
SC-Square: Future Progress with Machine Learning?
Matthew England

Coventry University, Coventry, UK

Abstract
The algorithms employed by our communities are often underspecified, and thus have multiple imple-

mentation choices, which do not effect the correctness of the output, but do impact the efficiency or

even tractability of its production. In this extended abstract, to accompany a keynote talk at the 2021

SC-Square Workshop, we survey recent work (both the author’s and from the literature) on the use of

Machine Learning technology to improve algorithms of interest to SC-Square.

Keywords
machine learning, symbolic computation, computer algebra systems, satisfiability checking, SMT solvers

1. Introduction

SC-Square brings together the two communities of Symbolic Computation and Satisfiability

Checking, and their associated technologies of Computer Algebra Systems (CASs) and Satisfia-

bility Modulo Theory (SMT) Solvers. One commonality of these communities and technologies

is that they value and produce exact, rather than approximate, answers to their problems.

Machine Learning (ML) refers to statistical techniques that give computer systems the ability

to learn rules from data. It may seem that the probabilistic nature of ML means it is of little

interest to SC-Square. However, we suggest there is great potential to use ML to uncover better

strategies to optimise SC-Square algorithms and technology.

E.g., consider Buchberger’s algorithm to produce the Gröbner Basis for an ideal: a seminal

result in Symbolic Computation, used as theory solver for several SMT logics. This algorithm

does not specify the order in which 𝑆-pairs are studied, the order is which the corresponding

𝑆-polynomial is reduced by the generating set, the monomial ordering to be used, and the

underlying variable ordering. Any decision for these choices allows the production of a Gröbner

Basis but each decision effects the size of the basis produced and the time taken to compute it.

ML may be able to assist with such decisions. However, applying ML to such symbolic algebra

and logic is not trivial: there are difficult questions on how to find appropriate data; how to

encode that data for ML tools; and which ML paradigm to use. We start this extended abstract

by describing our work in Section 2 which attempted to use ML classification to choose the

variable ordering for a Computer Algebra algorithm. We then proceed in Section 3 to survey

the literature for similar application of ML to mathematics and logic, to look for inspiration to

make further progress.

SC2 2021: 6th International Workshop on Satisfiability Checking and Symbolic Computation, August 19–20, 2021
$ Matthew.England@coventry.ac.uk (M. England)

� https://matthewengland.coventry.domains (M. England)

� 0000-0001-5729-3420 (M. England)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:Matthew.England@coventry.ac.uk
https://matthewengland.coventry.domains
https://orcid.org/0000-0001-5729-3420
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


2. ML Classification for CAD Variable Ordering

2.1. Cylindrical algebraic decomposition

A Cylindrical Algebraic Decomposition (CAD) is a decomposition of ordered R𝑛
space into cells

arranged cylindrically, meaning the projections of cells are all arranged within cylinders. The

cells are (semi)-algebraic meaning each may be described by a finite sequence of polynomial

constraints. A CAD is usually produced for a set of polynomials such that each polynomial has

constant sign on each cell. This allows us to query a finite set of sample points to understand

the behaviour of the polynomials (or logical formula involving them) everywhere.

The most important application of CAD is to perform Quantifier Elimination (QE) over the

reals: given a quantified formula, find an equivalent quantifier-free formula. E.g., QE would

transform ∃𝑥, 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 ∧ 𝑎 ̸= 0 into the equivalent 𝑏2 − 4𝑎𝑐 ≥ 0. Although CAD

emerged in the Symbolic Computation community, since SAT is a sub-problem of QE, it can

be used to tackle problems in the NRA and QF_NRA logics of the SMT-LIB. Adaptations of the

original CAD algorithm have been designed for use in SMT [25], [27], [1] and we also note the

adaptation [4] which is for general QE but with features inspired by Satisfiability Checking.

CAD was introduced in 1975 [11] and is still an active area of research: for a deeper introduc-

tion see, for example, the background section of [15].

2.2. CAD variable ordering choice

CAD requires a variable ordering. For QE the ordering must match the quantification, but

variables in blocks of the same quantifier and the free variables can be swapped. So in the

example above we must decompose (𝑥, 𝑎, 𝑏, 𝑐)-space with 𝑥 last, but the other variables can

be in any order. The ordering can have a great effect on the time / memory use of CAD, the

number of cells, and even the underlying complexity [5]. In our example using 𝑎 ≺ 𝑏 ≺ 𝑐
requires 27 cells but 𝑐 ≺ 𝑏 ≺ 𝑎 requires 115. Human-designed heuristics [14], [3], [2], [16]

usually make the choice in implementations. In 2014, we trained a Support Vector Machine

(SVM) to choose which of these heuristic to follow [24]. The SVM significantly outperformed

any one heuristic, identifying subclasses where each excelled. This led to an EPSRC project and

the work described in the remainder of this section.

2.3. Results from CICM 2019

The 2014 work choose between existing heuristics, in order to fix the number of classes. However,

there were many problems in the dataset where none of those heuristics gave an optimal choice.

So we revisited these experiments for CICM 2019 [17] this time allowing ML to predict the

optimal ordering directly (fixing the number of variables and thus classes). We explored a

variety of ML classification methods available in Python’s sklearn library [34]: K-nearest

neighbour classifiers, multi-layer perceptions, decision trees, and support vector machines.

We used the CAD implementation in Maple’s Regular Chains Library [9]. All the ML models

outperformed the human-made heuristics for our dataset.



2.4. Results from SC-Square 2019

The first step to use such an ML classification model is to represent the input (in our case a

set of polynomials) as a vector of floating point numbers: the features. In [24] and [17] we

used measures of degree and frequency of occurrence for each variable, inspired by [3]. Then

for SC-Square 2019 [18] we developed a new feature generation procedure which evaluates

combinations of basic functions (average, sign, maximum) on the degrees of the variables for

individual polynomials and the system. The extra features improved the performance of all the

aforementioned ML models. Note that this feature generation procedure can be used for similar

classifications where the input is a set of polynomials.

2.5. Results from MACIS 2019

Metrics for judging a CAD variable ordering choice should correspond to CAD runtime
1
. The

prior work trained ML classifiers to pick the ordering with minimal runtime for a problem, with

selections deemed accurate only if that optimal ordering was chosen. However, this meant that

ML training does not distinguish between different non-optimal orderings, even though the

differences are often huge. For MACIS 2019 [19] we used an alternative definition of an accurate

choice: one leading to a runtime within 𝑥% of the minimum. We then wrote a new version of

the sklearn cross-validation procedure to select model hyper-parameters to minimise CAD

runtime of the choices, rather than maximising the number of times the ordering that gives the

minimal time for a problem is taken. This improved the performance of all ML models. Note

that the new accuracy definition and procedure are suitable for any classification where we are

seeking to have ML make a choice to minimise computation time.

2.6. Software release for ICMS 2020

For ICMS 2020 [20] we presented a software pipeline that implements our work described in

the previous sub-sections. Given two datasets (training and testing) the pipeline automates:

generation of CAD runtimes for each set of polynomials under each admissible variable ordering;

using the runtimes from the training dataset to select the hyper-parameters with cross-validation

and tune the parameters of the ML models; and evaluating the performance of those classifiers

on the testing dataset. The pipeline could be used to pick the variable ordering for other

algorithms which take sets of polynomials as input by changing the calls to Maple’s CAD

procedure with those of another implementation / algorithm. The code is freely available at:

https://doi.org/10.5281/zenodo.3731703.

2.7. Success and limitations

We experimented on the SMT-LIB benchmarks
2

which are mostly real-world applications and

extracted two datasets of 3 and 4 variable problems that could be tackled by CAD. On our

3-variable dataset human-made heuristics achieved runtimes 27% above the minimum and ML

achieved runtimes 6% above. So here, the ML classifiers offer close to optimal performance.

1

A hardware independent alternative would be the number of cells produced.

2

http://smtlib.cs.uiowa.edu/

https://doi.org/10.5281/zenodo.3731703


However, on the 4-variable dataset ML achieved runtime 67% above the minimum (compared to

98% above for human-made heuristics) and so there is room for improvement. Of course, with 4

variables this is a much harder classification problem (24 orderings rather than 6).

To inspire further progress we next consider related work in the literature.

3. Inspiration from the Literature

3.1. Other applications of ML for CAD

The methodology of [24] was applied later to decide the order of sub-formulae solving in [26]

and whether to precondition CAD input in [23].

Two more recent works with alternative methodologies are [10] to choose CAD variable

ordering and [6] to choose the ordering of constraints to process using the adapted CAD

algorithm of [4]. Both papers employed neural networks for the classification and obtained

the quantity of data these need through random polynomial generation. We note that care

needs to be taken as random polynomials are known to behave quite differently to those which

appear in the literature, e.g. [13] and so validation on non-random data should be encouraged.

Both papers also took steps to tackle the large number of classes: [10] used an iterative greedy

approach to select the ordering; while [6] derived an ordering on the constraints from multiple

binary classification on pairs.

Applications of ML elsewhere in Computer Algebra are fairly rare
3

but the following recent

one may offer a blueprint for progress.

3.2. Reinforcement learning to optimise Buchberger’s algorithm

Buchbergers’ Algorithm to produce a Gröbner Basis [7] must process a list of pairs of polynomials

(𝑆-pairs); with that processing potentially adding further pairs to the list. Pairs may be processed

in any order, but some orders result in more pairs to study and thus more computational

resources. There exist well established strategies to make this decision (see e.g. [21]).

In [35] the authors described how an Agent could be trained to make this decision using

reinforcement learning: where instead of having a labelled dataset an Agent makes a decision

and receives a reward that informs future decisions. In [35] the Agent chooses an 𝑆-Pair and

received a reward based on the number of polynomial additions required
4
.

The study ensures a constant size of polynomial by studying only binomials (so no term swell)

and working in a modular coefficient field (so no coefficient swell). They can then represent

polynomials to a neural network via consistently sized exponent vectors. Similar to our work

in Section 2, this allows the network to judge sparsity and degree but not the actual coefficients

(to avoid over-fitting).

3

We note the early example in [29] which uses a Monte-Carlo tree search to find the representation of polynomials

that are most efficient to evaluate.

4

Actually, the reward is based on the number of polynomial additions required to complete a full run of Buchberger’s

algorithm after selecting that 𝑆-Pair and continuing with a an existing heuristic. The rationale for this given is to

reduce variability but it seems equally compelling for allowing the Agent to judge the effects of a choice not just on

the next step but on the remainder of the algorithm. This does however greatly increase the training cost.



The experiments in [35] are run on separate distributions of random polynomials based

on the number of variables, generators, and degree. The Agent significantly outperformed

the established strategies on such data, but the performance on real problems remains to be

observed.

Most interestingly, some simple components of the Agent’s strategy were observed such as

a preference for pairs whose 𝑆-polynomials are monomials and a preference for pairs whose

𝑆-polynomials are low degree. Such strategies had never been studied
5

and when used alone

outperform the established heuristics.

3.3. ML to predict algebraic computation directly

There has been recent work on the use of ML to predict the outcome of algebraic computations

directly. Most notably, in [30] the authors predict the output of symbolic integration and

the symbolic solutions to first and second order ordinary differential equations using neural

networks
6
. Their experiments outperform various CASs, in the sense that the model predicts

correct outcomes for examples where the CAS times out. However, we note that from the

viewpoint of a CAS developer the cases where the model predicts the wrong model would be

more critical than the timeouts
7
. We also note the recent preprint [28] which repeats the study

to make the argument that better generalisability will be achieved with a learning model based

on the relative positions of mathematical symbols rather than the absolute positions. These are

very different applications of ML to the algorithm optimisation we are interested in, but lessons

on how best to represent symbolic data to ML tools may well be transferable.

3.4. ML in satisfiability checking

An early use of ML in Satisfiability Checking was the development of the portfolio solver

SATZilla [39]. There is rarely a single dominant SAT solver for all problems, so SATZilla uses

ML to predict which solver to use for a given instance. This inspired the recent MachSMT which

selects algorithms for SMT-solvers [36] using Principal Component Analysis for dimensionality

reduction.

The core algorithm of Satisfiability Checking, CDCL [33], allows us to proceed through the

exponential search space in an intelligent manner: generalising from the conflicts uncovered

at a specific sample to rule out additional branches. However, even with this conflict learning,

there are decisions in the search that must be taken without guidance and poor luck can lead a

search to an unproductive area, motivating for example the use of restarts.

Thus CDCL itself has potential to be guided by ML. For example:

• [38] makes the choice of initial value to variable allocation to begin the search using

a regression model that predicted satisfiability of formulae after fixing the values of a

certain fraction of the variables.

5

Perhaps because 𝑆-polynomials are rarely examined before being reduced.

6

Specifically seq2seq models more typically used in natural language processing: for example they view integration

as translating from integrands to integrals

7

The review [12] offer some other qualifications on the claim of superiority over CASs.



• [32] uses machine learning to determine a policy for restarts in SAT-solvers: ML is used to

predict the quality of the next learnt clause based on previously learnt clauses; restarting

when the quality is predicted below a threshold.

• NeuroSAT [37] can predict unsatisfiable cores (subsets of the constraints that cannot be

satisfied together) to inform variable selection in the search.

The most prominent use of ML in satisfiability is probably the following one.

3.5. Reinforcement learning for SAT-solver branching

The MapleSAT solver introduced and utilises the learning rate, the propensity for variables to

generate learnt clauses, as a key metric for making decisions and the first to outperform the

previously dominant VSIDS heuristic.

In [31] they view the question of branching in SAT-solving (selecting the next variable in

the search) as an optimisation problem to maximize this metric. In particular, they apply

reinforcement learning, where the learning rate informs the reward function. Variable selection

is modelled in the multi-armed bandit (MAB) framework and tackled using a well known MAB

algorithm. This led MapleSAT to victory in the annual SAT competition
8
.

3.6. ML to predict mathematical structure

Finally, we note also the use of supervised ML to predict mathematical properties elsewhere

in mathematics, where the primary motivation is the formation of new conjectures. We refer

to the survey [22] which includes examples in algebraic geometry, representation theory,

combinatorics and number theory, in which most applications are expressed as ML classification

problems.

3.7. Summary

There is huge potential to apply ML to algorithms of interest to SC-Square. The author’s own

experience in Section 2 shows the potential benefits.

However, our experience using ML classification has clear limits. Such supervised learning

requires labelled datasets. Although in theory infinite symbolic data could be manufactured, in

practice it would be computationally infeasible to label all that data. A reinforcement learning

approach such as for the examples in Sections 3.2 and 3.5 looks far more promising.

Still unclear is the optimal way to represent symbolic data for ML tools, and how best to

generate training data so maximise generalisation onto the problems of interest in the real

world. Such questions deserve more focussed study.

8

https://baldur.iti.kit.edu/sat-competition-2016/index.php?cat=results



Acknowledgements

The author’s work surveyed in Sections 2.3−2.7 was joint with Dorian Florescu, and funded

by EPSRC Project EP/R019622/1: Embedding Machine Learning within Quantifier Elimination
Procedures. The author is now supported by EPSRC Project EP/T015748/1: Pushing Back the
Doubly-Exponential Wall of Cylindrical Algebraic Decomposition.

We thank the reviewer of this paper, and the reviewers of the author’s surveyed work, for

useful comments. We thank the DEWCAD Journal Club for interesting discussions on some of

the other papers.

References

[1] Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Deciding the consistency of non-

linear real arithmetic constraints with a conflict driven search using cylindrical algebraic

coverings. Journal of Logical and Algebraic Methods in Programming 119, 100633 (2021),

https://doi.org/10.1016/j.jlamp.2020.100633

[2] Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem formulations

for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D., Lange, C., Sojka, P.,

Windsteiger, W. (eds.) Intelligent Computer Mathematics, Lecture Notes in Computer

Science, vol. 7961, pp. 19–34. Springer Berlin Heidelberg (2013), http://dx.doi.org/10.1007/

978-3-642-39320-4_2

[3] Brown, C.W.: Companion to the tutorial: Cylindrical algebraic decomposition, presented at

ISSAC ’04. URL http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf

(2004)

[4] Brown, C.W.: Open non-uniform cylindrical algebraic decompositions. In: Proceedings of

the 2015 International Symposium on Symbolic and Algebraic Computation. pp. 85–92.

ISSAC ’15, ACM (2015), https://doi.org/10.1145/2755996.2756654

[5] Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylindrical

algebraic decomposition. In: Proceedings of the 2007 International Symposium on Symbolic

and Algebraic Computation. pp. 54–60. ISSAC ’07, ACM (2007), https://doi.org/10.1145/

1277548.1277557

[6] Brown, C.W., Daves, G.C.: Applying machine learning to heuristics for real polynomial

constraint solving. In: Bigatti, A., Carette, J., Davenport, J.H., Joswig, M., de Wolff, T.

(eds.) Mathematical Software – ICMS 2020. Lecture Notes in Computer Science, vol.

12097, pp. 292–301. Springer International Publishing (2020), https://doi.org/10.1007/

978-3-030-52200-1_29

[7] Buchberger, B.: Bruno Buchberger’s PhD thesis (1965): An algorithm for finding the

basis elements of the residue class ring of a zero dimensional polynomial ideal. Journal of

Symbolic Computation 41(3-4), 475–511 (2006), https://doi.org/10.1016/j.jsc.2005.09.007

[8] Caviness, B., Johnson, J.: Quantifier Elimination and Cylindrical Algebraic Decomposition.

Texts & Monographs in Symbolic Computation, Springer-Verlag (1998), https://doi.org/10.

1007/978-3-7091-9459-1

[9] Chen, C., Moreno Maza, M.: Quantifier elimination by cylindrical algebraic decomposition

https://doi.org/10.1016/j.jlamp.2020.100633
http://dx.doi.org/10.1007/978-3-642-39320-4_2
http://dx.doi.org/10.1007/978-3-642-39320-4_2
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
https://doi.org/10.1145/2755996.2756654
https://doi.org/10.1145/1277548.1277557
https://doi.org/10.1145/1277548.1277557
https://doi.org/10.1007/978-3-030-52200-1_29
https://doi.org/10.1007/978-3-030-52200-1_29
https://doi.org/10.1016/j.jsc.2005.09.007
https://doi.org/10.1007/978-3-7091-9459-1
https://doi.org/10.1007/978-3-7091-9459-1


based on regular chains. Journal of Symbolic Computation 75, 74–93 (2016), https://doi.

org/10.1016/j.jsc.2015.11.008

[10] Chen, C., Zhu, Z., Chi, H.: Variable ordering selection for cylindrical algebraic decom-

position with artificial neural networks. In: Bigatti, A., Carette, J., Davenport, J.H.,

Joswig, M., de Wolff, T. (eds.) Mathematical Software – ICMS 2020. Lecture Notes in

Computer Science, vol. 12097, pp. 281–291. Springer International Publishing (2020),

https://doi.org/10.1007/978-3-030-52200-1_28

[11] Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic de-

composition. In: Proceedings of the 2nd GI Conference on Automata Theory and For-

mal Languages. pp. 134–183. Springer-Verlag (reprinted in the collection [8]) (1975),

https://doi.org/10.1007/3-540-07407-4_17

[12] Davis, E.: The use of deep learning for symbolic integration: A review of (Lample and

Charton, 2019). Unpublished, available as ArXiv:2105.11479 (2019), https://arxiv.org/abs/

2105.11479

[13] Dembo, A., Poonen, B., Shao, Q., Zeitouni, O.: Random polynomials having few or no real

zeros. Journal of the American Mathematical Society 15(4), 857–892 (2002), https://www.

ams.org/journals/jams/2002-15-04/S0894-0347-02-00386-7/S0894-0347-02-00386-7.pdf

[14] Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Proceedings of

the 2004 International Symposium on Symbolic and Algebraic Computation. pp. 111–118.

ISSAC ’04, ACM (2004), https://doi.org/10.1145/1005285.1005303

[15] England, M., Bradford, R., Davenport, J.H.: Cylindrical algebraic decomposition with

equational constraints. Journal of Symbolic Computation 100, 38–71 (2020), https://doi.

org/10.1016/j.jsc.2019.07.019

[16] England, M., Bradford, R., Davenport, J.H., Wilson, D.: Choosing a variable ordering

for truth-table invariant cylindrical algebraic decomposition by incremental triangular

decomposition. In: Hong, H., Yap, C. (eds.) Mathematical Software – ICMS 2014. Lecture

Notes in Computer Science, vol. 8592, pp. 450–457. Springer Heidelberg (2014), http:

//dx.doi.org/10.1007/978-3-662-44199-2_68

[17] England, M., Florescu, D.: Comparing machine learning models to choose the variable

ordering for cylindrical algebraic decomposition. In: Kaliszyk, C., Brady, E., Kohlhase,

A., Sacerdoti, C.C. (eds.) Intelligent Computer Mathematics. Lecture Notes in Computer

Science, vol. 11617, pp. 93–108. Springer International Publishing (2019), https://doi.org/

10.1007/978-3-030-23250-4_7

[18] Florescu, D., England, M.: Algorithmically generating new algebraic features of polynomial

systems for machine learning. In: Abbott, J., Griggio, A. (eds.) Proceedings of the 4th

Workshop on Satisfiability Checking and Symbolic Computation (SC2
2019). No. 2460 in

CEUR Workshop Proceedings (2019), http://ceur-ws.org/Vol-2460/

[19] Florescu, D., England, M.: Improved cross-validation for classifiers that make algorithmic

choices to minimise runtime without compromising output correctness. In: Slamanig, D.,

Tsigaridas, E., Zafeirakopoulos, Z. (eds.) Mathematical Aspects of Computer and Informa-

tion Sciences (Proc. MACIS ’19). Lecture Notes in Computer Science, vol. 11989, pp. 341–356.

Springer International Publishing (2020), https://doi.org/10.1007/978-3-030-43120-4_27

[20] Florescu, D., England, M.: A machine learning based software pipeline to pick the variable

ordering for algorithms with polynomial inputs. In: Bigatti, A., Carette, J., Davenport,

https://doi.org/10.1016/j.jsc.2015.11.008
https://doi.org/10.1016/j.jsc.2015.11.008
https://doi.org/10.1007/978-3-030-52200-1_28
https://doi.org/10.1007/3-540-07407-4_17
https://arxiv.org/abs/2105.11479
https://arxiv.org/abs/2105.11479
https://www.ams.org/journals/jams/2002-15-04/S0894-0347-02-00386-7/S0894-0347-02-00386-7.pdf
https://www.ams.org/journals/jams/2002-15-04/S0894-0347-02-00386-7/S0894-0347-02-00386-7.pdf
https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1016/j.jsc.2019.07.019
https://doi.org/10.1016/j.jsc.2019.07.019
http://dx.doi.org/10.1007/978-3-662-44199-2_68
http://dx.doi.org/10.1007/978-3-662-44199-2_68
https://doi.org/10.1007/978-3-030-23250-4_7
https://doi.org/10.1007/978-3-030-23250-4_7
http://ceur-ws.org/Vol-2460/
https://doi.org/10.1007/978-3-030-43120-4_27


J.H., Joswig, M., de Wolff, T. (eds.) Mathematical Software – ICMS 2020. Lecture Notes

in Computer Science, vol. 12097, pp. 302–322. Springer International Publishing (2020),

https://doi.org/10.1007/978-3-030-52200-1_30

[21] Giovini, A., Mora, T., Niesi, G., Robbiano, L., Traverso, C.: One sugar cube, please; or

selection strategies in the Buchberger algorithm. In: Proceedings of the 1991 International

Symposium on Symbolic and Algebraic Computation. pp. 49–54. ISSAC ’91, ACM (1991),

https://doi.org/10.1145/120694.120701

[22] He, Y.H.: Machine-learning mathematical structures. International Journal of Data Science

in the Mathematical Sciences 1(1), 1–25 (2022), https://doi.org/10.1142/S2810939222500010

[23] Huang, Z., England, M., Wilson, D., Bridge, J., Davenport, J.H., Paulson, L.: Using machine

learning to improve cylindrical algebraic decomposition. Mathematics in Computer Science

13(4), 461–488 (2019), https://doi.org/10.1007/s11786-019-00394-8

[24] Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L., Bridge, J.: Applying

machine learning to the problem of choosing a heuristic to select the variable ordering

for cylindrical algebraic decomposition. In: Watt, S.M., Davenport, J.H., Sexton, A.P.,

Sojka, P., Urban, J. (eds.) Intelligent Computer Mathematics, Lecture Notes in Artificial

Intelligence, vol. 8543, pp. 92–107. Springer International (2014), http://dx.doi.org/10.1007/

978-3-319-08434-3_8

[25] Jovanovic, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D.,

Sattler, U. (eds.) Automated Reasoning: 6th International Joint Conference (IJCAR), Lecture

Notes in Computer Science, vol. 7364, pp. 339–354. Springer (2012), https://doi.org/10.1007/

978-3-642-31365-3_27

[26] Kobayashi, M., Iwane, H., Matsuzaki, T., Anai, H.: Efficient subformula orders for real

quantifier elimination of non-prenex formulas. In: Kotsireas, S.I., Rump, M.S., Yap, K.C.

(eds.) Mathematical Aspects of Computer and Information Sciences (MACIS ’15). Lecture

Notes in Computer Science, vol. 9582, pp. 236–251. Springer International Publishing

(2016), https://doi.org/10.1007/978-3-319-32859-1_21

[27] Kremer, G., Ábrahám, E.: Fully incremental CAD. Journal of Symbolic Computation 100,

11–37 (2020), https://doi.org/10.1016/j.jsc.2019.07.018

[28] Kubota, H., Tokuoka, Y., Yamada, T.G., Funahashi, A.: Symbolic integration by integrating

learning models with different strengths and weaknesses. IEEE Access 10, 47000–47010

(2022), https://doi.org/10.1109/ACCESS.2022.3171329

[29] Kuipers, J., Ueda, T., Vermaseren, J.A.M.: Code optimization in FORM. Computer Physics

Communications 189, 1–19 (2015), https://doi.org/10.1016/j.cpc.2014.08.008

[30] Lample, G., Charton, D.: Deep learning for symbolic mathematics. In: Mohamed, S., White,

M., Cho, K., Song, D. (eds.) Eighth International Conference on Learning Representations

(ICLR 2020) (2020), https://iclr.cc/virtual_2020/poster_S1eZYeHFDS.html

[31] Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic

for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) Theory and Applications of Satisfiability

Testing – SAT 2016, Lecture Notes in Computer Science, vol. 9710, pp. 123–140. Springer

International Publishing (2016), https://doi.org/10.1007/978-3-319-40970-2_9

[32] Liang, J.H., Oh, C., Mathew, M., Thomas, C., Li, C., Ganesh, V.: Machine learning-based

restart policy for CDCL SAT solvers. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) Theory

and Applications of Satisfiability Testing – SAT 2018, Lecture Notes in Computer Science,

https://doi.org/10.1007/978-3-030-52200-1_30
https://doi.org/10.1145/120694.120701
https://doi.org/10.1142/S2810939222500010
https://doi.org/10.1007/s11786-019-00394-8
http://dx.doi.org/10.1007/978-3-319-08434-3_8
http://dx.doi.org/10.1007/978-3-319-08434-3_8
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-3-319-32859-1_21
https://doi.org/10.1016/j.jsc.2019.07.018
https://doi.org/10.1109/ACCESS.2022.3171329
https://doi.org/10.1016/j.cpc.2014.08.008
https://iclr.cc/virtual_2020/poster_S1eZYeHFDS.html
https://doi.org/10.1007/978-3-319-40970-2_9


vol. 10929, pp. 94–110. Springer International Publishing (2018), https://doi.org/10.1007/

978-3-319-94144-8_6

[33] Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfia-

bility. Computers, IEEE Transactions on 48(5), 506–521 (1999), https://doi.org/10.1109/12.

769433

[34] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal

of Machine Learning Research 12, 2825–2830 (2011), http://www.jmlr.org/papers/v12/

pedregosa11a.html

[35] Peifer, D., Stillman, M., Halpern-Leistner, D.: Learning selection strategies in Buchberger’s

algorithm. In: Daumé III, H., Singh, A. (eds.) Proceedings of the 37th International Con-

ference on Machine Learning (ICML 2020). Proceedings of Machine Learning Research,

vol. 119, pp. 7575–7585. PMLR (2020), https://proceedings.mlr.press/v119/peifer20a.html

[36] Scott, J., Niemetz, A., Preiner, M., Nejati, S., Ganesh, V.: MachSMT: A machine learning-

based algorithm selector for SMT solvers. In: Groote, J.F., Larsen, K.G. (eds.) Tools and

Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer

Science, vol. 12652, pp. 303–325. Springer International Publishing (2021), https://doi.org/

10.1007/978-3-030-72013-1_16

[37] Selsam, D., Bjørner, N.: Guiding high-performance SAT solvers with unsat-core predictions.

In: Janota, M., Lynce, I. (eds.) Theory and Applications of Satisfiability Testing – SAT

2019. Lecture Notes in Computer Science, vol. 11628, pp. 336–353. Springer International

Publishing (2019), https://doi.org/10.1007/978-3-030-24258-9_24

[38] Wu, H.: Improving SAT-solving with machine learning. In: Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science Education. pp. 787–788. SIGCSE ’17,

ACM (2017), https://doi.org/10.1145/3017680.3022464

[39] Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm

selection for SAT. Journal Of Artificial Intelligence Research 32, 565–606 (2008), https:

//doi.org/10.1613/jair.2490

https://doi.org/10.1007/978-3-319-94144-8_6
https://doi.org/10.1007/978-3-319-94144-8_6
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
http://www.jmlr.org/papers/v12/pedregosa11a.html
http://www.jmlr.org/papers/v12/pedregosa11a.html
https://proceedings.mlr.press/v119/peifer20a.html
https://doi.org/10.1007/978-3-030-72013-1_16
https://doi.org/10.1007/978-3-030-72013-1_16
https://doi.org/10.1007/978-3-030-24258-9_24
https://doi.org/10.1145/3017680.3022464
https://doi.org/10.1613/jair.2490
https://doi.org/10.1613/jair.2490

	1 Introduction
	2 ML Classification for CAD Variable Ordering
	2.1 Cylindrical algebraic decomposition
	2.2 CAD variable ordering choice
	2.3 Results from CICM 2019
	2.4 Results from SC-Square 2019
	2.5 Results from MACIS 2019
	2.6 Software release for ICMS 2020
	2.7 Success and limitations

	3 Inspiration from the Literature
	3.1 Other applications of ML for CAD
	3.2 Reinforcement learning to optimise Buchberger's algorithm
	3.3 ML to predict algebraic computation directly
	3.4 ML in satisfiability checking
	3.5 Reinforcement learning for SAT-solver branching
	3.6 ML to predict mathematical structure
	3.7 Summary


