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Abstract  
Human Action Recognition or HAR is still a challenging problem that has been surrounded 

by various studies and experiments in the last decade. Due to the approach of deep learning 

techniques such as CNNs, it has become possible to improve the performance of HAR 

systems over traditional method. CNNs have been widely used in the analysis of image and 

when comes to LSTM networks, these networks work as a better version when prediction and 

analysis of sequence of data is involved but when we combine both of them, we get the best 

versions of both CNNs [7], LSTM [8]. So that difficult computer vision problems like video 

classification can be solved. Here we train and test the deep learning models ConvLSTM and 

LRCN using the dataset UCF50 - Action Recognition Dataset. In which UCF50 dataset 

consists of 50 action categories and each category grouped of 25 videos per action. Where 

ConvLSTM uses the concept similar to the LSTM [9] approach that which uses result 

processing and its computation simultaneously. Whereas LRCN is combination of 

convolution and LSTM layers that were mounted in single model. We find the accuracy of 

both ConvLSTM and LRCN models. The best model out of above two mentioned models 

that which is considered based on highest accuracy among both and is taken to test the 

accuracy model on YouTube videos to predict the human action that which is performed.  
 

Keywords  1 
HAR, CNNs, LSTM, ConvLSTM, UCF50 dataset, 50 actions, 25 videos per action, LRCN, 

accuracy, YouTube videos. 

1. Introduction 

Recognition of human activities from various sources like recorded videos, real time cameras start 

from various    image processing technics. If we need to understand what exactly an image consists, 

we just input this image to an image classifier or to a pre-trained deep neural network. Just like that, 

videos are also a collection of frames or image. So, recognition of an activity on a video or real time 

camera is just analyzing all the collected frames, using an image classifier at each frame.  And 

labeling the output. One on each frame and finally deciding most frequently occurred label among the 

frames as output. So, this is one of the tradition approaches for recognizing human activity from a 

sequence of data that which involved in videos. But this approach may not be correct all the time 

because this traditional approach is not effective at the same time it doesn’t considers all the aspects 

that involved in the video. For example, if in the sequence of collected frames has jumping but most 

probably involves standing, Since by Using above mention traditional approach provides standing 

action as output. But it actually has jumping activity. So, in such cases this approach fails to give 

accurate results. 

 

Another approach for recognition of human activity is using CNN which comes under deep neural 

network. Generally, CNN works by taking an image and generating feature maps, which are 

 
WINS-2022: Workshop on Intelligent Systems, April 22 – 24, 2022, Chennai, India. 

EMAIL: 188w1a0573@vrsiddhartha.ac.in (Rahul Darelli) 
ORCID: 0000-0001-9697-1220 (Rahul Darelli) 

 

©️  2022 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 

CEUR Workshop Proceedings (CEUR-WS.org) 

 

https://www.crcv.ucf.edu/data/UCF50.php


14 

 

representations of a certain feature or location in the image. As the network gets deeper, the number 

of feature maps gets increased. However, the disadvantage of this approach expensive at the same 

time its computation is very slow. Since working on videos involves sequenced data, the best method 

when comes to this type of data LSTM is a best approach. Here the limitation is that we ignore all the 

data other than land markings. 

 

So, when we combine both CNN and LSTM results in better accuracy for recognizing activities of 

human. Using this approach, we will be able extracting spatial features from a video sequence and 

then identifying temporal relations between frames. And this way of combining CNN and LSTM is 

called LRCN approach. The proposed model LRCM achieved an accuracy of 92.62%. Whereas 

ConvLSTM model achieved an accuracy of 80.33%. On comparing both LRCN achieved more 

accuracy, so we use LRCM model on YouTube videos to recognize involved activities of humans. 

We use pafy [15] library to download videos on colab that which only requires URL of YouTube 

videos. 

2. Literature Survey 

T. Liu, Y. Song, Y. Gu and A. Li [1] proposed a methodology for activity recognition basing on 

humans using Microsoft Kinect sensors, Hidden Markov Models (HMMs), and k-means clustering. 

The method mainly contains two modules training the actions using above mentioned model and 

identify actions using sensors. In training the action module, the first depth image is taken as input 

and the skeleton information is derived and features are extracted, as in the frames have frequently 

having similar coordinates, so to divide them into 50 frames and to convert them into clusters they 

used k-means clustering algorithm   and secondly, they created HMM model with three hidden layers. 

Next, in the human recognition model again the same process of action learning is repeated up to 

frames extraction then clusters assignment is done and an observation sequence is produced. And 

action recognized is given as output. This study is done on seven actions like movementing hands in 

upwards and downwards directions, pushing forward and circle construction in both clockwise and 

counter anti clockwise. They did this approach by inspiring from high accuracy in posture and gesture 

recognition by Kinect as it innovatively separates an action into several clusters for recognition. And 

this method has achieved an accuracy of 91.4%. 

 

Kamel, B. Sheng, P. Yang, P. Li, R. Shen, and D. D. Feng [2] proposed two types of data sequence 

that are used as the inputs. And they are Joint posture sequence and Depth map sequence.  After they 

are transformed to the descriptor, the descriptor used for body posture is MJD and for depth map is 

DMI. Next, preprocessing of the input is done. And three CNN models are trained with three different 

channels (Ch1, Ch2, and Ch3) and they are tested with different inputs. In three one CNN channel is 

trained for Depth map images, another one is trained with joint postures and another one is trained 

with both joint posture and depth map images. Using score fusion operation all the outputs are fused 

and the final action is classified. 

 

N. Jaouedi, N. Boujnah, O. Htiwich, and M. S. Bouhlel [3] mainly concentrated on behavior 

analysis on humans from recorded one’s that is from camera or any other electronic source and they 

also focused on actions in the background like fast walking, and sudden movement. This model was 

mainly designed for predicting behavior on humans through their movement analysis. In this study, 

they explained human action recognition by using the K Nearest Neighbors approach. In this study, 

they used GMM model or Gaussian Mixture Model which generally used for data analysis. GMM is a 

mainly focus on areas which the current state pixel changes from previous state in a sequence of 

collections of frames. The proposed algorithm run on each frame image converts into binary images 

for better performance. For this they deleclared 0 for black to to their background and 1 for white 

background. Kalman Filter method is used for moving human tracking. And these filters are used in 

two phases frequently, the two phases are prediction and correction. In the prediction phase, it 

calculates the current state by using the information of previous state. The main agenda of this study 

is to get an efficient output. At last, classification is done using the KNN method and achieved a rate 
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of 71.1%. 

 

Q. Xiao and Y. Si [4], they used a deep neural network model which uses autoencoder, PRNN or 

pattern recognition neural network to predict action performed by human beings. They used two 

approaches a learning stage system and an action recognition stage. In the learning stage system, they 

build a binary frame for each frame by drawing the outlines of human body outlines and then join all 

the frames. And these they used these frames to train their model. In another approach, they used 

autoencoder to train the model to predict characteristics of actions. After these two approaches they 

train the PRNN model using unsupervised learning technic.  In the end, they merge the autoencoder 

followed by PRNN model named as APRNN. To calculate the APRNN’s performance they used 

Weizmann motion data which consists of 93 different action recognition recorded clips with 10 

motion semantics. For achieving better performance, they used fine-tuning. 

 

Y. Ji, Y. Yang, F. Shen, H. T. Shen and X. Li [5], mainly studied on the analysis of human actions 

in robotic platforms. They consider the various steps involved in the recognition and prediction of 

human actions. In this paper divided the human action recognition field into three main categories: 

hand gesture-based HRI, body action-based HRI, and multi-modal fusion. They discussed the various 

platforms and datasets that are commonly used in the field of HRI. They also discussed the various 

challenges and opportunities in the field of action analysis for human recognition. They concluded 

that in the future, data should be built to address the storage problems related to data. 

 

For 3D action recognition, the authors. L. Wang, D. Q. Huynh and P. Koniusz [6] proposed a total 

of ten Kinect-based algorithms that are used on six datasets. These algorithms are for cross-view and 

cross-subject detection. And the algorithms used by them are   HON4D, HDG, LARP-SO, HOPC, 

SCK+DCK, P-LSTM, HPM+TM, clips+CNN+MTLN, indRNN, and ST-GCN. A 3D action analysis 

was also done to compare the results of cross-object and cross-view action recognition. It was 

concluded that depth-based action recognition techniques are better at recognizing objects with 

greater details.They performed an extensive evaluation of the HDG representation with various 

variants of the descriptor types. They also introduced four variants of the P-LSTM framework. 

3. Planned Procedure 

The main objective is to develop a ConvLSTM and LRCN model at the same time to predict the 

accuracy of both the models. And is to perform activity prediction on YouTube videos using the 

LRCN model. 

 

As the proposed model ConvLSTM [11] achieved an accuracy of 80.33% and LRCN achieved 

92.62%. Since we are considering highest accuracy LRCN is best among both. We test LRCN model 

on YouTube videos. 
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Figure 1: Proposed Architecture  

 

Above mentioned diagram is about our proposed architecture. Our proposed work involves 4 

modules and they are preprocessing the dataset, Divide the structured dataset into training and testing 

set, implementing ConvLSTM, implementing LSTM, to test accurate model on YouTube videos. 

3.1. Module - 1 Pre-Processing the Dataset  

Data pre-processing is a process of extraction use full information from collected raw data. To 

perform data pre-processing, initially we must choose a relevant raw data. The   raw data we chose is 

UCF50- which consists raw data of different activities.  

 

In which our data set consists of 50 activity categories. In each category there are 25 videos. And 

on average our dataset has 133 videos per each action category. On an average each video has 199 

frames. Average frames per width is 320 and height is 240. Averagely there are 26 frames per second 

for each video. For testing, we only selected 20 random categories. The first frame of the selected 

video is represented by its associated labels. This method will allow us to identify the first 20 random 

videos in the dataset. Now, we perform some pre-training on the dataset. This process involves 2 

steps. First step is to create a extract_frames() function. And the second step is to create 

dataset_creation() function. 

 

In the first step, extract_frames () function is created to extract the frames and extracted frames are 

resized into 255 pixels. And the normalization of frames is done. That is unwanted frames that which 

doesn’t contains any information of activity are removed. And finally, this function returns useful 

frames. Then after we set frame width and height to 64 x 64 pixels which is a general format for any 

pre-processing technic. And Sequence length is set to 20 which we will use as default case in entire 

project. 

 

In the second step, a dataset_creation () function is created. In which this method involves 

mapping of features, labels and video path for each category of video that we selected above. For 

skipping the frames, we use the following formula. 
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Formula:  skip_f = max(int(v_f_c/S_L), 1) 

 

Where, v_f_c represents count of video frames  

S_L represents sequence length i.e., S_L = 20. 

 

Since, our dataset UCF50 [10] consists of on average 199 frames per video so we chose sequence 

length as 20. How our concept skipping the frames works is like if there are 199 frames in video then 

199/20 i.e., 9.95~10 that is we skip every 10th frame from the sequence of frames from the video. 

Finally, we convert different classes of encoded indexes to one-hot. For this we use keras’s which is a 

built-in library in python.   

 

 
Figure 2: Dataset Information 

3.2. Module - 2 divide the structured data-set into training and testing set 

Before training and testing [12] of our proposed models first we need to divide our constructed 

structured dataset into training dataset and testing dataset. The most important requirements for 

splitting of data are features and one_hot_encoded_labels on categorical data. So, with the help of 

these requirements we divide the dataset into 75% as training dataset and 25% as testing dataset. To 

avoid any kind of bias we rearrange the dataset by putting shuffle = True. And also, we set 

random_state to 27. We split the dataset using sklearn library in python. Where training and testing 

dataset is used on both the models ConvLSTM and LRCN models.  

3.3. Module - 3 Implementing convLSTM approach 

In this module, we introduce the concept of ConvLSTM cells. They are typically an integral part 

of an LSTM network that can be used to identify spatial features of the data. 
 

 
Figure 3: ConvLSTM Architecture 
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This method is useful for video classification as it captures the spatial relation between the various 

frames. It can also take in 3D input, which is different from the usual approach for modeling Spatio-

temporal data. 

 

Step – 1: We construct our model by using Keras ConvLSTM2d recurrent layers. The layers are 

inputted to the Dense layer, which predicts and match the output to its associated activity. 

MaxPooling3D [14] layers are used to minimize the number of frames and prevent overfitting the 

model. Here we focus on limited data thus we do not require a larger capability model. 

 

While constructing this ConvLSTM [11] model we use 4 filters for initial layer and then go on 

increase the filters layer by layer i.e., in the second layer we increase to 8 filters. In the third layer we 

go on increase to 14 filters and in the 4th layer we give 18 filters to the model. In each layer we 

commonly set kernel_size to (3,3). And we set activation layer as tanh, format of data to channels last, 

2% is set as dropout for each state, we enable sequence to be returned at each state. After adding each 

layer, we do maxpooling3D [14] to minimize the number of frames. Below figure is the summary of 

our model ConvLSTM. 

 

 
Figure 3: Summary of ConvLSTM model 

 

The created ConvLSTM model has a total of 44,524 parameters and Trainable parameters are 

44,524. And there are zero non trainable parameters. Below figure contains detailed layers 

information of ConvLSTM model. 
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Figure 4: Layers of ConvLSTM2D 

 

Step – 2: After constructing the model now we need to train the model. Initially we Create an 

Instance for Early Stopping_Callback(). And then we test our model accuracy by considering loss 

percentage and another parameter. And then we start training the model. During the training of the 

model, we set maximum length of batch to 4, before training we randomize our data- set. Below is the 

summary of trained model ConvLSTM. 

 

 
Figure 5: Summary of training 

 

Step – 3: After the training we test the model using 25% test dataset. The evaluation of trained 

model as follows. 

 

 
Figure 6: Evaluation on trained model 
 

Finally using ConvLSTM we got an accuracy of 80.33% on test dataset. 
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3.4. Module - 4 LRCN approach 

Step – 1, In this module we merge the CNN and the LSTM layers as a single unit. Form extracted 

frames to generate feature map we use CNN model. The combination of both LSTM and LRCN uses 

CNN and LST in order to perform in the most effective manner. It learns spatiotemporal features 

through end-to-end training. 

 
Figure 7: LRCN Architecture 

 

Above mention fig.7 is the architecture diagram of LRCN model. Here, we implement the LRCN 

architecture by using time-distributed Conv2D [13] layers. The Conv2D layer is merged with LSTM 

layer. The next step is the Flatten layer, which will flatten the Conv2D feature. Here we used 

sequential model for constructing our model. Initially we add Time Distributed Convolution2D layer 

to our model and then we set 16 filters for initial layer and on consecutive layers we going on 

increasing filters to 32, 64, 64. Activation is set to relu. And at each layer we perform maxpooling 2d 

in order to removed unwanted frames, and also, we done dropout which helps our model to ignore 

randomly selected neurons. After adding these layers, we add Flatten layer to input to the next layer. 

And then after we add LSTM layer. And in the end, we add dense layer to collect all the inputs from 

the previous layers.  Below figure is the summary of our proposed LSTM model. 

 

 
Figure 8: Summary of LRCN Model 
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Our proposed model LRCN has a total of 73,060 Trainable parameters. And has zero non-

Trainable parameters. Out of them a total of 60,512 CNN parameters and 9548 LSTM parameters. On 

plotting our model, we got below results. 

 

 
Figure 9: Layers of LRCN Model 

 

Step – 2: After constructing our LRCN model we then train our LRCN model using 75% of train 

dataset of UCF50 dataset. For this we initially create instance for Early Stopping Callback. And then 

we compile and test the LRCN model using some loss factor and another parameter. We test our 

model by setting epochs to 70, batch_size to 4, shuffling of test dataset to true. Below is the accuracy 

summary on test dataset on LRCN model. 

 

 
Figure 10: Accuracy summary on Test data-set 

 

The highest accuracy we got among the test dataset is 97.26% accuracy. Which is better than 

ConvLSTM. Below is the evaluation of LRCN model on 25% of test dataset. 

 

 
Figure 11: Evaluation on LRCN Model  

 

We got 92.62 accuracy by evaluating our LRCN model on test dataset. Since the accuracy of 

ConvLSTM is 80.33% and LRCN is 92.62. So, basing on highest accuracy i.e., 92.62% among both, 

we chose LRCN model to test on YouTube videos.  
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3.5. Module - 5 to test LRCN module on YouTube videos 

Step – 1:  In this module initial step is to implement the LRCN model to test TaiChi and horse 

racing acitives from the source YouTube. We create a function that which used for downloading 

selected the videos from YouTube. Another function that will be created will predict the video frame's 

path and save the results. We download YouTube videos using pafy library. Below is the function for 

downloading any YouTube video. We just need give the URL of video. 

 

 
Figure 12: Function for Downloading YouTube Video 

 

 Step – 2: In the second step we create a function that performs recognition on selected videos. 

This function predict_single_action () method takes URL of video, sequence length which we set 20 

at initial stage as inputs. This method divides specified video by download using above mentioned 

download function into frames in order to predict the action. And we perform pre-processing technics 

on those frames. And finally, we give these pre-processed frames to our LRCN model to predict 

action recognition on given video. 

4. Results and Analysis 

Our proposed model LRCN gave an accuracy of 97.0059% to selected YouTube video. The 

Human Action that involved in our selected videos are one video it involves horse racing and another 

video it has TaiChi – which a involves a series of physical exercises and stretches. Our model LRCN 

on these YouTube videos recognized successfully with the accuracy of 97.0059. 

 

 
Figure 13: Accuracy of LRCN Model 

 

Above figure is about the accuracy of our model LRCN achieved i.e.97.0059%. 

4.1. Results of action prediction on YouTube videos as follows 

a. Horse Race  



23 

 

 
Figure 14.1: Horse-race Prediction 

 

 
Figure 14.2: Horse-race Prediction 
 

Our model successfully predicted HorseRace Action successfully. 

 

b. TaiChi Human Action Prediction 

 

 
Figure 15.1: Taichi Human Action Prediction in 26th second 
 

 
Figure 15.2: Taichi Human Action Prediction in 31st second 
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Our Model Successfully predicted Taichi Huma Action Prediction using LRCN model. 

5. Conclusion and Future Work 

Human Action Recognition is often used in the development of surveillance systems and other 

systems designed for the elderly. It can help individuals with learning and memory loss. The agenda 

of our study is to develop an assistive technology system that which will allow our work to help 

elderly individuals to live a more connected life with an efficient way. As every human being on earth 

have a desire to live forever. But living by human earth is maximized to 100 years. Yet they live more 

than that they lose their memory and forget how to do all other human activities. So, for such desired 

persons we can implement our concept of action recognition. So that if we know what they have to 

done like walking, running, then we can use this system to predict and perform those activities that 

elderly person wishes to do. Not for elderly persons we implement this concept to who lose memory 

or who are not able to perform their activities. 
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