a (𝒯 ,Π,𝒜)-model (or a model of (𝒯 ,Π,𝒜)) is a
structure (𝑊,𝐾,𝑅𝑒𝑙, 𝐼, 𝑔) consisting of a 𝒯 -model (𝑊,𝐾,𝑅𝑒𝑙), a pre-interpretation 𝐼 on
(𝑊,𝐾,𝑅𝑒𝑙) and an ind-interpretation 𝑔 on (𝑊,𝐾,𝑅𝑒𝑙) such that for all var-interpretations 𝑉
on (𝑊,𝐾,𝑅𝑒𝑙),

• for all clauses 𝛼1, . . . , 𝛼𝑚←𝛽1, . . . , 𝛽𝑛 in Π, if |𝛽1|𝐼𝑉 =1, . . ., |𝛽𝑛|𝐼𝑉 =1 then either
|𝛼1|𝐼𝑉 =1, . . ., or |𝛼𝑚|𝐼𝑉 =1,

• for all concept assertions 𝐶:𝑎 in 𝒜, |𝐶:𝑎|𝑔=1,
• for all role assertions 𝑅:(𝑎, 𝑏) in 𝒜, |𝑅:(𝑎, 𝑏)|𝑔=1.

Notice that in a model (𝑊,𝐾,𝑅𝑒𝑙, 𝐼, 𝑔) of a deductive ontology (𝒯 ,Π,𝒜), for all var-
interpretations 𝑉 on (𝑊,𝐾,𝑅𝑒𝑙),

• for all definite clauses 𝛼←𝛽1, . . . , 𝛽𝑛 in Π, if |𝛽1|𝐼𝑉 =1, . . ., |𝛽𝑛|𝐼𝑉 =1 then |𝛼|𝐼𝑉 =1,
• for all unit clauses 𝛼← in Π, |𝛼|𝐼𝑉 =1,
• for all definite goals←𝛽1, . . . , 𝛽𝑛 in Π, either |𝛽1|𝐼𝑉 =0, . . ., or |𝛽𝑛|𝐼𝑉 =0.

5. Correspondence Theory

We briefly present the correspondence theory of our hybrid formalism.

Although of limited expressive power, concept constructs can be used for characteriz-
ing classes of frames. As observed by [6, 39], description logic languages are modal languages
in disguise. Therefore, the following relationships that can be easily established for all frames
(𝑊,𝐾,𝑅𝑒𝑙) will not come as a surprise:



(1) (𝑊,𝐾,𝑅𝑒𝑙) is a model of 𝑋⊑∃𝑅.⊤ if and only if 𝑅𝑒𝑙(𝑅) is serial5,
(2) (𝑊,𝐾,𝑅𝑒𝑙) is a model of ∃𝑅.⊤⊑𝑋 if and only if 𝑅𝑒𝑙(𝑅) is empty,
(3) (𝑊,𝐾,𝑅𝑒𝑙) is a model of 𝑋⊑∃𝑅.𝑋 if and only if 𝑅𝑒𝑙(𝑅) is reflexive6,
(4) (𝑊,𝐾,𝑅𝑒𝑙) is a model of ∃𝑅.𝑋⊑𝑋 if and only if 𝑅𝑒𝑙(𝑅) is included in the identity

relation on 𝑊 ,
(5) (𝑊,𝐾,𝑅𝑒𝑙) is a model of ∃𝑅.𝑋⊑∃𝑅.∃𝑅.𝑋 if and only if 𝑅𝑒𝑙(𝑅) is dense7,
(6) (𝑊,𝐾,𝑅𝑒𝑙) is a model of ∃𝑅.∃𝑅.𝑋⊑∃𝑅.𝑋 if and only if 𝑅𝑒𝑙(𝑅) is transitive8,
(7) (𝑊,𝐾,𝑅𝑒𝑙) is a model of ∃𝑅.∃𝑅.⊤⊑𝑋 if and only if the 𝑅-pre-image of the 𝑅-pre-image

of 𝑊 is empty,
(8) (𝑊,𝐾,𝑅𝑒𝑙) is a model of ∃𝑅.𝑋=∃𝑆.𝑋 if and only if 𝑅𝑒𝑙(𝑅) is equal to 𝑅𝑒𝑙(𝑆),
(9) (𝑊,𝐾,𝑅𝑒𝑙) is a model of 𝐴⊓𝐵⊑𝑋 if and only if 𝐾(𝐴) and 𝐾(𝐵) do not intersect,

(10) (𝑊,𝐾,𝑅𝑒𝑙) is a model of 𝐴⊑𝐵 if and only if 𝐾(𝐴) is included in 𝐾(𝐵),
(11) (𝑊,𝐾,𝑅𝑒𝑙) is a model of ∃𝑅.𝑋⊑𝐴 if and only if the domain of 𝑅 is included in 𝐾(𝐴),
(12) (𝑊,𝐾,𝑅𝑒𝑙) is a model of ∃𝑅.𝑋⊑∃𝑅.(𝑋 ⊓𝐴) if and only if the range of 𝑅 is included

in 𝐾(𝐴).

Within our setting, elementary conditions — like “𝑅𝑒𝑙(𝑅) is serial”, “𝑅𝑒𝑙(𝑅) is empty”, etc — are
first-order conditions that can be expressed as sentences in a function-free first-order language
with equality based on a set of unary predicate symbols in one-to-one correspondence with
CON and a set of binary predicate symbols in one-to-one correspondence with ROL. As a
result, the following decision problems are of interest:

— deciding elementary definability (DED): given a T-box 𝒯 , determine whether there
exists an elementary condition 𝐹 such that for all frames (𝑊,𝐾,𝑅𝑒𝑙), 𝐹 holds in
(𝑊,𝐾,𝑅𝑒𝑙) if and only if (𝑊,𝐾,𝑅𝑒𝑙) is a model of 𝒯 ,

— deciding concept definability (DCD): given an elementary condition 𝐹 , determine
whether there exists a T-box 𝒯 such that for all frames (𝑊,𝐾,𝑅𝑒𝑙), (𝑊,𝐾,𝑅𝑒𝑙) is
a model of 𝒯 if and only if 𝐹 holds in (𝑊,𝐾,𝑅𝑒𝑙),

— deciding elementary equivalence (DEE): given a T-box 𝒯 and an elementary condition
𝐹 , determine whether for all frames (𝑊,𝐾,𝑅𝑒𝑙), (𝑊,𝐾,𝑅𝑒𝑙) is a model of 𝒯 if and only
if 𝐹 holds in (𝑊,𝐾,𝑅𝑒𝑙).

DED, DCD and DEE stem from the corresponding definability problems in modal logics [16].
It is not known whether DED, DCD and DEE are decidable9.

5That is to say, for all 𝑠∈𝑊 , there exists 𝑡∈𝑊 such that 𝑅𝑒𝑙(𝑅)(𝑠, 𝑡).
6That is to say, for all 𝑠∈𝑊 , 𝑅𝑒𝑙(𝑅)(𝑠, 𝑠).
7That is to say, for all 𝑠, 𝑡∈𝑊 , if 𝑅𝑒𝑙(𝑅)(𝑠, 𝑡) then there exists 𝑢∈𝑊 such that 𝑅𝑒𝑙(𝑅)(𝑠, 𝑢) and 𝑅𝑒𝑙(𝑅)(𝑢, 𝑡).
8That is to say, for all 𝑠, 𝑡∈𝑊 , if there exists 𝑢∈𝑊 such that 𝑅𝑒𝑙(𝑅)(𝑠, 𝑢) and 𝑅𝑒𝑙(𝑅)(𝑢, 𝑡) then 𝑅𝑒𝑙(𝑅)(𝑠, 𝑡).
9Description logic languages being modal languages in disguise [6, 39], the undecidability of DED, DCD and
DEE are immediate consequences of Chagrova’s Theorems [16] when description logic𝒜ℒ𝒞 is considered instead
of description logic ℰℒ.



6. Deciding Inclusions and Equations

We present decision problems about concept inclusions and concept equations.

Let 𝒯 be a T-box.

A concept inclusion 𝐶⊑𝐷 is a logical consequence of 𝒯 (denoted 𝒯 |=𝐶⊑𝐷) if for all
𝒯 -models (𝑊,𝐾,𝑅𝑒𝑙) and for all var-interpretations 𝑉 on (𝑊,𝐾,𝑅𝑒𝑙), ‖𝐶‖𝑉⊆‖𝐷‖𝑉 . A
concept equation 𝐶=𝐷 is a logical consequence of 𝒯 (denoted 𝒯 |=𝐶=𝐷) if for all 𝒯 -models
(𝑊,𝐾,𝑅𝑒𝑙) and for all var-interpretations 𝑉 on (𝑊,𝐾,𝑅𝑒𝑙), ‖𝐶‖𝑉 =‖𝐷‖𝑉 . As a result, the
following decision problems are of interest:

— deciding concept inclusions (DCI): given a concept inclusion 𝐶⊑𝐷, determine whether
𝒯 |=𝐶⊑𝐷,

— deciding concept equations (DCE): given a concept equation 𝐶=𝐷, determine whether
𝒯 |=𝐶=𝐷.

If 𝒯 is VAR-free then DCI and DCE are in P [3, 4]10. Otherwise, it is not known whether
DCI and DCE are decidable.

7. Deciding Consequences and Answers

We present decision problems about logical consequences and correct answers.

Let (𝒯 ,Π,𝒜) be a deductive ontology.

A clause 𝛼1, . . . , 𝛼𝑚←𝛽1, . . . , 𝛽𝑛 is a logical consequence of (𝒯 ,Π,𝒜) (denoted
(𝒯 ,Π,𝒜)|=𝛼1, . . . , 𝛼𝑚←𝛽1, . . . , 𝛽𝑛) if for all (𝒯 ,Π,𝒜)-models (𝑊,𝐾,𝑅𝑒𝑙, 𝐼, 𝑔) and
for all var-interpretations 𝑉 on (𝑊,𝐾,𝑅𝑒𝑙), if |𝛽1|𝐼𝑉 =1, . . ., |𝛽𝑛|𝐼𝑉 =1 then either |𝛼1|𝐼𝑉 =1, . . .,
or |𝛼𝑚|𝐼𝑉 =1. Notice that a definite clause 𝛼←𝛽1, . . . , 𝛽𝑛 is a logical consequence of (𝒯 ,Π,𝒜)
if and only if for all (𝒯 ,Π,𝒜)-models (𝑊,𝐾,𝑅𝑒𝑙, 𝐼, 𝑔) and for all var-interpretations
𝑉 on (𝑊,𝐾,𝑅𝑒𝑙), if |𝛽1|𝐼𝑉 =1, . . ., |𝛽𝑛|𝐼𝑉 =1 then |𝛼|𝐼𝑉 =1, a unit clause 𝛼← is a logical
consequence of (𝒯 ,Π,𝒜) if and only if for all (𝒯 ,Π,𝒜)-models (𝑊,𝐾,𝑅𝑒𝑙, 𝐼, 𝑔) and for all
var-interpretations 𝑉 on (𝑊,𝐾,𝑅𝑒𝑙), |𝛼|𝐼𝑉 =1 and a definite goal ←𝛽1, . . . , 𝛽𝑛 is a logical
consequence of (𝒯 ,Π,𝒜) if and only if for all (𝒯 ,Π,𝒜)-models (𝑊,𝐾,𝑅𝑒𝑙, 𝐼, 𝑔) and for
all var-interpretations 𝑉 on (𝑊,𝐾,𝑅𝑒𝑙), either |𝛽1|𝐼𝑉 =0, . . ., or |𝛽𝑛|𝐼𝑉 =0. As a result, the
following decision problems are of interest:

— deciding definite clauses (DDC): given a definite clause 𝛼←𝛽1, . . . , 𝛽𝑛, determine
whether (𝒯 ,Π,𝒜)|=𝛼←𝛽1, . . . , 𝛽𝑛,

— deciding unit clauses (DUC): given a unit clause 𝛼←, determine whether
(𝒯 ,Π,𝒜)|=𝛼←,

10See [22] when other description logics are considered instead of description logic ℰℒ.



— deciding definite goals (DDG): given a definite goal←𝛽1, . . . , 𝛽𝑛, determine whether
(𝒯 ,Π,𝒜)|=←𝛽1, . . . , 𝛽𝑛.

A substitution 𝜎 is a correct answer for the definite goal←𝛽1, . . . , 𝛽𝑛 with respect to (𝒯 ,Π,𝒜)
if for all (𝒯 ,Π,𝒜)-models (𝑊,𝐾,𝑅𝑒𝑙, 𝐼, 𝑔) and for all var-interpretations 𝑉 on (𝑊,𝐾,𝑅𝑒𝑙),
|𝜎(𝛽1)|𝐼𝑉 =1, . . ., |𝜎(𝛽𝑛)|𝐼𝑉 =1. As a result, the following decision problem is of interest:

— deciding correct answers (DCA): given a definite goal←𝛽1, . . . , 𝛽𝑛, determine whether
there exists a correct answer for←𝛽1, . . . , 𝛽𝑛 with respect to (𝒯 ,Π,𝒜).

DDC, DUC, DDG and DCA stem from the corresponding derivability problems in logic
programming [26, 34]. It is not known whether DDC, DUC, DDG and DCA are decidable11.

8. A Research Program

We present a research program. As can be seen from its presentation, this research program
covers different aspects of description logics and logic programming: recursion theory with
(RP1), computational complexity with (RP2), model theory and fixpoint theory with (RP3),
automated deduction with (RP4) and non-monotonic reasoning with (RP5). Needless to say,
to carry out it, one must neither work in isolation, nor lose sight of the possible applications of
the hybrid formalism developed in this paper. In other respect, with respect to expressivity, one
must also compare this formalism to the main approaches proposed so far. These approaches
include the above-mentioned hybrid knowledge bases [23, 24, 30, 32, 35]. They also include
approaches such as the existential rule framework [13, 36].

8.1. Turing-completeness

Our hybrid formalism can be seen as a programming language. It is not known whether it
is Turing-complete. When description logic 𝒜ℒ𝒞 is considered instead of description logic
ℰℒ, the Turing-completeness of our hybrid formalism can be easily proved by means of a
reduction from the Turing-completeness of Minsky machines. Hence, the following item in our
research program: (RP1) separate the description logics that do give rise to a Turing-complete
hybrid formalism from the description logics that do not. In particular, find simple and natural
conditions on concept inclusions, concept equations and clauses such that deductive ontologies
satisfying them give rise to a Turing-complete hybrid formalism.

8.2. Tractability

The success of the logic programming languages comes from the fact that it is relatively easy to
define Turing-incomplete restrictions of clauses that can be used as a domain-specific language
taking advantage of efficient algorithms developed for them [19, 29]. Thus, the following item

11When description logic 𝒜ℒ𝒞 is considered instead of description logic ℰℒ, the undecidability of DDC, DUC,
DDG andDCA can be easily proved by means of reductions from the undecidability of the reachability problem
in Minsky machines.



in our research program: (RP2) for the description logics that do not give rise to a Turing-
complete hybrid formalism, separate those that do give rise to a hybrid formalism tractable in
polynomial time from those that do not. In particular, find simple and natural conditions on
concept inclusions, concept equations and clauses such that deductive ontologies satisfying
them give rise to a hybrid formalism tractable in polynomial time.

8.3. Declarative and Fixpoint Semantics

In logic programming, the declarative semantics of programs is given by the usual semantics
of first-order logic. It is defined in terms of Herbrand interpretations [26, 34]. In this setting,
given a program, the main result is the standard characterization of its Herbrand models as the
pre-fixpoints of some continuous mapping associated to it. Consequently, the following item
in our research program: (RP3) develop the declarative and fixpoint semantics of our hybrid
formalism. In particular, given a deductive ontology, characterize its Herbrand models as the
pre-fixpoints of some continuous mapping associated to it.

8.4. Procedural Semantics

In logic programming, the refutation procedure of interest is called SLD-resolution where an
inference step is based on the unifiability between the selected atom in a given definite goal
and the left side of a variant of a definite clause in a given program. Hence, the following item
in our research program: (RP4) develop the procedural semantics of our hybrid formalism. In
particular, considering the unification problem in description logics with empty T-boxes [7],
adapt the related unification algorithms to the context of our hybrid formalism12. In this respect,
the tools and techniques developed in [2, 10, 11, 27, 28, 40] might be useful.

8.5. Negation

By using conditional assertions of the form 𝛼1, . . . , 𝛼𝑚←𝛽1, . . . , 𝛽𝑛, not(𝛾1), . . . , not(𝛾𝑜)
where 𝛼1, . . ., 𝛼𝑚, 𝛽1, . . ., 𝛽𝑛, 𝛾1, . . ., 𝛾𝑜 are atoms, one may write more expressive deductive
ontologies. For instance, in our example about security policies, the deontic principle say-
ing that every non-prohibited access is permitted and the deontic principle saying that every
non-compulsory access is optional can be expressed by the following conditional assertions:

• perm(𝑋,𝑌 )←not(proh(𝑋,𝑌 )),
• opti(𝑋,𝑌 )←not(comp(𝑋,𝑌 )).

In logic programming, the declarative semantics of a program containing, possibly, negation in
the right side of clauses is given by the so-called answer set semantics. It is defined in terms
of stable models [21, 25, 33]. In this setting, the question of the existence of stable models for
a given program is of the utmost interest. Thus, the following item in our research program:
(RP5) develop the answer set semantics of our hybrid formalism when programs contain,
possibly, negation in the right side of their clauses.
12The computability of the unification problem with arbitrary T-boxes is not known. In other respect, when de-

scription logic 𝒜ℒ𝒞 is considered instead of description logic ℰℒ, the computability of the unification problem
either with empty T-boxes, or with arbitrary T-boxes is not known too.



9. Last Words

Our idea of an hybrid formalism where description logics constructs are used for defining
concepts that are given as arguments to the predicates of the logic programs has only one
ancestor: the formalism developed in [14]. In this formalism, Boolean constructs are used
for defining expressions that are given as arguments to the predicates of the logic programs,
allowing clauses of the form

• adder(𝑋,𝑌, 𝑍, 𝑇, 𝑈∨𝑉 )←halfAdder(𝑋,𝑌,𝑊,𝑈), halfAdder(𝑊,𝑍, 𝑇, 𝑉 ),
• halfAdder(𝑋,𝑌,𝑋⊕𝑌,𝑋∧𝑌 )←.

where 𝑋 , 𝑌 , 𝑍 , 𝑇 , 𝑈 , 𝑉 and 𝑊 denote propositional variables, ∨, ⊕ and ∧ denote the
Boolean constructs of, respectively, disjunction, exclusive disjunction and conjunction and
adder and halfAdder are predicate symbols of, respectively, arity 5 and arity 4. Obviously,
the Boolean expressions 𝑈∨𝑉 , 𝑋⊕𝑌 and 𝑋∧𝑌 used in these clauses can be seen as ROL-
free complex concepts when description logic𝒜ℒ𝒞 is considered instead of description logic ℰℒ.

Knowledge representation languages such as those provided by description logic lan-
guages and rule-based reasoning paradigms such as those provided by logic programming
languages are well-known and widely used in Computer Science and Artificial Intelligence.
Therefore, it is quite amazing that their integration in a unique formalism similar to the
formalism proposed by [14] has not been put forward during the last 30 years. A narrow-minded
explanation would consist of saying that this lack of interest is the result of the lack of
importance of hybrid formalisms such as the one introduced in this paper. The case study
presented in Section 2 indicates that this lack of interest might just be the result of a lack of
imagination. Indeed, we believe that it is time to give space to advanced languages of terms for
ontologies as introduced in Sections 3 and 4, to consider the decision problems presented in
Sections 5, 6 and 7 and to address the research program presented in Section 8.
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