
Accessing Document Data Sources using Referring
Expression Types
Alexander Borgida

1
, Enrico Franconi

2
, David Toman

3
and Grant Weddell

3

1

Department of Computer Science, Rutgers University, New Brunswick, US

2

KRDB Research Centre for Knowledge and Data, Free University of Bozen-Bolzano, Italy

3

Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada

Abstract
We show how JSON documents can be abstracted as concept descriptions in an appropriate description

logic. This representation allows the use of additional background knowledge in the form of a TBox and

an assignment of referring expression types (RETs) to certain primitive concepts to detect situations in

which subdocuments, perhaps multiple subdocuments located in various parts of the original documents,

capture information about a particular conceptual entity. Detecting such situations allows for normalizing

the JSON document into several separate documents that capture all information about such conceptual

entities in separate documents. This transformation preserves all the original information present in the

input documents. The RET assignment contributes a set of possible concept descriptions that enable more

refined and normalized capture of documents, and to more crafted answers to queries that adhere to user

expectations expressed as RETs. We also show how RETs allow checking for a document admissibility

condition ensuring that each document describes a single conceptual entity.

1. Introduction and Motivation

Suppose we have a JSON/mongoDB document, and an ontology attaching semantics to (most)

fields in JSON objects (called “keys” in the JSON definition; for the rest of this paper we reserve

the word “key” for database-like keys). More concretely we treat the fields in JSON objects as

(functional) roles in an underlying DL and use a TBox to add additional appropriate concept

identifiers for the domain of the document. For example, for JSON document

{ "fname": "John", "lname": "Smith", "age": 25,
"wife": { "fname" : "Mary", "lname": "Smith" } }

the TBox might contain subsumptions stating, e.g., that:

• PERSONs are objects that posses fname and lname fields,

• fname and lname form a key for PERSONs,

• a wife of a PERSON is also a PERSON, and so on.

A formal way of capturing these constraints in our FunDL dialect is given in Example 3 below.

DL 2022: 35th International Workshop on Description Logics, August 7–10, 2022, Haifa, Israel

$ borgida@cs.rutgers.edu (A. Borgida); franconi@inf.unibz.it (E. Franconi); david@uwaterloo.ca (D. Toman);

gweddell@uwaterloo.ca (G. Weddell)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:borgida@cs.rutgers.edu
mailto:franconi@inf.unibz.it
mailto:david@uwaterloo.ca
mailto:gweddell@uwaterloo.ca
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

We are interested in asking conjunctive queries over the document, with answers being

returned in some “answer language” ℒ𝑎𝑛𝑠𝑤𝑒𝑟. We could simply create distinct identifiers for

each node in the JSON tree, and use roles (obtained from the fields of JSON objects) to connect

them, resulting in an ABox, which in the above case might contain an assertion (id434,25)
: age. In this case, a simple query like q(P) :- age(P,25) would return id434, which is

quite meaningless without laboriously tracing back the creation of the ABox; and this answer

makes no connection with the knowledge in the ontology. A more desirable answer would use

the TBox, and return something like PERSON with fname=”John” and lname=”Smith”. This issue,

and many others concerning the appropriate choice of description for objects in query answers

was first addressed in [1], where the notion of “singular referring expression” was introduced.

It stood for a concept description that was guaranteed to denote a single individual.

Given the use of a referring expression in ℒ𝑎𝑛𝑠𝑤𝑒𝑟 to, among others, avoid meaningless object

ids, another paper [2] suggested doing a similar thing in the ℒ𝑡𝑒𝑙𝑙: replacing the ABox with a

“CBox”, where singular referring expressions are used to state assertional facts as concepts the

KB knows about. For example, the JSON fragment above could be captured by the concept

∃ fname.{"John"} ⊓ ∃ lname.{"Smith"} ⊓ ∃ age.{"25"} ⊓
∃ wife.(∃ fname.{"Mary"} ⊓ ∃ lname.{"Smith"})

Here, nominal concepts play a central role, as do key constraints for singularity, and a general

rule that CBox concepts cannot have empty interpretations.

An algorithm was given in [2] for computing certain answers to conjunctive queries, which

returns singular referring expressions appearing in the CBox. This work was carried out in

a dialect of the FunDL family of description logics [3]. FunDL and its dialects replace roles

with (possibly partial) unary functions called features, reify general roles, and always include a

so-called path functional dependency (PFD) concept constructor to express constraints that are

equality generating (including keys). In particular, the dialect used for these purposes in [2] has

the property that DL reasoning and query answering are both polynomial-time (in the size of

the underlying knowledge base). The above paper also gave, as an example of CBox use, one

way to represent a JSON document (in particular, for a document in a MongoDB collection), as

a singular concept description in FunDL.

Example 1 (from [2]). Consider the case where PERSON is the name of a MongoDB JSON collection

with a value as given in Figure 1. The PERSON document is captured by a CBox containing the

following concept description expressed in terms of FunDL.

∃ collection.{"person"} ⊓
∃ data.∃ dom−.∃ ran(

∃ fname.{"John"} ⊓ ∃ lname.{"Smith"} ⊓
∃ age.{"25"} ⊓ ∃ wife.∃ fname.{"Mary"} ⊓
∃ phone.∃ dom−.∃ ran(∃ colour.{"red"} ⊓ ∃ dnum.{"212 555-1234"})) ⊓

∃ dom−.∃ ran(
∃ fname.{"Mary"} ⊓ ∃ lname.{"Jones"} ⊓
∃ salary.{"$150000CAD"} ⊓ ∃ spouse.∃ fname.{"John"} ⊓
∃ phone.∃ dom−.∃ ran(∃ loc.{"home"} ⊓ ∃ dnum.{"212 555-1234"}) ⊓

∃ dom−.∃ ran(∃ loc.{"work"} ⊓ ∃ dnum.{"212 666-4567"})) □

{ "collection": "person",
"data" : [
{ "fname": "John", "lname": "Smith", "age": 25,
"wife": { "fname" : "Mary" },
"phone": [

{"colour": "red", "dnum": "212 555-1234"}
] } ,

{ "fname": "Mary", "lname": "Jones", "salary": "$150,000 (CAD)",
"spouse": { "fname": "John" },
"phone": [

{"loc": "home", "dnum": "212 555-1234"},
{"loc": "work", "dnum": "212 666-4567"}

] }
] }

Figure 1: JSON PERSON Document.

Intuitively, JSON values are mapped to concepts as follows: (a) primitive values to nominals,

(b) (compound) objects to conjunctions of existential restrictions of features corresponding to

the field names of the (mapping of) values, and (3) arrays (treated as sets) to multi-valued roles

reified via the features dom and ran (see Definition 4).

One can infer that a document would have the above-mentioned singularity property by

asserting in a FunDL TBox that collection names (person in our case) are unique.

Since in our case query answers are elements of the CBox, the above translation of a full

JSON document into a single CBox entry is undesirable. For this reason, we propose to break it

up into smaller conceptual entities that make sense based on the terminology in the TBox. This

is achieved by using referring expression types (RETs) introduced in [1]. In particular, we will

show how a combination of a TBox and an RET assignment to the primitive concepts occurring

in the TBox enable mapping an initial CBox directly obtained from a MongoDB database, as

illustrated above, to an alternative normalized CBox, as now illustrated.

Example 2 (JSON normalization). Applying our normalization procedure to the CBox in Example 1

will then obtain the following concepts:

DOCUMENT ⊓ ∃ collection.{"person"} ⊓
∃ data(∃ dom−.∃ ran(PERSON ⊓ ∃ fname.{"John"} ⊓ ∃ lname.{"Smith"}) ⊓

∃ dom−.∃ ran(PERSON ⊓ ∃ fname.{"Mary"} ⊓ ∃ lname.{"Jones"}))

PERSON ⊓ ∃ fname.{"John"} ⊓ ∃ lname.{"Smith"} ⊓
∃ age.{"25"} ⊓ ∃ wife.∃ fname{"Mary"} ⊓
∃ phone.∃ dom−.∃ ran(PHONE ⊓ ∃ dnum{"212 555-1234"})

PERSON ⊓ ∃ fname.{"Mary"} ⊓ ∃ lname.{"Jones"} ⊓
∃ salary.{"$150000CAD"} ⊓ ∃ spouse.∃ fname{"John"} ⊓
∃ phone.∃ dom−.∃ ran(PHONE ⊓ ∃ dnum{"212 555-1234"}) ⊓

∃ dom−.∃ ran(PHONE ⊓ ∃ dnum{"212 666-4567"}))

PHONE ⊓ ∃ dnum{"212 555-1234"} ⊓ ∃ loc.{"home"} ⊓ ∃ colour.{"red"}
PHONE ⊓ ∃ dnum{"212 555-4567"} ⊓ ∃ loc.{"work"}

In the above, the underlined parts of these concepts serve as referring expressions identifying entities,

while the remainder of the concept tells us facts about the entities, using (the dash-underlined)

referring expressions when needed, to record such facts. For example, observe how references to

phone entities in phone facts about persons require only dnum facts about phones. □

Our contributions are as follows.

1. We show how a JSON document (or a MongoDB collection) can be abstracted as a concept

description, as illustrated in Example 1, and contrast this way of attaching a meaning or

semantics with other proposals.

2. We show how an TBox can attach meaning to such concept descriptions (and therefore

to the JSON documents).

3. We describe the normalization procedure which uses the given TBox and a referring

expression type assignment in order to extract additional intuitively reasonable CBox

subconcepts, as illustrated in Example 2.

4. We also show how information about the same entity can be consolidated even if it was

originally recorded in different parts of the JSON document.

5. Finally, we present a more effective way of diagnosing an admissibility property of a

CBox that ensures interpretations of referring expressions are indeed singular.

All of the above tasks are accomplished by relying solely on reasoning about equalities and

concept memberships of objects corresponding to values in the input JSON document with

respect to the DL TBox. This sets our approach apart from many other approaches that

commonly rely on mapping and transformation rules.

The paper is organized as follows: Section 2 provides the needed background relating to

FunDL and to referring expressions. Section 3 then outlines the main results of this paper

relating to the ability to identify subdocuments relating to identifiable entities and subsequent

separation of these entities in separate CBox entries/documents. We conclude with a brief

overview of related work and with suggestions for follow-on research.

2. Definitions and Background

We now formally define the artifacts introduced in our introductory comments, beginning with

a general definition of concept descriptions for members of the FunDL family of DLs with

PTIME complexity of logical consequence.
1

Recall that members of this family replace roles

with partial functions, and that concept descriptions not only occur in a TBox but also serve as

referring expressions in a CBox.

Definition 1 (FunDL Concepts, Referring Expressions and Knowledge Bases). Let F and PC be

sets of feature names and primitive concept names, respectively. A path expression is defined by

1

Some additional conditions must hold on PFDs and on conjunctions; see [3, 4] for details.

Syntax Semantics: Defn of “(·)ℐ”

𝐶 ::= ⊥ ∅ (bottom)
| 𝐶 : Pf1, ...,Pf𝑘 → Pf0 {𝑥 | ∀𝑦.((𝑦 ∈ 𝐶ℐ ∧ (

⋀︀𝑘
𝑖=0{𝑥, 𝑦} ⊆ (∃Pf𝑖.⊤)ℐ) (PFD)

(
⋀︀𝑘

𝑖=1 Pf
ℐ
𝑖 (𝑥) = Pfℐ𝑖 (𝑦))) → (Pfℐ0 (𝑥) = Pfℐ0 (𝑦)))}

| ⊤ △ℐ (top)
| A Aℐ ⊆ △ℐ (primitive concept; A ∈ PC)
| ∃Pf.𝐶 {𝑥 | ∃𝑦.(𝑦 ∈ 𝐶ℐ ∧ Pfℐ(𝑥) = 𝑦)} (value restriction)
| 𝐶1 ⊓ 𝐶2 𝐶ℐ

1 ∩ 𝐶ℐ
2 (conjunction)

| {𝑎} {𝑎ℐ} (nominal)
| ∃𝑓−1.𝐶 {𝑓ℐ(𝑥) | 𝑥 ∈ 𝐶ℐ} (qualified inverse feature)

Figure 2: Syntax and semantics of concept descriptions.

the grammar “Pf ::= 𝑓.Pf | id” for 𝑓 ∈ F. A concept description is defined by the grammar on

the left-hand-side of Fig. 2.
2

An inclusion dependency is an expression of the form 𝐶1 ⊑ 𝐶2, where 𝐶𝑖 is parsed by the first

six productions in Fig. 2. A terminology (TBox) 𝒯 consists of a finite set of inclusion dependencies.

A referring expression is a concept description 𝐶 parsed by the last six productions in Fig. 2. A

concept box (CBox) 𝒞 consists of a finite set of referring expressions. A knowledge base 𝒦 is a

TBox/CBox pair (𝒯 , 𝒞).
The semantics of concept descriptions and path expressions is defined with respect to a structure

ℐ = (△ℐ , ·ℐ), where △ℐ
is a domain of “objects” and ·ℐ an interpretation function that fixes

the interpretations of primitive concepts 𝐴 to be subsets of △ℐ
and primitive features 𝑓 to be

partial functions 𝑓ℐ : △ℐ → △ℐ
. The interpretation is extended to path expressions, idℐ = 𝜆𝑥.𝑥,

(𝑓.Pf)ℐ = Pfℐ ∘𝑓ℐ , in the natural way, and derived concept descriptions 𝐶 as defined in the centre

column of Fig. 2.

An interpretation ℐ satisfies an inclusion dependency 𝐶1 ⊑ 𝐶2 if 𝐶ℐ
1 ⊆ 𝐶ℐ

2 , and is a model

of a TBox 𝒯 if it satisfies all inclusion dependencies in 𝒯 . ℐ is a model of a knowledge base 𝒦
= (𝒯 , 𝒞), written ℐ |= 𝒦, if it satisfies 𝒯 and also that |𝐶ℐ | > 0 holds for every 𝐶 ∈ 𝒞.

Given a TBox 𝒯 , a referring expression 𝐶 is singular with respect to 𝒯 if |𝐶ℐ | ≤ 1 for all

interpretations ℐ that are models of 𝒯 .

The logical implication problem asks if 𝒦 |= 𝐶1 ⊑ 𝐶2 holds, that is, if 𝐶1 ⊑ 𝐶2 is satisfied in

all models of 𝒦. □

Definition 2 (Admissibility and Query Answers). Let 𝒦 = (𝒯 , 𝒞) be a FunDL knowledge base

and 𝑄 = {(𝑥1, . . . , 𝑥𝑘) | 𝜙} a conjunctive query. The CBox 𝒞 is admissible for 𝒯 if each 𝐶 ∈ 𝒞 is

a referring expression that is singular with respect to 𝒯 . (Thus, if 𝒦 is consistent and 𝒞 is admissible

for 𝒯 , then |𝐶ℐ | = 1 for any 𝐶 ∈ 𝒞 and any model ℐ for which ℐ |= 𝒦.)

2

A variety of equality generating dependencies, including keys, can be expressed with the use of a path functional

dependency (PFD) concept description generated by the second production of this grammar.

A k-tuple of referring expressions (𝐶1, . . . , 𝐶𝑘) is a certain answer to 𝑄 in (𝒯 , 𝒞) if

𝒦 |= ∃𝑥1, . . . , 𝑥𝑘.(𝜙 ∧ 𝐶1(𝑥1) ∧ . . . ∧ 𝐶𝑘(𝑥𝑘))

for {𝐶1, . . . , 𝐶𝑘} ⊆ 𝒞. □

The second artifact introduced in our introduction relates to so-called referring expression

types (RETs) introduced in [1]. In this earlier work, such types were attached to the free variables

of a conjunctive query, and denoted a space of well-formed formulae 𝜓 with one free variable,

over a given FO signature consisting of unary and binary predicates, that were eligible referring

expressions for the variable. Such types are essentially patterns of possible 𝜓, in our case,

patterns of possible concept descriptions 𝐶 , and are now attached to primitive concepts by a

user defined referring expression type assignment (RTA). They determine a set of possible concept

descriptions that are eligible referring expressions for subdocuments. We illustrate this below

for our running example, but leave the presentation on how this is accomplished to Section 3.

Definition 3 (Referring Expression Types and Assignments). A referring expression type is

defined by the following grammar:
3

𝑅𝑒 ::= A | ∃Pf.𝑅𝑒 | 𝑅𝑒 ⊓𝑅𝑒 | {?} | 𝑅𝑒 ;𝑅𝑒

A referring expression type assignment (RTA) over a TBox 𝒯 is partial function mapping primitive

concepts A occurring in 𝒯 to a referring expression type RTA(A). We define a language of referring

expressions inhabiting 𝑅𝑒, ℒ(𝑅𝑒), as follows:

ℒ(A)= {A}
ℒ(∃Pf.𝑅𝑒)= {∃Pf.𝐶 | 𝐶 ∈ ℒ(𝑅𝑒)}

ℒ(𝑅𝑒1 ⊓𝑅𝑒2)= {𝐶1 ⊓ 𝐶2 | 𝐶1 ∈ ℒ(𝑅𝑒1) and 𝐶2 ∈ ℒ(𝑅𝑒2)}
ℒ({?})= {{𝑏} | 𝑏 is a constant symbol}

ℒ(𝑅𝑒1;𝑅𝑒2)=ℒ(𝑅𝑒1) ∪ ℒ(𝑅𝑒2) □

Example 3 (CBox normalization). Let CBox 𝒞 consist of the single referring expression in Exam-

ple 1 obtained from the MongoDB collection given earlier, and let TBox 𝒯 consist of the following

inclusion dependencies:

(∃ collection.⊤) ⊓ (∃ data.⊤) ⊑ DOCUMENT
(∃ fname.⊤) ⊓ (∃ lname.⊤) ⊑ PERSON

∃ dnum.⊤ ⊑ PHONE

DOCUMENT ⊑ DOCUMENT : collection → id
PERSON ⊑ PERSON : fname, lname → id
PHONE ⊑ PHONE : dnum → id

PERSON ⊑ ∃ wife.PERSON

3

This is a pattern language obtained by abstracting nominals in referring expressions and by admitting a final

production to express preference among referring expressions [1].

Our normalization procedure presented in the next section, when given the knowledge base 𝒦 =
(𝒯 , 𝒞) together with the following RTA assignment, will then replace 𝒞 in 𝒦 by the CBox in

Example 2 of our introduction:

RTA(DOCUMENT) = DOCUMENT ⊓ ∃ collection.{?}
RTA(PERSON) = PERSON ⊓ ∃ lname.{?} ⊓ ∃ fname.{?}
RTA(PHONE) = PHONE ⊓ ∃ dnum.{?} □

Mapping a JSON value to a referring expression in a CBox is straightforward with FunDL

concepts. The following definition of ToConcept provides the details. (Recall that Example 1

in our introduction illustrates an invocation of ToConcept on a JSON collection.) Some obser-

vations and reminders: (1) this mapping assumes any JSON value, including an array, will map

to some element of an underlying domain; (2) the mapping relies entirely on interpreting field

names in field-value pairs comprising JSON objects as feature names; and (3) arrays (treated as

sets) are mapped to multi-valued roles reified via the features dom and ran.

Definition 4 (ToConcept). An arbitrary JSON value is mapped to a CBox referring expression as

follows:

ToConcept("s") ↦→ {"s"}
ToConcept(null) ↦→⊤

ToConcept({"k1" : 𝑣1, . . . , "kn" : 𝑣𝑛}) ↦→ ∃ k1. ToConcept(𝑣1) . . . ⊓ ∃ kn. ToConcept(𝑣𝑛)
ToConcept([𝑣1, . . . , 𝑣𝑚]) ↦→ ∃ dom−.∃ ran. ToConcept(𝑣1) ⊓

. . . ⊓ ∃ dom−.∃ ran. ToConcept(𝑣𝑚)

where the first case covers all JSON values that are strings, numerics, and Booleans. □

3. CBox Normalization

Our CBox normalization procedure derives from a pair of normalization rules presented in

Section 3.2. To enable references to sub-concepts in a concept description required by our

formulation of these rules, we define the mapping ToAbox.

Definition 5 (ToABox). An arbitrary referring expression𝐶 is mapped to an ABox and a mapping

from constant symbols 𝑎𝑖 in this ABox to nodes in the syntactic tree of 𝐶 as follows:

ToAbox(𝑎 : {𝑏}) ↦→ {𝑎 = 𝑏}
ToAbox(𝑎 : A) ↦→ {A(𝑎)},A primitive

ToAbox(𝑎 : ∃𝑓.𝐶) ↦→ {𝑓(𝑎) = 𝑏} ∪ ToAbox(𝑏 : 𝐶), 𝑏 fresh

ToAbox(𝑎 : ∃𝑓−1.𝐶) ↦→ {𝑓(𝑏) = 𝑎} ∪ ToAbox(𝑏 : 𝐶), 𝑏 fresh

ToAbox(𝑎 : 𝐶1 ⊓ . . . ⊓ 𝐶𝑛) ↦→
⋃︀𝑛

𝑖=1{𝑎 = 𝑏𝑖} ∪ ToAbox(𝑏𝑖 : 𝐶𝑖), 𝑏𝑖 fresh

We define ToAbox(𝒞) =
⋃︀

𝐶∈𝒞 ToAbox(𝑎 : 𝐶), 𝑎 fresh for each 𝐶 . □

The ToAbox(𝐶) function converts an input concept𝐶 to an ABox by traversing the syntactic

structure of the concept, assigning distinct constant symbols 𝑎 to subconcepts of 𝐶 , and then

replacing these subconcepts by atomic ABox assertions.

Definition 6 (Context). Let 𝐶 be a concept description. We use the notation 𝐶[𝑎′ : 𝐶 ′] to denote a

subconcept 𝐶 ′
of the concept 𝐶 where 𝑎′ is the constant symbol assigned to 𝐶 ′

by ToAbox(𝑎 : 𝐶).
For the top-level concept we simply use the context [𝑎 : 𝐶].

A projection function ToRE that uses a referring expression type 𝑅𝑒 to generate a referring

expression 𝐶 in ℒ(𝑅𝑒) and holding for a particular individual 𝑎 in a knowledge base (or

producing an undefined value if no such 𝐶 exists) is now defined. (Observe the use of an

auxiliary recursive function with the same name in the definition that takes a path function Pf
as a third argument.)

Definition 7 (Projection on𝑅𝑒). Let 𝒦 be a consistent knowledge base and 𝑎 a constant. We define

a projection function ToRE(𝑎,𝑅𝑒) for a referring expression 𝑅𝑒 as the result of the following

recursive definition of ToRE(𝑎,𝑅𝑒, id) on the structure of 𝑅𝑒:

ToRE(𝑎,A,Pf)=A if 𝒦 |= 𝑎 : ∃Pf.A, undefined otherwise
ToRE(𝑎, {?},Pf)= {𝑏} if 𝒦 |= 𝑎 : ∃Pf.{𝑏} for some 𝑏, undefined otherwise

ToRE(𝑎,∃Pf ′.𝑅𝑒,Pf)=∃Pf ′.ToRE(𝑎,𝑅𝑒,Pf .Pf ′)
ToRE(𝑎,𝑅𝑒1 ⊓𝑅𝑒2,Pf)= ToRE(𝑎,𝑅𝑒1,Pf) ⊓ ToRE(𝑎,𝑅𝑒2,Pf) if both defined
ToRE(𝑎,𝑅𝑒1;𝑅𝑒2,Pf)= ToRE(𝑎,𝑅𝑒1,Pf) if defined, ToRE(𝑎,𝑅𝑒2,Pf) otherwise □

The following is a simple consequence of this and our previous definitions. Also, see earlier

work in [5, 6] for effective ways of computing the second and fourth base cases.

Lemma 1. For any constant 𝑎, any 𝑅𝑒, and any consistent 𝒦, ToRE(𝑎,𝑅𝑒) ∈ ℒ(𝑅𝑒).

It will also be useful to have a simplification procedure for referring concepts. The following

definition of such a procedure will suffice for illustrative purposes, and clearly preserves concept

equivalence.

Definition 8 (Concept Simplification). We write Simplify(𝐶) to denote an exhaustive application

of the following to referring expression 𝐶 :

1. If an 𝑛-way conjunction contains ∃𝑓.𝐶1 and ∃𝑓.𝐶2, replace both conjuncts by ∃𝑓.𝐶1 ⊓ 𝐶2.

2. If an 𝑛-way conjunction contains duplicate conjuncts, remove one of the conjuncts. □

3.1. CBox Admissibility

In this subsection, we show how, given a TBox 𝒯 , one can statically test for admissibility of

any CBox obtained by the normalization rules given in Subsection 3.2 that follows. This is

achieved by a mapping to a sequence of logical consequence problems for inclusion dependencies

expressing functional dependencies with PFDs that are induced by a given RTA assignment.

We begin by defining a normalization of an 𝑅𝑒 that preserves ℒ(𝑅𝑒).

Definition 9 (Normalized Types; from [1]). We write Norm(𝑅𝑒) to refer to an exhaustive

application of the following rewrite rules to 𝑅𝑒:

𝑅𝑒 ⊓ (𝑅𝑒1;𝑅𝑒2) ↦→ 𝑅𝑒 ⊓𝑅𝑒1;𝑅𝑒 ⊓𝑅𝑒2
(𝑅𝑒1;𝑅𝑒2) ⊓𝑅𝑒 ↦→ 𝑅𝑒1 ⊓𝑅𝑒1;𝑅𝑒2 ⊓𝑅𝑒
∃Pf.(𝑅𝑒1;𝑅𝑒2) ↦→ ∃Pf.𝑅𝑒1;∃Pf.𝑅𝑒2 □

The following are simple consequences: (1) ℒ(𝑅𝑒) = ℒ(Norm(𝑅𝑒)), and (2) all preference

operators (“;”) are at the top level. We call the maximal “;”-free parts of Norm(𝑅𝑒𝑡) preference-free

components.

To statically test for singularity of referring expressions generated by the ToRE function for

a particular referring expression type, we use the following auxiliary definitions:

Pfs({?})= {id}
Pfs(A)= { }

Pfs(∃Pf ′.𝑅𝑒)= {Pf ′ .Pf | Pf ∈ Pfs(𝑅𝑒)}
Pfs(𝑅𝑒1 ⊓𝑅𝑒1)=Pfs(𝑅𝑒1) ∪ Pfs(𝑅𝑒2)

Con({?})=⊤
Con(A)=A

Con(∃Pf ′.𝑅𝑒)=∃Pf ′.Con(𝑅𝑒)
Con(𝑅𝑒1 ⊓𝑅𝑒1)=Con(𝑅𝑒1) ⊓ Con(𝑅𝑒2)

These functions extract a set of paths leading to nominals and a concept from a preference-free

referring expression type. Altogether, we are now able to formulate the singularity test following

the ideas presented in [1], Theorem 20:

Theorem 1. Let 𝒯 be a TBox and 𝑅𝑒 a referring expression type. Then all referring expressions

in ℒ(𝑅𝑒) are singular if 𝒯 |= Con(𝑅𝑒′) ⊑ Con(𝑅𝑒′) : Pfs(𝑅𝑒′) → id for every preference-free

component 𝑅𝑒′ of Norm(𝑅𝑒).

Our static test of admissibility of any CBox generated by our normalization rules then follows

by applying the above to any 𝑅𝑒 in the range of a programmer supplied RTA.

3.2. CBox Normalization Rules

We now have the necessary machinery to present our two rules for normalizing the CBox of a

given knowledge base 𝒦 = (𝒯 , 𝒞) and referring expression type assignment RTA. Our first

main rule extracts sub-concepts of a given CBox concept 𝐶 as an additional separate CBox

concept.

Definition 10 (Subdocument Extraction). Assume 𝐶 is a concept in 𝒞 which contains a subcon-

cept 𝐶 ′
(i.e., 𝐶[𝑎 : 𝐶 ′]) corresponding to a JSON object. Also assume two properties hold: that

(𝒯 , ToAbox(𝒞)) |= 𝐴(𝑎), and that RTA(𝐴) is defined for primitive concept 𝐴. We form a new

CBox 𝒞′
as follows

𝒞′ := 𝒞 − {𝐶[𝑎 : 𝐶 ′]} ∪ {𝐶[𝑎 : ToRE(𝑎,RTA(𝐴))], ToRE(𝑎,RTA(𝐴)) ⊓ 𝐶 ′}

if ToRE(𝑎,RTA(𝐴)) is defined. If an entity 𝐴 cannot be properly identified, we report a warning.

□

Intuitively, we replace a single monolithic concept 𝐶 in 𝒞 in which a subconcept 𝐶 ′
was

identified as a representation of an 𝐴 entity by a modified variant of 𝐶 in which 𝐶 ′
has been

replaced by its referring expression. In addition we create a new CBox concept ToRE(𝑎,𝑅𝑒(𝐴))⊓
𝐶 ′

for this entity.

Note that the choice of 𝐴 above is non-deterministic, but does not affect the soundness of the

extraction. However, this non-determinism can result in different referring expressions used to

identify the same subdocument. Although beyond the scope this paper, in [7], we described a

technique that allows one to diagnose that a given RTA has anticipated any such ambiguity,

that any choice of 𝐴 must still lead to the same syntactic referring expression.
4

We refer to

such an RTA as identity resolving.

Also note that, due to the properties of referring expressions (singularity in particular) we

have (𝒯 ,ToAbox(𝒞′)) |= 𝑎 = 𝑏 for the above-introduced concepts 𝐶[𝑎 : ToRE(𝑎,RTA(𝐴))]
and [𝑏 : ToRE(𝑎,RTA(𝐴)) ⊓ 𝐶 ′] in 𝒞′

. Hence, the models of (𝒯 , 𝒞) and (𝒯 , 𝒞′) will coincide.

The second of our two rules replaces two CBox referring expressions with a single referring

expression when co-reference is implied. Note that, were the given RTA identity resolving, we

would always have 𝐷 = 𝐷′
.

Definition 11 (Equivalent Subdocument Merge). Let [𝑎 : 𝐷 ⊓ 𝐶] and [𝑏 : 𝐷′ ⊓ 𝐶 ′] be two

concepts in 𝒞 such that (𝒯 , ToAbox(𝒞)) |= 𝑎 = 𝑏. We replace 𝒞 with

𝒞′ := 𝒞 − {[𝑎 : 𝐷 ⊓ 𝐶], [𝑏 : 𝐷′ ⊓ 𝐶 ′]} ∪ {[𝑎 : 𝐷 ⊓ Simplify(𝐶 ⊓ 𝐶 ′)}. □

Our main results now follow.

Theorem 2. Let 𝒞 be a CBox in a consistent knowledge base 𝒦 = (𝒯 , 𝒞) and 𝒞′
a CBox obtained

by applying the Subdocument Extraction or the Equivalent Subdocument Merge rules. Then

every model of 𝒦 is also a model of (𝒯 , 𝒞′) and vice versa.

Strictly speaking, this is not true for (𝒯 ,ToAbox(𝒞)) and (𝒯 ,ToAbox(𝒞′)), but the models of

these two knowledge bases will only differ in what constants are assigned to what subconcepts

in 𝒞 and 𝒞′
, respectively.

Theorem 3. Let 𝒞 be an admissible CBox in a consistent knowledge base 𝒦 = (𝒯 , 𝒞) and 𝒞′
a

CBox obtained by applying the Subdocument Extraction or the Equivalent Subdocument Merge

rules. Then 𝒞′
is admissible.

4. Summary Comments

The main contribution of this paper is showing how JSON-like data sources can be abstracted

as concept descriptions in an appropriate DL in a very generic way. This enables their domain-

specific semantics to be naturally captured as a TBox in the same logic, which then allows one

to draw on mature reasoning services that have been developed for DLs [8, 4]. In addition,

our approach utilizes referring expressions [1] as the means of identifying entities described in

such data sources. This is crucial to the proposal’s ability to detect multiple subdocuments that

provide information about the same entity. Notably, this is achieved completely automatically

since the appropriate equalities will be entailed by the knowledge base consisting of a domain-

specific TBox and the data sources captured as concepts in a CBox.

Our primary technical contribution is our ability to separate entities into separate documents

and to consolidate documents that provide information about the same entity, also by appeal to

referring expressions and to entailment in the underlying DL.

4

Essentially, this entails ensuring that preference in RTA(𝐴), for any primitive concept 𝐴, exhaustively accounts

for any primitive concept 𝐵 for which there exists some interpretation ℐ for which (𝐴 ⊓𝐵)ℐ is non-empty.

4.1. Related Work

There are many papers that take as input a semi-structured document, in JSON or XML (some-

times with a schema) plus an ontology in a DL TBox, and create individual instance descriptions

in an ABox; for a survey see [9]. Usually, this is intended for just adding semantics to the

document, but reasoning could be used to detect inconsistencies, such as a situation where two

properties with disjoint domains apply to the same individual. For example, the use of XPath to

navigate XML documents and detect instances of objects belonging to certain OWL classes has

been presented in [10]. In particular, their approach and implementation, i.e., their JXML2OWL

framework, maps XML documents to existing OWL ontologies via explicit mapping rules that

use XPath. Out approach, in contrast, uses a generic mapping of JSON to concept descriptions

in a DL and then uses the full power of reasoning in the DL to capture such mappings and to

achieve a variety other goals, including detection of entities and entity-based equality between

subdocuments.

The closest to our work is a virtual OBDA architecture, where data is stored in a JSON

MongoDB repository [11]. The architecture extends the basic OBDA architecture by introducing

a relational view (an ABox) over MongoDB with respect to a set of type constraints. Rewritten

queries by the OBDA framework over the relational view are translated using a fragment of

MongoDB aggregate queries. However, as far as we are aware, functional dependencies are not

involved in identification issues, nor in separating entities into separate documents.

There is a great deal of work that attempts to synthesize schemata (in various formalisms)

from the semi-structured data [9]. However, these approaches are orthogonal to the results in

our paper.

4.2. Future work and Extensions

There are many avenues for future research:

1. Additional CBox entries generated by reified roles: in Example 2, we could also have

created additional CBox entries for (reified) phone ownership, e.g.,

HAS-PHONE ⊓ ∃ dom.phone−1.(PERSON ⊓ ∃ fname.{"John"} ⊓ ∃ lname.{"Smith"})
⊓ ∃ ran.(PHONE ⊓ ∃ dnum{"212 555-1234"}).

This, however, requires generalizing the PFD concept constructor and path descriptions

to allow for a limited use of inverse features.

2. Diagnosis via consistency and pinpointing/data cleaning: inconsistency of the knowledge

base consisting of the domain knowledge 𝒯 and the CBox ToConcept(𝑑𝑜𝑐) indicates that

either our domain knowledge does not accurately capture the properties of the documents

or that the documents themselves contain erroneous data. Axiom pinpointing [12] and

data cleaning [13] can help in this situation.

3. Set-valued properties and referring expressions: another extension relates to extending

the RTAs to allow identification to be based on set-valued properties/values. Such an

extension, however, requires extensions to the equality-generating constraints in the

underlying DL and the ToRE operation.

References

[1] A. Borgida, D. Toman, G. Weddell, On referring expressions in query answering over first

order knowledge bases, in: Proc. KR, 2016, pp. 319–328.

[2] D. Toman, G. E. Weddell, Identity resolution in ontology based data access to structured data

sources, in: A. C. Nayak, A. Sharma (Eds.), PRICAI 2019: Trends in Artificial Intelligence -

16th Pacific Rim International Conference on Artificial Intelligence, Part I, volume 11670

of Lecture Notes in Computer Science, Springer, 2019, pp. 473–485.

[3] S. McIntyre, D. Toman, G. E. Weddell, FunDL - A family of feature-based description

logics, with applications in querying structured data sources, in: Description Logic, Theory

Combination, and All That - Essays Dedicated to Franz Baader on the Occasion of His

60th Birthday, 2019, pp. 404–430.

[4] S. McIntyre, A. Borgida, D. Toman, G. E. Weddell, On limited conjunctions and partial

features in parameter-tractable feature logics, in: The Thirty-Third AAAI Conference on

Artificial Intelligence, AAAI 2019, 2019, pp. 2995–3002.

[5] J. Pound, D. Toman, G. E. Weddell, J. Wu, Query algebra and query optimization for

concept assertion retrieval, in: V. Haarslev, D. Toman, G. E. Weddell (Eds.), Proceedings

of the 23rd International Workshop on Description Logics (DL 2010), Waterloo, Ontario,

Canada, May 4-7, 2010, volume 573 of CEUR Workshop Proceedings, CEUR-WS.org, 2010.

[6] J. Pound, D. Toman, G. E. Weddell, J. Wu, An assertion retrieval algebra for object queries

over knowledge bases, in: T. Walsh (Ed.), IJCAI 2011, Proceedings of the 22nd International

Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011,

IJCAI/AAAI, 2011, pp. 1051–1056.

[7] A. Borgida, D. Toman, G. E. Weddell, On referring expressions in information systems

derived from conceptual modelling, in: I. Comyn-Wattiau, K. Tanaka, I. Song, S. Yamamoto,

M. Saeki (Eds.), Conceptual Modeling - 35th International Conference, ER 2016, Gifu, Japan,

November 14-17, 2016, Proceedings, volume 9974 of Lecture Notes in Computer Science,

2016, pp. 183–197.

[8] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider, The Description

Logic Handbook: Theory, Implementation, and Applications, Cambridge University Press,

2003.

[9] M. Hacherouf, S. N. Bahloul, C. Cruz, Transforming xml documents to owl ontologies: A

survey, Journal of Information Science 41 (2015) 242–259.

[10] T. Rodrigues, P. Rosa, J. Cardoso, Mapping xml to exiting owl ontologies, in: International

Conference WWW/Internet, Citeseer, 2006, pp. 72–77.

[11] E. Botoeva, D. Calvanese, B. Cogrel, M. Rezk, G. Xiao, OBDA beyond relational dbs: A study

for mongodb, in: M. Lenzerini, R. Peñaloza (Eds.), Proceedings of the 29th International

Workshop on Description Logics, Cape Town, South Africa, April 22-25, 2016, volume 1577

of CEUR Workshop Proceedings, CEUR-WS.org, 2016.

[12] R. Peñaloza, Axiom pinpointing, in: G. Cota, M. Daquino, G. L. Pozzato (Eds.), Applications

and Practices in Ontology Design, Extraction, and Reasoning, volume 49 of Studies on the

Semantic Web, IOS Press, 2020, pp. 162–177.

[13] I. F. Ilyas, X. Chu, Data Cleaning, ACM, 2019. URL: https://doi.org/10.1145/3310205. doi:10.
1145/3310205.

https://doi.org/10.1145/3310205
http://dx.doi.org/10.1145/3310205
http://dx.doi.org/10.1145/3310205

	1 Introduction and Motivation
	2 Definitions and Background
	3 CBox Normalization
	3.1 CBox Admissibility
	3.2 CBox Normalization Rules

	4 Summary Comments
	4.1 Related Work
	4.2 Future work and Extensions

