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Abstract
When studying human color perception using displays, accurate and reproducible presentation of color
stimuli is paramount, which requires color characterization of the display. Often simple (non-linear)
models, such as the Gain-Offset-Gamma (GOG) model, or low-resolution look-up tables (LUT), both
based on a limited number of optical measurements, work well enough. However, some displays show a
much more complex relationship between RGB input and color output, requiring more complex models
or high-resolution LUTs based on a large number of measurements. In this paper, as the first step in
a larger study, the feasibility and performance of neural networks (NN) for color characterization of a
simulation display following a simple GOG model are explored and compared to a LUT-based method.
Statistical analysis showed that the NN-method performed significantly better than the LUT model in
terms of predicting the required RGB device input values that generate a set of target (device output)
XYZ tristimulus values. In fact, to achieve the same accuracy, the number of training points can be
substantially reduced for the NN-method compared to the LUT-method. Furthermore, the neural network
is also more than 20 times faster than the look-up table in performing display characterization.
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1. Introduction

Color characterization is the process of converting a device-dependent color space to a device-
independent space like the XYZ or LMS. The necessity of characterization arises from the 
primaries that a device uses to produce colors. As the primaries are different in each device,
these intrinsic differences give rise to device-dependent color spaces [1]. In different cathode ray
tube (CRT) monitors, for instance, the red, green, and blue phosphors are physically different
resulting in minute differences in color produced by them for the same input v alue. So, if
a person is sending a particular input RGB color, for instance, (200, 0, 200) to two different 
devices, depending on how the primaries are in both devices, the output on the display can
be different. A device-independent color space, on the other hand, would always produce the 
same color output for a particular input. For a color characterized device, one would know the
relation between the device-dependent color space and device-independent color space.

The 11th Colour and Visual Computing Symposium, September 08–09, 2022, Gjovik, Norway
*Corresponding author.
†
These authors contributed equally.
$ ujjayanta.bhaumik@kuleuven.be (U. Bhaumik); rik.spieringhs@kuleuven.be (R. M. Spieringhs);
kevin.smet@kuleuven.be (K. A. G. Smet)
� 0000-0003-1498-7726 (U. Bhaumik); 0000-0003-4956-837X (R. M. Spieringhs); 0000-0003-3825-6274 (K. A. G. Smet)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:ujjayanta.bhaumik@kuleuven.be
mailto:rik.spieringhs@kuleuven.be
mailto:kevin.smet@kuleuven.be
https://orcid.org/0000-0003-1498-7726
https://orcid.org/0000-0003-4956-837X
https://orcid.org/0000-0003-3825-6274
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


The problem of characterization can be treated as finding the relation between two sets of
points in R3. A function is to be determined from XYZ color space to RGB color space so that
one can determine which RGB values should be sent to the headset to display the correct XYZ
output. For instance, to achieve a particular output (𝑋1 = 19.2, 𝑌1 = 21, 𝑍1 = 73.2), the fitted
function would predict (𝑅1, 𝐺1, 𝐵1) = 𝑓(19.2, 21, 73.2). This triplet (𝑅1, 𝐺1, 𝐵1) can then be
sent to the device to obtain the output as (𝑋1, 𝑌1, 𝑍1).

This function can be determined in a variety of ways, for instance, using a Gain-Offset-Gamma
(GOG) model or look-up tables [2]. This paper presents a novel approach based on simulated
datasets of different sizes to thoroughly compare methods that use multilayer perceptron based
neural networks with a varying number of hidden layers to determine the color characterization
function and traditional look-up tables. Multilayer perceptrons have been used for solving
problems like pattern recognition and interpolation and were an improvement over the simpler
predecessor perceptron suitable for linearly separable problems [3]. They provide the necessary
complexity for predicting more difficult non-linear functions. The next sections describe the
characterization techniques relevant to this work in more detail: GOG model, look-up-table,
and neural networks.

1.1. Gain-Offset-Gamma model

The Gain-Offset-Gamma (GOG) model is one of the several ways of characterizing displays.
For an overview of other methods, one can refer to Brainard et. al. [4]. It consists of 2 stages:
the first step is a non-linear transformation to convert digital RGB values to linear RGB values,
and the second step converts the linear RGB values to tristimulus XYZ values using a matrix
multiplication [5].

The first stage, which is also a forward transformation from digital to linearized RGB values,
is represented by a simple gamma transform [6]. Let (𝑟, 𝑔, 𝑏) ∈ [0, 1] be the digital pixel values
to be sent to the display. Then the linearized values are given by:

𝑅 = 𝑟𝛾 (1)

𝐺 = 𝑔𝛾 (2)

𝐵 = 𝑏𝛾 (3)

Here, 0 ≤ 𝑟, 𝑔, 𝑏 ≤ 1
After linearization, it is now possible to represent the device-independent (X,Y,Z) tristimulus

values as a linear combination of the device-dependent linearized (R,G,B) values using a 3 x 3
matrix multiplication: ⎡⎣𝑋𝑌

𝑍

⎤⎦ = 𝑇

⎡⎣𝑅𝐺
𝐵

⎤⎦ (4)

where T is the transformation matrix from linear RGB to tristimulus XYZ values. If one
measures the tristimulus values for maximum red, maximum green, and maximum blue, the
equation for T is given by equation (5).



Figure 1: A full flow chart of general display characterization depicting the forward and backward
display models. The forward model guides the conversion of the input digital signal values to output
light in terms of tristimulus XYZ values while the backward model does the reverse [6].

𝑇 =

⎡⎣𝑋𝑟,𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑋𝑔,𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑋𝑏,𝑚𝑎𝑥𝑖𝑚𝑢𝑚

𝑌𝑟,𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑌𝑔,𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑌𝑏,𝑚𝑎𝑥𝑖𝑚𝑢𝑚

𝑍𝑟,𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑍𝑔,𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑍𝑏,𝑚𝑎𝑥𝑖𝑚𝑢𝑚

⎤⎦ (5)

Although it is typically more accurate to determine the 9 matrix coefficients based on a
least-squares minimization algorithm using a sufficiently large number of measured (RGB, XYZ)
pairs.

If we also consider the minimal ambient light, the full equation becomes:⎡⎣𝑋𝑌
𝑍

⎤⎦−

⎡⎣𝑋𝑌
𝑍

⎤⎦
𝑎𝑚𝑏𝑖𝑒𝑛𝑡

= 𝑇

⎡⎣𝑅𝐺
𝐵

⎤⎦ (6)

It represents the fact that even for R=G=B=0 (no display output), still some non-negative
XYZ values might be measured due to the ambient light. This is also sometimes referred to as
display flare.

The whole characterization process is explained in Figure 1.

1.2. Look-up table (LUT)

A look-up table (LUT) is a dictionary that allows one to search for a value corresponding to a key.
Look-up tables have been used historically since the time of Babylonian mathematics when they
used them to calculate logarithmic tables [7]. In the context of display color characterization, a
look-up table would store (𝑅𝐺𝐵,𝑋𝑌 𝑍) pairs which can be used to find the 𝑋𝑌 𝑍 value for a
characterized display corresponding to a 𝑅𝐺𝐵 input or vice versa. An instance is shown in
Figure 2.

When converting from device (𝑟, 𝑔, 𝑏) to (𝑋,𝑌, 𝑍) using a fully populated LUT (i.e. one
which has a pair for every possible r,g,b combination), the conversion process is reduced to
a simple look-up. However, given that there would be 16777216(= 2563) entries loading the
LUT into memory, and especially the look-up process might be quite time consuming. The



Figure 2: A look-up Table is a dictionary of keys and corresponding values. This example shows a
look-up table that has XYZ tristimulus values and corresponding RGB values for a device. In this case,
for getting a particular RGB output, one would find the corresponding XYZ value from the table and
use that as input to the device.

actual measurement time required to generate the LUT would also be huge. Look-up tables
are therefore usually determined by measuring pairs for only certain (𝑟, 𝑔, 𝑏) combinations,
whereby intermediate values are interpolated. Interpolation would almost certainly also be
required for the inverse conversion, i.e. when going from device-independent (𝑋,𝑌, 𝑍) to
device-dependent (𝑟, 𝑔, 𝑏), as its highly unlikely that the desired (𝑋,𝑌, 𝑍) is one of the values
in the LUT!

1.3. Neural Networks

This paper presents a neural networks based method to address the problem of accurate color
characterization for displays. Cheung et. al. used neural networks and polynomial functions for
camera characterization and both methods were found capable of producing similar results [5].
Vrhel et. al. used neural networks to calibrate color scanners and found that they performed
better over polynomial-based methods [8]. Usui et. al. used neural networks to do color
transformations for color management systems. This was done to take care of colors produced
by different media and Usui et. al. showed that a neural network of 3 layers can be used as a
powerful tool for such purpose [9].

Neural networks were used by Climent et. al. to test the accuracy of LCD displays [10] and
they notified the appropriateness of neural networks in learning XYZ-RGB relations. Different
groups of techniques are used for colorimetric characterization like methods that try to model
the color physically assuming independence between channels [11],[12],[13].

Statistical techniques like Linear Color Correction (LCC) [14], polynomial regression [14] and
geometric methods like 3D thin-plate spline [15] are some other methods used for colorimetric
characterization of displays but methods like LCC can map linearized RGB to XYZ with high
errors [14]. This paper used a feedforward network to perform display color characterization. In
a feedforward neural network, the propagation of information is only in the forward direction
and there are no cycles or loops. An instance of a feedforward network is shown in Figure 3.

A multilayer feedforward network can approximate any continuous function with just one
hidden layer. This is referred to as the universal approximation theorem[8]. The mapping of
XYZ color space to RGB color space or vice versa can be achieved with such a network. In this



Figure 3: A simple feedforward neural network with 3 layers. The input layer has 3 nodes, the hidden
layer 4, and the output 3. The arrows show the propagation of data and it’s always one way propagation.

paper, we present a GOG model, a look-up table, and our neural network approach to perform
characterization.

2. Setup

For the purpose of this research, an Alienware m15 laptop with 16GB RAM, 64 bit Windows
operating system, and Intel(R) Core(TM) i7-8750H CPU at 2.20 GHz was used. The simulation
was done in Python using the Luxpy library [16].

3. Methodology

3.1. Data Simulation

A virtual display was simulated using a Gain Offset Gamma model to generate 𝑅𝐺𝐵 ≡ 𝑋𝑌 𝑍
pairs. It has been assumed that the display is perfectly characterized by the gain offset gamma
model (no measurement errors). Several data sets, composed of (𝑟, 𝑔, 𝑏)− (𝑋,𝑌, 𝑍) pairs, were
simulated to train the neural network, generate the look-up table, and test both methods. Both
methods were always trained (for the LUT-based method this means generation of the LUT)
and tested using the same data sets to ensure a fair comparison of their performance.

3.1.1. Sampling of RGB space

The first step of data generation for the training set included the sampling of RGB space into
equal voxels while ensuring that the axes of the RGB color space, and particularly the maximum



Figure 4: RGB samples generated using regular grid used for data simulation (n = 20).

value (255), were also sampled. The sampled (𝑟, 𝑔, 𝑏) data points are represented by the set 𝑆3:

𝑆 = {𝑥 : 𝑥 ∈ R& 𝑛|𝑥} ∪ {255}, 6 ≤ 𝑛 ≤ 20 (7)

The red, green and blue axes are sampled uniformly due to the fact that equal sampling is the
baseline or the simplest approach and it helps in representing non-additivity better. If any of
the red, green or, blue channels contribute to the non-additivity, then the equal sampling makes
sure an equal impact of all the channels is present. An example of the sampling with 𝑛 = 20
is shown in Figure 4. Here, n is called the LUT increment, and the data set composed of the
sampled RGB space is henceforth referred to as the RGB cube.

RGB cubes for neural network training and LUT generation were created for LUT in-
crements of: [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] which corresponded to [79271,
50676, 32890, 24398, 17699, 13927, 10736, 8105, 6916, 5008, 4175, 3455, 3402, 2801, 2268] number
of data points in the cube.

The (r,g,b) values for the test set were generated using Numpy’s random generator function.
The same test set was used in combination with all training sets and was composed of 10000
points. To complete the training and test sets and generate (r,g,b)-(X,Y,Z) pairs, their (r,g,b)
values were converted into (X,Y,Z) tristimulus values using the GOG model.

3.2. Neural Network Training

The 𝑅𝐺𝐵 ≡ 𝑋𝑌 𝑍 training data generated using the simulated algorithm are fed to a multilayer
perceptron (coded with the Perceptron function from scikit-learn sklearn.linear_model class
[17]) with the following parameters:

• hidden layer = [number of hidden layers]
• relu activation function (𝑓(𝑥) = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(0, 𝑥))
• maximum iteration = 100000
• adaptive learning rate: adam optimizer



Figure 5: An instance of a neural network with 2 hidden layers. The input is (𝑋,𝑌, 𝑍) and the output
is linearized (𝑅,𝐺,𝐵).

The number of hidden layers is varied from the set [10, 20, 40, 80, 130, 160, 400, 460, 600] to
test the performance of the neural network. The Adam optimizer uses an adaptive learning rate
for optimizing stochastic objective functions [18].

3.3. Look-up table

The points in RGB cubes for each LUT increments of: [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20] were converted into XYZ points using the simulation algorithm. This resulted in
(𝑟, 𝑔, 𝑏), (𝑋,𝑌, 𝑍) pairs for each LUT increment.

For the LUT, predicting the value of input involved a few steps. First for finding the value
of the new element, one needs to find the nearest neighbors and assign a value based on the
values of the nearest neighbor from the table. This requires querying the LUT for the nearest
neighbors. The number of neighbors considered for different experiments ranged in the set
[1,2,3,4,5,6,8,10,12,14,16,18,20,25]. The second step involved using the cKDtree function from
scipy for querying the different LUTs [19]. Then, the distances of the input point from all the
nearest neighbors returned by the algorithm are calculated.

The predicted value for the input is calculated using a weighted average of the values of the
nearest neighbors. The weights are calculated using the inverse squared distances of the query
input point from the nearest neighbors. So, if a key is closer in distance to the input query point,
it contributes more to determining the output value.

The predictions using the same test set are carried out using both the neural network and
LUT and the results are presented in the next section.

4. Results & Discussion

A GOG model was used as the perfect model to generate the ground truth (RGB, XYZ) pairs.
The forward model to go from display (𝑟, 𝑔, 𝑏) to linear (𝑅,𝐺,𝐵) is a simple Gamma function.

The transformation matrix given in Eq. (5) and (6) allows conversion from RGB to XYZ and



Figure 6: A side-by-side plot of Just noticeable difference (JND) errors for both Neural Network and
LUT-based method. 1 JND corresponds to an Euclidean distance of 0.0033 𝑢′𝑣′ units in the CIE 1976
𝑢′𝑣′ color space [20]. For the figure on the left, the x-axis represents the number of hidden layers of
the neural network, the y-axis the LUT increment. For the figure on the right, the x-axis represents the
number of nearest neighbors for LUT, the y-axis the LUT increment. The numbers inside the individual
boxes are the 95 percentile JND error produced by the LUT-based method. The color bar on the right
shows the magnitude of error in each graph.

vice versa. The forward transformation matrix (M) to convert linear RGB to XYZ and the reverse
transformation matrix (N) to convert XYZ back to linear RGB are calculated and given below.

𝑀 =

⎡⎣1.0858𝑒+ 02 4.6817𝑒+ 01 3.6931𝑒+ 01
5.1134𝑒+ 01 1.3333𝑒+ 02 1.8603𝑒+ 01
1.6299𝑒+ 00 1.5691𝑒+ 01 2.0352𝑒+ 02

⎤⎦ (8)

𝑁 =

⎡⎣ 1.0954𝑒− 02 −3.6517𝑒− 03 −1.6539𝑒− 03
−4.2343𝑒− 03 8.9932𝑒− 03 −5.3700𝑒− 05
2.3872𝑒− 04 −6.6410𝑒− 04 4.9309𝑒− 03

⎤⎦ (9)

Error maps are generated both for the Neural Network method and the LUT-based method
to compare their performances. For both methods, the LUT increments were kept consistent.
Errors were calculated for the Neural Network method at various numbers of hidden layers and
the LUT-based method at various numbers of nearest neighbors. The error maps are shown in
Figure 6. The neural network performs extremely well with LUT increments of less than 16
and at a number of hidden layers more than 100. Even at finer resolution with a lower LUT
increment, the performance of the LUT-based method is worse compared to the Neural Network
based method.

Considering the error graph in Figure 6., there are recommendations for the number of hidden
layers of the neural network where it performs substantially better than the LUT-based method.



Figure 7: A comparison of the 95 percentile errors produced by the neural network (with 460 hidden
layers) and look-up table (with nearest neighbors equal to 10). The neural network can be clearly seen to
produce lower Just Noticeable Difference (JND) errors in CIE 1976 𝑢′𝑣′ space compared to the look-up
table at different LUT increments.

Figure 8: Relative performance of the neural network (with 460 hidden layers) and look-up table (with
nearest neighbors equal to 10).

Figure 7. shows the performance of the neural network at the number of layers equal to 460
and a look-up table with the number of nearest neighbors equal to 10.

It can be clearly seen that the neural network performs substantially better in terms of reduced
JND errors in the CIE 1976 𝑢′𝑣′ color space. Figure 8. shows the relative performance of the
neural network and the look-up table.

In the worst-case scenario at LUT increment equal to 16, the neural network is still about 2
times better than the look-up table. On the other hand, in the best-case scenario, when LUT
increment is 10, the neural network performs about 4 times better.

The neural network also provides a considerable advantage over the lookup table in terms of
the time required to predict an input. The neural network performs substantially faster (×22)
with an average search time of 0.001 seconds compared to 0.022 seconds for the look-up table.



5. Conclusion and Future Work

In this paper, a comparison of the performance of display color characterization methods based
on a neural network and a look-up table was carried out. The analysis showed that on average
the neural network was substantially better than the look-up table. Prediction time was also
better for the neural network which provided over 22 times speed-up compared to the look-up
table method.

In the future, we propose to test the neural network and look-up-table methods on real
measured displays, some of which that have more complex relationships between the RGB input
values and the measured XYZ tristimulus output, due to, for example, additivity failure. Using
a look-up table for high resolution images becomes computationally expensive and a neural
network might significantly help in obtaining better real-time predictions, while also offering
the possibility of reducing the number of characterization measurements for the same accuracy.
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