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Abstract
In this short note, we consider an application of ideals of points in biology and algebraic statistics
proposed by Laubenbacher and Stigler. We do this from the Degröbnerization perspective, avoiding
unnecessary computations of Gröbner bases, and instead, when possible, leaning on linear algebra and
combinatorial methods.
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1. Introduction

Following the convention of [13], let 𝒫 := k[𝑥1, ..., 𝑥𝑛] be the polynomial ring over a field k,
and let 𝐼 be a zero-dimensional ideal in 𝒫 . Then 𝒫/𝐼 is finite as a vector space over k. Let 𝐴
denote a set of polynomials such that its image under the map 𝒫 → 𝒫/𝐼 is a vector space basis
for 𝒫/𝐼 .

Having a basis for 𝒫/𝐼 means that we can define a normal form for elements in 𝒫 as
Nf(𝑝,𝐴) =

∑︀
𝑡∈𝐴 𝑐𝑡𝑡, where the coefficients {𝑐𝑡} are uniquely determined by requiring that

𝑝−
∑︀

𝑡∈𝐴 𝑐𝑡𝑡 is zero under the map 𝒫 → 𝒫/𝐼 .
The most common way of choosing a vector space basis for 𝒫/𝐼 is as the image of the Gröbner

escalier with respect to a fixed term order under the map 𝒫 → 𝒫/𝐼 . Recall that the Gröbner
escalier, sometimes referred to as the Gröbner staircase, or the standard monomials, is the set of
monomials outside the leading monomial ideal with respect to the term order.

We denote the Gröbner escalier of 𝐼 by 𝑁(𝐼). The border of 𝑁(𝐼) is the set of terms
{𝑥𝑖𝑡 : 𝑡 ∈ 𝑁(𝐼)} ∖ 𝑁(𝐼). With this notation, the set {𝑡 − Nf(𝑡,𝑁(𝐼)) : 𝑡 on the border of
𝑁(𝐼)} becomes a Gröbner basis for 𝐼 .

Given a finite set of points X = {𝑃1, ..., 𝑃𝑁} ⊂ k𝑛, let us denote by 𝑃𝑖 = (𝑎1𝑖, ..., 𝑎𝑛𝑖),
1 ≤ 𝑖 ≤ 𝑁 , the coordinates of the points and by 𝐼(X) the zero dimensional ideal of all
polynomials vanishing on X; the vanishing ideal with respect to X.
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One important feature of a Gröbner basis is that it provides a way to compute normal forms
via Buchberger’s reduction. We stress, however, that for vanishing ideals of points, the tools
provided by this reduction process should be considered non-optimal, and we will in Proposition
1 recall an alternative way of efficiently computing the coefficients of the normal form

∑︀
𝑡∈𝐴 𝑐𝑡𝑡,

which goes in line with the idea of Degröbnerization.
There are several algorithms available for computing a vector space basis for 𝒫/𝐼 . For our

purposes the most important ones are the Buchberger-Möller algorithm and the Cerlienco-Mu-
reddu Correspondence. We point the reader to the paper [1] for a discussion of other methods,
in particular the Möller algorithm. We remark also that the treatment of the Buchberger-Möller
algorithm and the Cerlienco-Mureddu Correspondence is done in a more careful way in [1].
sation

The Buchberger-Möller algorithm [12] is a method based on linear algebra that determines
𝑁(𝐼(X)), the border, and the Gröbner basis (by computing the normal form of the border
elements).

The Cerlienco and Mureddu algorithm [3, 4, 5] computes 𝑁(X) combinatorially by defining
a bijection (the Cerlienco-Mureddu Correspondence) Φ : X → 𝑁(𝐼(X)) between X and
𝑁(𝐼(X)), with respect to the lexicographical term ordering.

The main ways of implementing the Cerlienco-Mureddu Correspondence is by means of the
Lex Game [6], and the Iterative Lex Game [1, 2]. The number of comparisons needed in the Lex
Game, which iterates over the coordinates, is bounded by 𝑛𝑁 + 𝑁2, see [10]. However, for
many purposes it is important to be able to iterate over the points, and the Iterative Lex Game
does this with complexity 𝑂(𝑁2𝑛 log(𝑁)).

Le us finally recall the following proposition.

Proposition 1 ([10]). Let X = {𝑃1, ..., 𝑃𝑁} be a finite set of points, let 𝐼 = 𝐼(X) ⊆
k[𝑥1, ..., 𝑥𝑛] be the vanishing ideal with respect to X, and let 𝐴 = {𝑡1, ..., 𝑡𝑁} ⊂ k[𝑥1, ..., 𝑥𝑛] be
such that its image under the map 𝒫 → 𝒫/𝐼 is a vector space basis for 𝒫/𝐼 .

Then, for each 𝑓 ∈ k[𝑥1, ..., 𝑥𝑛], we have

Nf(𝑓,𝐴) = (𝑡1, ..., 𝑡𝑁 )(𝐴[X]−1)𝑡(𝑓(𝑃1), ..., 𝑓(𝑃𝑁 ))𝑡, (1)

where 𝐴[X] is the matrix whose rows are the evaluations of 𝐴 at the elements of X, and where
Nf(𝑓,𝐴) is the normal form of 𝑓 with respect to 𝐼(X) and the basis.

The above Proposition 1 shows that, as soon as we have X and a basis of the quotient algebra
𝒫/𝐼(X), computing the normal form of any polynomial modulo 𝐼(X) is only a matter of
evaluations and linear algebra.

2. Gröbner technologies for gene regulatory networks

We now briefly describe the model for gene regulatory networks introduced by Laubenbacher
and Stigler [8]. For a more detailed treatment, we refer to [1].

Let 𝑝 be a prime and let X = {𝑃1, ..., 𝑃𝑁} ⊆ (Z𝑝)
𝑛 be a set of points, and consider the map

𝐹 : (Z𝑝)
𝑛,→ (Z𝑝)

𝑛, 𝐹 (𝑃𝑖) = (𝑓1(𝑃𝑖), . . . , 𝑓𝑛(𝑃𝑖)), where

𝑓𝑗 : (Z𝑝)
𝑛 → Z𝑝, 1 ≤ 𝑗 ≤ 𝑛 : (𝑓1(𝑃𝑖), . . . , 𝑓𝑛(𝑃𝑖)) = 𝑃𝑖+1, 𝑖 = 1, . . . , 𝑁 − 1. (2)



These functions represent the dynamical system in question, where the variables represent
the genes, and the points represent the states the genes can be in.

What is done in [8] is to separately compute the functions 𝑓𝑗 , 1 ≤ 𝑗 ≤ 𝑛, as polynomials in
normal form, namely in reduced form modulo the ideal 𝐼(X).

In a further paper [9] Lauenbacher and Stigler apply their tool to the design of experiments
[14] remarking that their algorithm can be applied simply adapting Eq.(2) after redefining 𝐹 as

𝐹 (𝑃𝑖) = (𝑓1(𝑃𝑖), . . . , 𝑓𝑛(𝑃𝑖)) = 𝑄𝑖, 𝑖 = 1, . . . , 𝑁

for specific given points 𝑄𝑖 ∈ k𝑛, 𝑖 = 1, . . . , 𝑁.

3. The Gröbnerian approach versus the Degröbnerization
approach

To solve both problems, Laubenbacher and Stigler propose to first determine a particular solution
for each 𝑓𝑗 , then compute a Gröbner basis 𝒢 of 𝐼(X), via the Buchberger-Möller algorithm, and
finally determine the normal form of each particular solution using Buchberger’s reduction.

The complexity of this procedure is reported, see [8], to be quadratic in the number of
variables and exponential in the number 𝑁 of time points, but in fact, using a trick in the
reduction process, see [1], the algorithm of [8] can be improved to work within the complexity
𝑂(𝑛2𝑁3((log(𝑝))2)).

In the Degröbnerization approach, the evaluation 𝐹 (𝑃𝑖) of a particular solution is directly
read from X, a linear basis for k[𝑥1, ..., 𝑥𝑛]/𝐼 is computed by the Lex Game, or the iterative
Lex Game algorithm, and Proposition 1 is used for the normal form computation.

Even if we use the slower iterative Lex Game algorithm for computing the linear basis, we
obtain an improvement by a factor 𝑛; the complexity using the iterative Lex Game algorithm
is 𝑂(𝑛𝑁3(log(𝑝))2) [1]. As we usually have 𝑛 > 𝑁 in these biological applications [7], this
improvement is substantial.

Let us remark that both the algorithm by Laubenbacher and Stigler [8] and our Degröb-
nerization approach share the same input and output, but uses alternative and in some sense
dual approaches to describe and process the data. The major practical advantage of the latter
approach is the shortcut achieved by skipping the computation of a Gröbner basis. But the
two approaches represent a real change of perspective. In the Gröbner framework, data are
represented via the polynomial ideal. On the other hand, Degröbnerization represents data via
the quotient algebra, with its multiplicative structure.

We have discussed the problem in the original setting where the coefficients are considered
in the finite field Z𝑝; however both algoritms hold (and in principle could have important
applications [14]) in the general case of an arbitrary field. We refer the reader to [1] for a careful
analysis of this approach.
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