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Abstract  
Image classification in the domain of cultural heritage becomes extremely important with the 
development of digitisation practices. This study aims to analyze how classification 
performance on the small dataset representing cultural heritage changes depending on the 
feature extraction method. The dataset comprised of 150 images belonging to three classes: (i) 
archaeological sites, (ii) frescoes, and (iii) monasteries. Five transfer learning architectures 
were used to extract the features from images, while classification was per-formed using four 
traditional machine learning algorithms, mainly Random forest, Naïve Bayes, Decision tree, 
and Multilayer perceptron classifier. The results suggest that Random forest and Multilayer 
perceptron are the most suitable algorithms for classification of cultural heritage images, 
especially when used in combination with the DenseNet121 pre-trained architecture. Naïve 
Bayes also performed well, with a maximum accuracy of 100% obtained when features are 
extracted using EfficientNetB0. However, the Decision tree algorithm reached only moderate 
performance.   
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1. Introduction 

Preservation of cultural heritage remains one of the most important tasks in the era of digitisation. 
In general, cultural heritage can be classified into tangible or physical (such as buildings, monuments, 
archaeological remains, art works, artifacts) and intangible (such as traditions, language, rituals, skills, 
folklore). As cultural heritage represents values, traditions, and beliefs of national identity, it shapes 
future generations and creates a strong bond to their history and surroundings. Since cultural heritage 
can easily be damaged and destroyed, it is essential to find adequate ways to restore and preserve it.  

Digital technologies play a vital role for the preservation and restauration of cultural heritage. 
Recently, the use of Machine Learning (ML) techniques has proven to be an appropriate way to deal 
with preservation of cultural heritage. However, such use does not come without barriers. Major 
problems in this domain are the quality and size of datasets [1]. To tackle the dataset size problem, 
transfer learning architectures can be utilized where deep convolutional neural networks (CNNs) are 
trained on very large image datasets, and then applied on smaller data, while ML-based approaches are 
frequently used to enhance heritage objects using image reconstruction approaches [2, 3, 4].  

Recent contributions of classification techniques in the domain of cultural heritage include the use 
of the multilayer perceptron (MLP), averaged one dependence estimators, forest by penalizing 
attributes, and k-nearest neighbor rough sets and analogy-based reasoning for classification of altar, 
gargoyle, dome, column, and vault images [5], and the performance was compared to the CNN. Feature 
extraction using VGG16 and classification using Random forest (RF) were performed in [6] with the 
aim to classify Batik types. Multiple linear regression and fuzzy inference models were used to predict 
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the life of built cultural heritage in [7], while logistic regression approach was compared to maximal 
entropy for predictive modeling of archaeological site locations in [8]. Chronological classification of 
ancient painting was performed in [9] using the Support Vector Machine (SVM) classifier.  

Although traditional ML approaches proved to be accurate in classification of cultural heritage, more 
recent approaches are focused on deep learning, and specifically transfer learning. One of the major 
advantages of these approaches lies in the fact that extraction of features from the images is performed 
automatically, however, the selection of network configuration is more complex. In addition, deep 
learning approaches usually require large datasets to learn from, so transfer learning approaches were 
developed to reduce the computational efforts. Some of the recent contributions of deep learning and 
transfer learning approaches for cultural heritage include classification of Indian heritage sites using 
MobileNetV2 architecture [10], multimodal classification of cultural datasets [11], classification of four 
cultural heritage sites, mainly Baalshamin, Temple of Bel, Tetrapylon, and Roman theatre at Palmyra, 
using Support Vector Machine (SVM) algorithm, transfer learning based on AlexNet architecture, cloud 
vision approach, and full CNN [12]. Classification of architectural heritage has been performed in [13] 
using deep learning networks AlexNet, InceptionV3, ResNet, and Inception-ResNet-v2, while in [14] 
a CNN model from scratch was trained on the same dataset with good performance. The comparison of 
pre-trained CNN networks for cultural heritage image classification has been done in [15, 16], while in 
[17] the authors compared the performance of ResNet-18 and custom CNN with SVM and RF used as 
classifiers of Iberian Ceramics. However, to the author’s knowledge, no studies aimed to compare the 
performance of several ML algorithms when different pre-trained architectures are used for feature 
extraction.  

Hence, the aim of this paper is to compare the performance of four traditional ML algorithms when 
feature extraction is performed using five pre-trained architectures: (i) MobileNet, (ii) InceptionV3, (iii) 
Xception, (iv) EfficientNetB0, and (v) DenseNet121. When discussing performance, the focus of this 
study will be on small sets of data, which are by nature harder to classify correctly, as complex models 
usually require more data to accurately learn from it.  

This paper is structured as follows. Section 2 presents the data and describes the methodology, while 
Section 3 discusses the obtained results. Section 4 presents the conclusions. 

2. Data and methodology 
2.1. Data 

The dataset used in this study was first introduced in [18] where the aim was to compare the 
performances of decision tree classifiers. Here, however, the aim is to observe to what extent the 
classification performance changes depending on the pre-trained architectures that are used to extract 
features from images.  

The dataset consists of 150 color images obtained from Google Images and Flickr, belonging to 
three classes: (i) archaeological sites, (ii) frescoes, and (iii) monasteries. All images are of size 150x150 
pixels. Samples of images from each class are shown in Fig. 1. The dataset was divided into training 
and test sets, where 35 images per class were used for training and 15 images per class were used for 
testing the models. 

 
Figure 1: Example of images from the dataset – (a) archaeological site, (b) fresco, (c) monastery 

 



2.2. Methodology 

The methodology used in this study consists of several steps. First, pre-trained architectures are used 
to extract features from the images. The features are then normalized, after which the classification is 
performed using traditional ML algorithms. Finally, the performance of each model is evaluated.   

2.2.1. Pre-trained architectures  

In this study, five transfer learning architectures were used for feature extraction, namely MobileNet, 
DenseNet121, Xception, InceptionV3, and EfficientNetB0. The loaded weights were pre-trained on 
ImageNet.  

The main strategy behind MobileNet is that it is built using depthwise separable convolutions. It 
consists of 28 layers, where all layers are followed by batch normalization and use the ReLU function, 
except for the last fully connected layer which uses a softmax function [19].  

DenseNet121 is a pre-trained architecture consisting of 120 convolutional layers, four average 
pooling layers, and one fully connected layer. DenseNet is very similar to ResNet, with the main 
difference being the concatenation of the output feature maps with the inputs [20].  

InceptionV3 is a deep learning architecture that applies convolutional transformations and max-
pooling to each layer, and then concatenates these results into an output. InceptionV3 consists of 42 
layers.  

Xception is a deep convolutional neural network architecture that is based on depthwise separable 
convolution layers [21]. It is an extension of the Inception architecture, but instead of the Inception 
modules, it uses depthwise separable convolutions. The Xception architecture is 71 layers deep and 
consist of 36 convolutional layers.   

EfficientNetB0 is a convolutional deep neural network that was developed in an attempt to answer 
the question if there is a way to scale up ConvNets in order to obtain better accuracy and efficiency 
[22]. This was possible by increasing the network depth, channel width, and image resolution, as the 
authors proposed [22]. EfficientNetB0 is 237 layers deep. 

2.2.2. ML algorithms   

Classification was performed using four ML algorithms, in particular RF, Multilayer Perceptron 
classifier (MLPC), Naïve Bayes, and Decision tree.  

RF is an ensemble machine learning algorithm that is based on bootstrap aggregation. This algorithm 
constructs a number of decision trees that work as an ensemble where each tree predicts a class, and the 
prediction outcome will be the class with most votes [23]. The working process of RF classification 
starts by randomly selecting samples from the training set, constructing decision trees for each sample, 
generating an output for each decision tree, and finally selecting the most voted outcome.  

MLP is a feedforward neural network-based algorithm that consists of an input layer, one or more 
hidden layers, and an output layer. The algorithm works by assigning weights to the inputs in a neuron, 
summing those weights and passing them through an activation function, and then propagate the results 
to the next layer, until it reaches the output layer. The error between the expected and real output is then 
calculated and backpropagated through the network, with the aim to minimize the cost function.  

Naïve Bayes classifier is based on Bayes’ theorem, and it assumes strong independence, meaning 
that each feature is not affected by other features. The algorithm works by first calculating prior 
probabilities for each class, then calculating the likelihood probability, and finally calculating the 
posterior probabilities for each class. The prediction outcome will be the class with the highest 
conditional probability.   

Decision tree algorithm is a supervised learning approach that uses a tree-structured classifier to 
perform classification. Decision trees consist of nodes and branches, mainly the root node which 
represents the dataset, branches which represent the decision rules, and leaf nodes that represent the 
outcome.  



Model configuration is the same for each algorithm. RF model consisted of 70 trees in the forest, 
and the quality of the split was measured using Gini impurity. Naïve Bayes and Decision tree used 
default configuration as described in the scikit documentation [24], while MLPC consisted of three 
hidden layers with 150, 100, and 50 neurons, respectively, with rectified linear unit (ReLU) activation 
function, and stochastic gradient-based optimizer, i.e. Adam. The maximum number of iterations was 
set to 300, the L2 regularization term was set to 0.0001, while the learning rate was set to 0.001.  

2.2.3. Performance evaluation 

Performance evaluation for each model was done using widely known metrics – precision, recall, 
F1-score, and accuracy.  

Precision is the ratio of true positive cases (TP) to the total predicted positive cases (which is the 
sum of TP and false positive cases (FP)), and can be calculated as:  

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (1) 

Recall is the ratio of correctly predicted positive cases to all cases in the positive class. Recall is 
calculated by dividing the number of true positives (TP) to the sum of TP and false negative (FN) cases, 
as in:  

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (2) 

F1-score represents the harmonic mean of precision and recall, and can be calculated as:  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃 ∗ 𝑅
𝑃 + 𝑅

. (3) 

Finally, accuracy is calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
. (4) 

 

3. Results and discussion  

While feature extraction was performed using the pre-trained architectures, classification was done 
using the traditional ML models. The smallest differences in performance between different pre-trained 
architectures were observed for RF where for features extracted using MobileNet, DenseNet121, 
Xception, and EfficientNetB0 the obtained accuracies are 97.78%, while for InceptionV3 the accuracy 
was lower – 88.89%. For features extracted using DenseNet121 and InceptionV3, the MLPC obtained 
a 100% accuracy, while for the EfficientNetB0, MobileNet, and Xception, the accuracies were 97.78%, 
91.11% and 86.67%, respectively. On the contrary, Naïve Bayes and Decision tree obtained the lowest 
performance in terms of accuracy. When feature extraction was performed using EfficientNetB0, the 
Naïve Bayes obtained a 100% accuracy, however for other pre-trained architectures the accuracies 
range from 53.33% (InceptionV3) to 95.56% (MobileNet). Considering classification using the 
Decision tree, the highest accuracy was obtained when features are extracted using DenseNet121 and 
Xception (82.22%), while for other pre-trained architectures, the accuracies range from 73.33% 
(MobileNet and InceptionV3) to 75.56% (EfficientNetB0). These results are presented in Table 1. 

It is interesting to observe which classes the models confuse the most. When DenseNet121 was used 
for feature extraction, it can be seen that RF misclassified only one image of archaeological site as 
fresco, while Naïve Bayes classified 10 images of frescoes as archaeological sites, and six images of 
frescos as monastery. The decision tree misclassified five images of archaeological sites as fresco, and 
three images of archaeological site as monastery (Figure 2). Hence, MLPC was found to be the most 
successful in classifying images of cultural heritage when using the DenseNet121 architecture for 
feature extraction.  

 
 
 

 



Table 1 
Model accuracies  

Pre-trained 
architecture 

Metric RF MLPC Naïve Bayes Decision tree 

Mobile Net Accuracy 97.78 91.11 95.56 73.33 
 Precision 0.98 0.91 0.96 0.73 
 Recall 0.98 0.93 0.96 0.76 
 F1-score 0.98 0.91 0.96 0.74 

DenseNet121 Accuracy 97.78 100 64.44 82.22 
 Precision 0.98 1.00 0.64 0.82 
 Recall 0.98 1.00 0.83 0.88 
 F1-score 0.98 1.00 0.63 0.82 

Xception Accuracy 97.78 86.67 84.44 82.22 
 Precision 0.98 0.87 0.84 0.82 
 Recall 0.98 0.90 0.89 0.83 
 F1-score 0.98 0.87 0.84 0.81 

InceptionV3 Accuracy 88.89 100 53.33 73.33 
 Precision 0.89 1.00 0.53 0.73 
 Recall 0.91 1.00 0.77 0.76 
 F1-score 0.89 1.00 0.49 0.73 

EfficientNetB0 Accuracy 97.78 97.78 100 75.56 
 Precision 0.98 0.98 1.00 0.76 
 Recall 0.98 0.98 1.00 0.76 
 F1-score 0.98 0.98 1.00 0.76 

Note: Macro average values of precision, recall, and F1-score are shown. Macro average values are 
calculated as the arithmetic mean of individual classes' scores. 

 

 
 
Figure 2: Confusion matrices obtained from traditional ML classification when DenseNet121 

architecture was used for feature extraction  
 
Considering the EfficientNetB0 architecture, Naïve Bayes correctly classified all the images from 

test set, while RF incorrectly classified only one image belonging to the class of archaeological sites as 



monastery, and MLPC incorrectly classified one image of fresco as archaeological site. However, the 
Decision tree incorrectly classified three images belonging to the fresco class as archaeological sites, 
one image of monastery as archaeological site, three images of archaeological sites as fresco, one image 
of monastery as fresco, and three images of archaeological sites as monastery (Figure 3). 

 

 
Figure 3: Confusion matrices obtained from traditional ML classification when EfficientNetB0 
architecture was used for feature extraction. 

 
When using the InceptionV3 architecture, the best performing model is MLPC as it classified all 

images from the test set correctly. RF incorrectly classified four images of archaeological sites as fresco, 
and one image of monastery as archaeological site. Furthermore, the decision tree algorithm 
misclassified two images of archaeological sites as frescoes, three images of frescoes as archaeological 
sites, five images of frescoes as monastery, and two images of monasteries as archaeological sites. 
Finally, the Naïve Bayes misclassified one image of archaeological sites as fresco, seven images of 
frescoes as archaeological site, and 13 images of fresco as monastery. Hence, MLPC is clearly the best 
choice when using InceptionV3 architecture for feature extraction, while Naïve Bayes is the worst 
choice as it misclassified most images belonging to classes archaeological sites and monasteries (Figure 
4). 

Classification of features extracted using the MobileNet architecture obtained good results for most 
models. In particular, RF misclassified only one image of archaeological site as fresco, and Naïve Bayes 
incorrectly classified one image of fresco as archaeological site, and one image of fresco as monastery. 
MLPC misclassified one image of monastery as archaeological site, and three images of monastery as 
fresco. Finally, the decision tree algorithm misclassified one image of fresco as archaeological site, 
three images of monastery as archaeological site, six images of fresco as monastery, and two images of 
monastery as fresco (Figure 5). 

When using the Xception architecture, all models misclassified at least one image from the test set. 
RF misclassified one image of fresco as archaeological site, while MLPC misclassified three images of 
monastery as archaeological site, and three images of monastery as fresco. The Naïve Bayes incorrectly 
classified six images of fresco as archaeological site, and one image of fresco as monastery. Finally, 
the decision tree incorrectly classified one image of archaeological site as fresco, three images of fresco 
as archaeological site, three images of monastery as archaeological site, and one image of monastery as 
fresco (Figure 6). 

 
 



 
 

Figure 4: Confusion matrices obtained from traditional ML classification when InceptionV3 
architecture was used for feature extraction. 

 
 

 
 

Figure 5: Confusion matrices obtained from traditional ML classification when MobileNet architecture 
was used for feature extraction. 

 



 
Figure 6: Confusion matrices obtained from traditional ML classification when Xception architecture 
was used for feature extraction. 

 
These findings suggest the following. The RF algorithm obtained the best results when feature 

extraction was performed using MobileNet, DenseNet121, Xception, or EfficientNetB0. For these four 
pre-trained architectures, RF reached the same value of accuracy, precision, recall, and F1-score of 
0.98. For MLPC, the highest values of performance metrics were obtained when features were extracted 
using DenseNet121 and InceptionV3 architectures. On the contrary, features extracted using Xception 
architecture and classified using the MLPC obtained accuracy of 87%. Naive Bayes obtained the highest 
accuracy of 100% when EfficientNetB0 architecture was used for feature extraction. However, when 
feature extraction was performed using the InceptionV3, the accuracy of Naive Bayes classification 
was only slightly above 50, i.e. 53.33%. Finally, considering the Decision tree, this algorithm performed 
the best when features were extracted using DenseNet121 and Xception architectures with accuracies 
of 82.22%. However, when using MobileNet, InceptionV3 and EfficientNetB0 architectures, 
performance is slightly weaker. 

In terms of misclassified samples, the results show that in most cases the RF model misclassified 
the images of archaeological sites as fresco, suggesting that this algorithm is not capable to completely 
differentiate between the features that represent these classes. The Naive Bayes, on the other hand, 
frequently confused images of frescoes, classifying these as monastery or archaeological site. 
Furthermore, the MLPC made only several incorrect classifications, where it incorrectly classified 
images of monastery as archaeological site or as fresco. Finally, the decision tree was not able to 
successfully differentiate between the classes, as it made incorrect classifications in each class. Based 
on the above results, it can be concluded that RF and MLPC are the most suitable algorithms for 
classification of cultural heritage images when pre-trained architectures are used for feature extraction.  

Comparing the obtained results to the results in [18], it can be concluded that using transfer learning 
approaches for feature extraction improves the performance of classification on small sets containing 
images of cultural heritage. In terms of precision, recall, and F1-score, the performance of RF in [18] 
reached 0.93, while in this study, when using transfer learning for feature extraction, the RF algorithm 
obtained precision, recall, and F1-score of 0.98 for four out of five pre-trained architectures. This is a 
significant improvement that confirms the suitability of transfer learning approaches for feature 
extraction.   

 
 



4. Conclusion 

This study was aimed at observing the differences in classification performance of traditional ML 
algorithms on a small set of cultural heritage images whose features were extracted using five pre-
trained deep learning architectures. The dataset used in this study consists of only 150 cultural heritage 
images belonging to three classes (50 images per class). Feature extraction was performed using 
MobileNet, Dense-Net121, EfficientNetB0, InceptionV3, and Xception architectures, while 
classification was done using RF, Decision tree, MLPC, and Naïve Bayes algorithms.  

The results suggest that the best performance was reached using RF, as well as MLPC algorithms, 
especially when the extraction of features was made using the DenseNet121 architecture. Although the 
differences in performance of RF and MLPC algorithms between the pre-trained architectures are not 
very extreme, the results of this study confirm the importance of a careful selection of feature extraction 
method. Finally, it should be noted that the decision tree obtained the lowest performance, with the 
differences between the pre-trained architectures ranging between 73.33% and 82.22% accuracy. 
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