
Deciding Satisfiability for Fragments with Unary
Predicates and Difference Arithmetic
Bernard Boigelot1, Pascal Fontaine1 and Baptiste Vergain1

1Montefiore Institute, B28, Université de Liège, Belgium.

Abstract
We report our work in progress2 to build decision procedures for highly expressive languages mixing
arithmetic and uninterpreted predicates. More precisely, we study a language combining difference-logic
constraints and unary predicates. The decision problem is impacted by the domain of interpretation N,
Z, Q or R. For the integer domains N and Z, the problem reduces to deciding the monadic second-order
theory of N with the successor relation (S1S), which is known to be feasible by translating formulas
into automata, and then checking the emptiness of their accepted language. We also advocate the use of
automata as an appropriate tool to represent the set of models for the real domain R.

Keywords
Satisfiability, First-order logic, Unary uninterpreted predicates, Difference logic

1. Introduction

SMT (satisfiability modulo theories) solving has been very successfully used in various ap-
plications, most notably in verification (see e.g., [1]). Most SMT solvers were conceived as
decision procedures for quantifier-free fragments including interpreted symbols and arithmetic
operators. Support for quantifiers was mainly based on heuristics. Although some techniques
in SMT solvers (e.g., [2, 3, 4]) were later introduced to reach decidability for quantified but
purely arithmetic fragments, that is, without uninterpreted predicates, there has been little
attention to the problem of decidability of quantified fragments mixing uninterpreted symbols
and arithmetic.

There is a simple explanation to this: mixing arithmetic and predicate symbols quickly leads
to undecidability. For instance, Presburger arithmetic [5] is decidable, but adding a single
ternary uninterpreted predicate symbol (or a binary function) to the language augments the
expressive power to Peano arithmetic, since this uninterpreted symbol can be used to model
multiplication. In fact, even adding a single unary uninterpreted predicate to Presburger arith-
metic makes it undecidable [6]. It thus seems hopeless to find interesting decidable fragments
with uninterpreted predicates for arbitrarily quantified formulas, on the basis of full linear
arithmetic on integers.

2Our knowledge on this matter has significantly improved since this paper was written. An update on this work will
be provided in a following article.

SC2 2021: 6th International Workshop on Satisfiability Checking and Symbolic Computation, August 19–20, 2021
$ Bernard.Boigelot@uliege.be (B. Boigelot); Pascal.Fontaine@uliege.be (P. Fontaine); bvergain@uliege.be
(B. Vergain)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:Bernard.Boigelot@uliege.be
mailto:Pascal.Fontaine@uliege.be
mailto:bvergain@uliege.be
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

However, if we weaken the expressiveness of arithmetic, there exist decidable quantified
fragments with uninterpreted symbols, without restrictions on quantifiers. In Section 4 we recall
that Büchi automata (a type of finite automata working on infinite words) provide a decision
procedure for the monadic second-order theory of N with the successor relation (usually referred
to as S1S), a language which is essentially equivalent to difference logic with uninterpreted
predicates on the domain of the natural numbers N. In this extended abstract, we report on
our work in progress to study the decidability of difference logic with uninterpreted predicates
on various domains. For the domains of natural numbers N and integer numbers Z, this easily
reduces to checking the emptiness of the language described by Büchi automata. For the real
numbers however, the problem is significantly more complicated. We provide here some insights
and directions to solve it. Our motivation is to precisely draw the frontier of decidability for
satisfiability checking in presence of uninterpreted symbols and arithmetic.

After some prerequisites and notations in Section 2, we introduce in Section 3 the considered
language and informally discuss its expressive power. Section 4 provides a decision procedure
for this language when the domain is interpreted as the set of natural numbers N, restating a
well established equivalence with checking the emptiness of the language accepted by Büchi
automata. The following section adapts this result to the case of integers Z. We finally discuss
in Section 6 our work in progress on this language interpreted over the real numbers R, before
concluding.

2. Preliminaries

We refer to e.g. [7] for a general introduction to first-order logic with equality, and assume that
the reader is familiar with the notions of signature, term, variable, and formula. We use the
usual logical connectives (∨, ∧, ¬, ⇒, ≡) and first-order quantification (∃𝑥. 𝜙 and ∀𝑥. 𝜙). Our
signature essentially contains arithmetic symbols 0, 1, +, −, <, ≤, ≥, >, and uninterpreted
symbols 𝑃 , 𝑄,. . . . A constant in N stands for a term 1 + 1 + . . . 1. In the following, we only
consider unary predicate symbols. The set of all formulas built using variables and symbols
from a signature is the language of formulas. An interpretation specifies a domain (i.e., a set
of elements), assigns a value in the domain to each free variable, and assigns function and
predicate relations of appropriate arity to the function and predicate symbols in the signature.
We only consider interpretations whose domain is N, Z, Q or R. The arithmetic symbols are
interpreted on the chosen domain, that is, an interpretation always assigns its usual meaning
on the domain to each arithmetic symbol. The uninterpreted symbols are left free, that is, an
interpretation can assign to a unary predicate an arbitrary subset of the domain on which the
predicate is true, the predicate being false on the complement of this set in the domain.

By extension, an interpretation assigns a value in the domain to every term, and a truth value
to every formula. A model is an interpretation that assigns true to the formula. A formula is
satisfiable on a domain (N, Z, Q or R) if it has a model on that domain.

A fragment is a first-order language of formulas, possibly with further syntactical restrictions,
and a domain of interpretation. We say that a fragment is decidable if there is an effective
procedure to check whether a given formula in the language is satisfiable on this domain.

3. Difference arithmetic with unary predicates

We consider a first-order language of formulas, built using usual logical connectives (∨, ∧, ¬, ⇒,
≡) and first-order quantification (∃𝑥. 𝜙 and ∀𝑥. 𝜙). Atoms are either difference-logic constraints
of the form 𝑥 − 𝑦 ◁▷ 𝑐, where 𝑥 and 𝑦 are variables, 𝑐 is a constant in N, and ◁▷∈ {<,≤,=,
≥, >}, or unary predicate formulas 𝑃 (𝑥), where 𝑃 is an uninterpreted predicate symbol and
𝑥 is a variable. The formulas are interpreted on a given domain, equal to either N, Z, Q or R.
For the domains Z and R, our fragments are actually subsets of the SMT-LIB logics UFIDL and
UFRDL [8], i.e., the logics that mix Uninterpreted Functions and Difference Logic over the Integers
or the Reals. Since they only allow unary predicates, we call our fragments UF1NDL, UF1IDL,
UF1QDL and UF1RDL when the domain of interpretation is N, Z, Q and R respectively.

These fragments are actually quite expressive, as we illustrate now:

• 𝑃 (0) ∧ ¬𝑃 (1) ∧ ∀𝑥 ∀𝑦 . (𝑥− 𝑦 = 2) ⇒ (𝑃 (𝑥) ≡ 𝑃 (𝑦))
Over either N or Z, this formula states that the predicate 𝑃 is true for all even numbers.

• ∀𝑥 ∀𝑦 ∃𝑧 . 𝑥 < 𝑦 ⇒ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ∧ 𝑃 (𝑧))
This formula enforces the set of values that satisfy 𝑃 to be dense within the domain of
interpretation. It is obviously unsatisfiable if the domain itself is not dense, e.g., for the
domains N and Z.

• ∀𝑥 ∀𝑦 ∃𝑧 . 𝑥 < 𝑦 ⇒ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)
Since no predicate variable is used here, this sentence is valid if and only if the domain is
dense, which holds for Q and R.

• ∀𝑥 ∀𝑦 ∃𝑢∃𝑣 . 𝑥 < 𝑦 ⇒ (𝑥 < 𝑢 < 𝑦 ∧ 𝑥 < 𝑣 < 𝑦 ∧ 𝑃 (𝑢) ∧ ¬𝑃 (𝑣))
This property (that we call chaoticity) states that both the predicate 𝑃 and its complement
¬𝑃 are dense within the domain. In other words, there does not exist a non-empty open
interval of the domain in which 𝑃 is either uniformly true or uniformly false.

• (∃𝑖 ∀𝑥. 𝑃 (𝑥) ⇒ 𝑖 < 𝑥)
∧ (∀𝑏. (∀𝑥. 𝑃 (𝑥) ⇒ 𝑏 ≤ 𝑥) ⇒ (∃𝑦. (∀𝑥. 𝑃 (𝑥) ⇒ 𝑦 ≤ 𝑥) ∧ (𝑦 > 𝑏)))
This states that the subset described by 𝑃 admits a lower bound, but no maximal lower
bound; this partly expresses the negation of the Dedekind completeness property [9].

Notice that this logical formalism is sufficiently expressive to discriminate between the
various domains of interpretation. Namely, the sentence describing the density of the domain is
false on N and Z, and true on Q and R. It is easy to imagine a formula discriminating N from Z
by stating the existence of a smaller element. We are able to discriminate between Q and R
thanks to the last property.

4. The fragment UF1NDL

4.1. Satisfiability

The satisfiability problem for UF1NDL, i.e., our fragment interpreted over the natural numbers,
reduces to the satisfiability of S1S, that is, the monadic second-order theory of N with the
successor relation [10]. Indeed, the order relation 𝑥 ≤ 𝑦 can be reconstructed as follows in S1S:

∀𝑋 . (𝑋(𝑥) ∧ ∀𝑧 .𝑋(𝑧) ⇒ 𝑋(𝑧 + 1)) ⇒ 𝑋(𝑦)

It is also known that the language of models of a given S1S formula is recognizable by an
infinite-word automaton. Every formula of S1S can indeed be translated by structural induction
into a Büchi automaton that represents the set of its models [11]. Checking the satisfiability of
a given S1S formula therefore reduces to checking the emptiness of the language accepted by
the corresponding Büchi automaton, which is decidable [11, 10]. This shows that satisfiability
is decidable for UF1NDL.

4.2. From UF1NDL formulas to infinite-word automata

A related but slightly different way of deciding the satisfiability of the fragment UF1NDL consists
in translating directly UF1NDL formulas into infinite-word automata representing their models.
We now provide some details on this translation procedure.

A predicate 𝑃 : N → {⊤,⊥} can be encoded by an infinite word 𝑎0𝑎1𝑎2 . . . ∈ {0, 1}𝜔 ,
where for all 𝑖 ∈ N, 𝑎𝑖 = 1 iff 𝑃 (𝑖) = ⊤. Similarly, the value of a variable 𝑥 ∈ N can be encoded
by the word 0𝑥10𝜔 . For a formula 𝜙(𝑃1, . . . , 𝑃𝑛, 𝑥1, . . . , 𝑥𝑚) with predicates 𝑃1, . . . , 𝑃𝑛 and
free variables 𝑥1, . . . , 𝑥𝑚, an interpretation of these variables and predicates over N is encoded
by an infinite word over the alphabet {0, 1}𝑛+𝑚, every symbol of which provides one digit of
the encoding of each predicate and each variable value.

For a given UF1NDL formula 𝜙, the set of encodings of the models of 𝜙 forms a language
𝐿(𝜙). It is easily shown that this language is 𝜔-regular, and that a Büchi automaton that accepts
this language can effectively be built, by proceeding by induction on the structure of 𝜙. The
atoms 𝑥𝑖 − 𝑥𝑗 ◁▷ 𝑐 and 𝑃𝑖(𝑥𝑗) directly translate into elementary automata. Then, similarly to
the translation of S1S formulas into automata, one applies Boolean connectives and quantifiers
by means of automata manipulations that essentially amount to performing the same operation
on their accepted languages [11]. The problem of deciding whether 𝜙 is satisfiable then becomes
equivalent to checking whether the resulting automaton accepts a non-empty language.

This decision procedure has the advantage of simplicity, but requires to be able to complement
Büchi automata, which is a costly operation in practice [12, 13].

4.3. From infinite-word automata to UF1NDL formulas

The translation procedure from UF1NDL to Büchi automata sketched in Section 4.2 suffices to
establish that satisfiability is decidable for UF1NDL. It is however worth mentioning that the
reverse translation is also possible, which shows that UF1NDL and Büchi automata share the
same expressive power.

More precisely, given a Büchi automaton accepting a language 𝐿, one can build a formula of
UF1NDL that is satisfiable iff 𝐿 is not empty. The main principle of this translation consists in
employing the appropriate number of predicates for encoding the sequence of states visited by
the automaton during a run. One then constructs a formula that checks that every step in this
sequence satisfies the transition relation of the automaton, that its first element corresponds to
the initial state of the automaton, and that it describes an accepting run [10].

5. The fragment UF1IDL

The decision procedure for UF1NDL outlined in Section 4.2 straightforwardly generalizes to
the integer domain. The only difficulty is to design a scheme for encoding values in Z and
predicates over Z as infinite words.

A solution consists in encoding 𝑘 ∈ Z such that 𝑘 ≥ 0 as 02𝑘10𝜔 , and 𝑘 < 0 as 0−2𝑘−110𝜔 .
The same idea can be adapted to represent predicates. With this encoding, the atoms 𝑥𝑖−𝑥𝑗 ◁▷ 𝑐
and 𝑃𝑖(𝑥𝑗) translate into elementary automata that are identical or only slightly more complex
than the ones obtained for UF1NDL. The same approach then reduces the decidability of UF1IDL
to the problem of checking whether the automaton constructed from a given formula accepts a
non-empty language.

6. The fragment UF1RDL

We now address the problem of deciding satisfiability for UF1RDL formulas, i.e., our fragment
interpreted over the domain R. As a first step, we only consider a restricted fragment that we
call Weak UF1RDL (WUF1RDL), in which

• each formula involves at most one unary uninterpreted predicate 𝑃 ,
• difference-logic atoms are of the form 𝑥− 𝑦 ◁▷ 0, i.e., the only constant allowed is 0.

Notice that even with such restrictions, all the properties illustrated in Section 3 but the first
one remain expressible.

Our goal is to follow the same approach as in Sections 4 and 5 for the domains N and Z,
which consists in designing an encoding scheme for the predicate and variable values, building
a symbolic representation of the set of models of a given formula, and checking whether this
set is empty or not.

6.1. Encoding predicates

Unlike the case of the integer domains N and Z, a predicate 𝑃 : R → {⊤,⊥} cannot be
unambiguously encoded as an infinite word 𝑎0𝑎1𝑎2 . . . over some finite alphabet. Such a precise
representation of 𝑃 is however not needed. Indeed, the fragment WUF1RDL does not make
it possible to express constraints about the absolute difference between real values, but only
about their relative order. This means that if two predicates 𝑃 and 𝑃 ′ admit characteristic
sets {𝑥 ∈ R | 𝑃 (𝑥)} and {𝑥 ∈ R | 𝑃 ′(𝑥)} whose elements are ordered in the same way
over R, then for every formula 𝜙 of WUF1RDL involving one predicate and 𝑚 free variables,
𝜙(𝑃, 𝑥1, . . . , 𝑥𝑚) is satisfiable iff 𝜙(𝑃 ′, 𝑥1, . . . , 𝑥𝑚) is satisfiable as well.

Instead of designing an encoding scheme that precisely describes a given predicate, we thus
opt for an abstract encoding relation that maps multiple predicate interpretations onto the same
representation. Our goal is to design this relation in such a way that if two predicates 𝑃 and 𝑃 ′

share the same representation, then for every formula 𝜙 of WUF1RDL involving one predicate
and 𝑚 free variables, 𝜙(𝑃, 𝑥1, . . . , 𝑥𝑚) will be satisfiable iff 𝜙(𝑃 ′, 𝑥1, . . . , 𝑥𝑚) is satisfiable as
well.

Consider an arbitrary predicate 𝑃 : R → {⊤,⊥}. We define the set 𝑇𝑃 ⊆ R as the set of all
real values that belong to an open interval in which 𝑃 is uniformly true. Similarly, we define
𝐹𝑃 ⊆ R as the set of all real values that belong to an open interval in which 𝑃 is uniformly
false. Finally, we define 𝐶𝑃 ⊆ R as the set of all real values that belong to an open interval that
has an empty intersection with 𝑇𝑃 ∪ 𝐹𝑃 . In such an interval, the behavior of 𝑃 is necessarily
chaotic (cf. Section 3), since this interval cannot contain a sub-interval of non-zero length in
which 𝑃 has a constant value.

Each of the sets 𝑇𝑃 , 𝐹𝑃 and 𝐶𝑃 is thus equal to a union of non-empty open intervals in
R, with the additional property that those intervals do not overlap. This union is therefore
necessarily countable [14], since each of them contains a rational value that does not belong to
the others. Let 𝐼𝑃 denote the set of those intervals. The set 𝑇𝑃 ∪ 𝐹𝑃 ∪ 𝐶𝑃 entirely covers R
except for a (possibly uncountable) number of discrete points, that we gather in a set 𝐸𝑃 . The
elements of 𝐸𝑃 correspond to the endpoints of the intervals in 𝐼𝑃 , together with the limits of
all convergent sequences of such endpoints.

The set 𝐼𝑃 ∪ 𝐸𝑃 thus forms a totally ordered partition of R. The following picture depicts
such a partition, in which the elements of 𝐼𝑃 are shown as rectangles and those of 𝐸𝑃 as black
dots. It is possible that an infinite number of intervals of 𝐼𝑃 appear within a bounded interval of
the real line; the smaller dots appearing between two black dots in the right part of the picture
illustrate such a behavior.

In order to obtain an abstract representation for the predicate 𝑃 , we use the notion of word
over linear orderings introduced in [15], that generalizes the concept of infinite word. Given a
totally ordered set 𝑋 and a finite alphabet Σ, a word over 𝑋 is a mapping from the ordering
of 𝑋 to Σ, i.e., a function that associates each element of the ordering with an element of the
alphabet.

For a predicate 𝑃 : R → {⊤,⊥}, we define the abstract encoding of 𝑃 as the word 𝑤 over
the totally ordered set 𝐼𝑃 ∪𝐸𝑃 that maps every element of 𝐼𝑃 onto the alphabet {𝑇, 𝐹,𝐶}, and
every element of 𝐸𝑃 onto {⊤,⊥}. For every 𝐼 ∈ 𝐼𝑃 , one has 𝑤(𝐼) = 𝑇 if 𝐼 ⊆ 𝑇𝑃 , 𝑤(𝐼) = 𝐹
if 𝐼 ⊆ 𝐹𝑃 , and 𝑤(𝐼) = 𝐶 if 𝐼 ⊆ 𝐶𝑃 . For every 𝑥 ∈ 𝐸𝑃 , one has 𝑤(𝑥) = ⊤ if 𝑃 (𝑥) = ⊤ and
𝑤(𝑥) = ⊥ if 𝑃 (𝑥) = ⊥.

6.2. Encoding variables

The abstract encoding of variable values must contain enough information to represent their
relative order, as well as their relation with the predicate 𝑃 . We encode each variable value as a
word over the same totally ordered set 𝐼𝑃 ∪ 𝐸𝑃 as for the predicate 𝑃 , or over an arbitrarily
chosen ordering in the case of a formula with no predicate. For a variable, every element of 𝐼𝑃
is mapped onto a single symbol 𝐹 , and every element 𝑥 of 𝐸𝑃 onto the alphabet {⊤,⊥}, such
that 𝑤(𝑥) = ⊤ iff the value of the variable is equal to 𝑥.

With this encoding scheme, one cannot encode a variable value that does not belong to 𝐸𝑃 .
This is not problematic, since intervals can easily be split. If one needs to express that a variable
has a value that belongs to an interval (𝑎, 𝑏) ∈ 𝐼𝑃 , this interval can be replaced in 𝐼𝑃 by both

(𝑎, 𝑐) and (𝑐, 𝑏), where 𝑐 is any value such that 𝑎 < 𝑐 < 𝑏, and 𝑐 is then added to 𝐸𝑃 . Since the
number of variables is finite, this operation has only to be carried out finitely many times.

Finally, just like in the case of the integer domains N and Z, the abstract encodings of the
predicates and all variables can be combined into a single word over the totally ordered set
𝐼𝑃 ∪ 𝐸𝑃 . Each element of 𝐼𝑃 is mapped onto the alphabet {𝑇, 𝐹,𝐶} × {𝐹}𝑚, where 𝑚 is the
number of variables, and each element of 𝐸𝑃 is mapped onto {⊤,⊥}1+𝑚.

6.3. Representing the set of models of a formula

A notion of automaton operating on words over any total ordering (hence possibly uncountable
ones) has been introduced in [15]. We conjecture that this formalism makes it possible to
represent symbolically the set of models of any WUF1RDL formula. More precisely, we aim at
establishing that for every formula 𝜙 with one predicate and 𝑚 free variables:

• for every predicates 𝑃 and 𝑃 ′ that share the same abstract encoding (cf. Section 6.1),
𝜙(𝑃, 𝑥1, . . . , 𝑥𝑚) is satisfiable iff 𝜙(𝑃 ′, 𝑥1, . . . , 𝑥𝑚) is satisfiable as well,

• the set of encodings of the models of 𝜙 can be recognized by an automaton over total
orderings, and such an automaton can effectively be built by structural induction on 𝜙,

• the formula 𝜙 is satisfiable iff its corresponding automaton accepts a non-empty language.

Those properties hold for the atomic formulas of WUF1RDL. In order to be able to apply
Boolean connectives and to perform quantification, one needs to provide corresponding op-
erations on the automata representing the set of models of the formula being handled, and
show that these operations preserve the properties of interest. The main difficulty revolves
around the complementation operation, which is needed in particular for handling universal
quantification.

The problem of complementing automata over total orderings has been investigated in [16]
and [17]. A solution has been obtained for automata operating over a restricted class of total
orderings called finite-rank orderings. Whether this class is suited for representing models of
WUF1RDL formulas remains an open problem, the question being to establish that for every
formula 𝜙, the set of finite-rank models of 𝜙 is non-empty iff 𝜙 is satisfiable. Our preliminary
results about this problem are promising. Finally, the problem of checking the emptiness of the
language accepted by an automaton over a total ordering is solved in [18].

7. Conclusions and future work

In this work, we have investigated highly expressive first-order languages that stand close to
the frontier of decidability. These fragments mix difference-logic constraints and uninterpreted
unary predicates, and their expressive power varies with their domain of interpretation.

For the domains of natural and integer numbers, there exists a natural translation of formulas
expressed in the corresponding fragments into finite automata. Such automata can effectively be
built by structural induction over the formulas, and provide a symbolic representation of their
set of models. Checking whether a given formula is satisfiable amounts to checking whether
the language accepted by the corresponding automaton is empty or not.

The case of the rational and real domains is more involved, since the expressive power of
even a single unary predicate over a dense domain makes it possible to describe structures
that are more complex than for the natural and integer domains. One could be startled by this,
since arithmetic theories over the reals are very often simpler to handle than those over the
integers, and usually admit decision procedures of lower complexity [19]. This is not the case
for the fragments studied here, for which it actually turns out that the problem of deciding their
satisfiability over N or Z reduces to the same problem over R, and not the other way around.
Indeed, one can easily define a predicate over R that is only true for isolated values, and express
the property that each of those values admit exactly one successor, which essentially allows to
simulate natural or integer numbers with real variables.

We have presented our work in progress aimed at developing a decision procedure for the
logic UF1RDL. Our approach relies on the automata over total orderings introduced in [15]. Our
first-priority goal is to establish that these automata provide suitable symbolic representations
for the sets of models of formulas that involve a single unary predicate and difference-logic
constraints of the form 𝑥− 𝑦 ◁▷ 0.

The generalization of this result to formulas with multiple predicates seems to be straight-
forward; it essentially amounts to synchronizing the abstract encodings of all predicates with
respect to the same total order, and adding equality and disequality constraints over them in
each elementary interval of the representation. Allowing constraints of the form 𝑥 − 𝑦 ◁▷ 𝑐
for arbitrary values of 𝑐 seems to be more difficult, and would require to adapt the encoding of
predicate and variable values so as to be able to reason about the absolute difference between
values.

Our motivation is here to precisely draw the frontier of decidability for satisfiability checking
of formulas containing uninterpreted symbols and arithmetic. This could also give us insights
for quantifier elimination, or rather more generally for handling quantifiers for fragments
mixing uninterpreted symbols and arithmetic.

Finally, another perspective would be to investigate the possibility of lifting our results to
the domain of rational numbers.

References

[1] C. Barrett, D. Kroening, T. Melham, Problem Solving for the 21st Century: Efficient
Solvers for Satisfiability Modulo Theories, Technical Report 3, London Mathematical
Society and Smith Institute for Industrial Mathematics and System Engineering, 2014. URL:
http://theory.stanford.edu/~barrett/pubs/BKM14.pdf, Knowledge Transfer Report.

[2] P. Rümmer, A constraint sequent calculus for first-order logic with linear integer arithmetic,
in: I. Cervesato, H. Veith, A. Voronkov (Eds.), Proceedings, 15th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, volume 5330 of Lecture
Notes in Computer Science, Springer, 2008, pp. 274–289.

[3] N. Bjørner, Linear quantifier elimination as an abstract decision procedure, in: J. Giesl,
R. Hähnle (Eds.), Automated Reasoning, 5th International Joint Conference, IJCAR 2010,
Edinburgh, UK, July 16-19, 2010. Proceedings, volume 6173 of Lecture Notes in Computer
Science, Springer, 2010, pp. 316–330.

http://theory.stanford.edu/~barrett/pubs/BKM14.pdf

[4] E. Ábrahám, J. H. Davenport, M. England, G. Kremer, Deciding the consistency of non-
linear real arithmetic constraints with a conflict driven search using cylindrical algebraic
coverings, Journal of Logical and Algebraic Methods in Programming 119 (2021) 100633.

[5] M. Presburger, On the completeness of a certain system of arithmetic of whole numbers
in which addition occurs as the only operation, History and Philosophy of Logic 12 (1991)
225–233. English translation of the original paper from 1929.

[6] J. Y. Halpern, Presburger arithmetic with unary predicates is Π1
1 complete, The Journal of

Symbolic Logic 56 (1991) 637–642.
[7] H. B. Enderton, A mathematical introduction to logic, Elsevier, 2001.
[8] C. Barrett, P. Fontaine, C. Tinelli, The Satisfiability Modulo Theories Library (SMT-LIB),

www.SMT-LIB.org, 2016.
[9] E. J. McShane, Partial orderings and Moore-Smith limits, The American Mathematical

Monthly 59 (1952) 1–11.
[10] W. Thomas, Languages, automata, and logic, in: Handbook of formal languages, Springer,

1997, pp. 389–455.
[11] J. R. Büchi, On a decision method in restricted second order arithmetic, Logic, Methodology

and Philosophy of Science, 1962.
[12] S. Safra, Complexity of automata on infinite objects, Ph.D. thesis, Weizmann Institute of

Science, 1989.
[13] A. P. Sistla, M. Y. Vardi, P. Wolper, The complementation problem for Büchi automata

with applications to temporal logic, Theoretical Computer Science 49 (1987) 217–237.
[14] W. Sierpiński, Cardinal and ordinal numbers (2nd edition), PWN, Warszawa, 1965.
[15] V. Bruyère, O. Carton, Automata on linear orderings, Journal of Computer and System

Sciences 73 (2007) 1–24.
[16] C. Rispal, O. Carton, Complementation of rational sets on countable scattered linear

orderings, International Journal of Foundations of Computer Science 16 (2005) 767–786.
[17] C. Rispal, Automates sur les ordres linéaires: Complémentation, Ph.D. thesis, Université

de Marne la Vallée, 2004.
[18] O. Carton, Accessibility in automata on scattered linear orderings, in: International

Symposium on Mathematical Foundations of Computer Science, Springer, 2002, pp. 155–
164.

[19] J. Ferrante, C. W. Rackoff, The computational complexity of logical theories, volume 718,
Springer, 2006.

	1 Introduction
	2 Preliminaries
	3 Difference arithmetic with unary predicates
	4 The fragment UF1NDL
	4.1 Satisfiability
	4.2 From UF1NDL formulas to infinite-word automata
	4.3 From infinite-word automata to UF1NDL formulas

	5 The fragment UF1IDL
	6 The fragment UF1RDL
	6.1 Encoding predicates
	6.2 Encoding variables
	6.3 Representing the set of models of a formula

	7 Conclusions and future work

