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Abstract
It is almost fifty years since cylindrical algebraic decomposition was introduced: it was far better than
previous ideas, but the algorithm was doubly exponential in the number of variables. Various mitigations
have been developed over the last forty years. But we have known for over thirty years that cylindrical
algebraic decomposition has a worst-case lower bound doubly-exponential in the number of quantifier
alternations, which in worst case is proportional to the number of variables. This lower bound can
describe the degree of the polynomials, or the number of polynomials, or both. This paper explores the
reasons for this, and what further developments, theoretical or practical, might be possible.
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1. Introduction

Cylindrical Algebraic Decomposition was introduced as the first practical, albeit doubly expo-
nential in 𝑛 the number of variables, tool to solve Real Quantifier Elimination in [1]. Since then
there have been many developments in the algorithms: see Table 1. Let 𝑑 be the total degree
of the input polynomials, 𝑚 the number of input polynomials, 𝑞 the number of equational
constraints, 𝑛 the number of variables and 𝑎 the number of alternations of quantifiers, so that
𝑎 ≤ 𝑛− 1.

Table 1
Summary table: 𝑒𝑑 and 𝑒𝑚 are double exponents of 𝑑 and 𝑚: 𝑑2

𝑒𝑑𝑚2𝑒𝑚

Idea 𝑒𝑚 𝑒𝑑
Collins (see Appendix A) 𝑛+𝑂(1) (log2 3)𝑛+𝑂(1)
McCallum (but nullification) 𝑛+𝑂(1) 𝑛+𝑂(1)
Lazard (proof in [2]) 𝑛+𝑂(1) 𝑛+𝑂(1)
Equational Constraints (?) 𝑛− 𝑞 +𝑂(1) (?) 𝑛− 𝑞 +𝑂(1)
Virtual Term Substitution (?) 𝑂(𝑎) challenges
Comprehensive Gröbner Bases (??) 𝑂(𝑎) (??) 𝑂(𝑎)–𝑛+𝑂(1)
Regular Chains (??) 𝑛− 𝑞 +𝑂(1) (??) 𝑛− 𝑞 +𝑂(1)

Here “(?)” means “under suitable conditions” (not always very well-defined), and “(??)” means “wild
guess by the author”: see later.
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It is thirty five years since Davenport & Heintz sat in a café in Strasbourg and wrote the draft
of “Real Quantifier Elimination is Doubly Exponential”. “Doubly exponential” means that the
complexity is 𝑑2

𝑒𝑑𝑚2𝑒𝑚 where 𝑒𝑑 and 𝑒𝑚 depend non-trivially on 𝑛 (or on 𝑎).

Theorem 1. 𝑒𝑑, 𝑒𝑚 ∈ Ω(𝑛). More precisely, Davenport & Heintz [3] showed that, for any
algorithm solving quantifier elimination, whether or not by constructing cylindrical algebraic
decompositions (CAD), both 𝑒𝑑 and 𝑒𝑚 were at least 𝑛/5 + 𝑂(1), with 𝑎 being Θ(𝑛) (in fact
2𝑛/5+𝑂(1)), and Brown & Davenport [4] showed (again with 𝑎 beingΘ(𝑛), this time 2𝑛/3+𝑂(1))
that 𝑒𝑚 was at least 𝑛/3 +𝑂(1), even if 𝑑 = 1.

Collins’ initial CAD construction [1] to solve quantifier elimination had an upper bound for the
double exponents of (log2 3)𝑛+𝑂(1), reduced (conditional on no nullification) to 𝑛+𝑂(1) by
McCallum [5], and unconditionally by the ideas of Lazard [6, justified by [2]]. McCallum could
reduce 𝑒𝑚 when there were equational constraints (and no nullification), but there are problems
in translating this to the Lazard setting [7]. Davenport & England [8, 9] can use equational
constraints and Gröbner bases to reduce 𝑒𝑑, but again there are conditions.

2. Collins’ algorithm and its descendants

We first consider the Collins algorithm and its descendants. These are generically known
as “Projection and Lifting” algorithms. Some other approaches to CAD or to real quantifier
elimination will be discussed in subsequent sections.

2.1. Projection Polynomials

The obvious problems with real algebraic geometry in two dimensions 𝑥 and 𝑦 are that two
curves (zeros of 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦)) can cross, or that a curve can bend back on itself, or go
through infinity. We can detect the 𝑥 coordinates (projections on the 𝑥 axis) of such potential
trouble easily enough, by producing “projection polynomials” in 𝑥 alone.

The resultant res𝑦(𝑓, 𝑔) is a polynomial in 𝑥, whose roots are the values of 𝑥 above which 𝑓
and 𝑔 cross. Note that it is possible that they may cross when 𝑥 is real but 𝑦 is not, but
this is a problem we would discover later on in the lifting process: see Question 3.

The discriminant disc𝑦(𝑓) is a polynomial in 𝑥, whose roots are the values of 𝑥 above which
𝑓 is momentarily vertical, and so may double back on itself. Again, it might do this
in complex space, but again this is a problem we would discover later on in the lifting
process.

The leading coefficient lc𝑦(𝑓) (with respect to 𝑦) is a polynomial whose roots are the values
of 𝑥 above which 𝑓 is momentarily infinite. The same caveat about complex values applies
here.

The same applies in 𝑛 dimensions 𝑥1, . . . , 𝑥𝑛, and we have to consider res𝑥𝑛(𝑓, 𝑔), disc𝑥𝑛(𝑓)
and lc𝑥𝑛(𝑓), which are polynomials in 𝑥1, . . . 𝑥𝑛−1, collectively known as the projection of the
original polynomials.



2.2. Lifting and Nullification

The trouble is that, on some subspace of R𝑛−1, one of these projection polynomials may vanish
identically (be nullified), and, while telling us that there are problems here, this may conceal
the fact that there are multiple kinds of problems. The solution for the nullification of a leading
coefficient is to consider more coefficients in the projection phase. Conceptually we consider
enough coefficients that we can be sure that they do not all vanish simultaneously: from the
point of view of complexity analysis we bound this by considering all coefficients.

Nullification of a resultant or discriminant is more tedious, and we have to consider, not
just them, but all the principal subresultants (see, e.g. [10]) on the way to computing them.
If our polynomials have degree 𝑑, there may be Θ(𝑑) such subresultants for one resultant or
discriminant, and it is this that accounts for the relatively worse complexity of Collins’ method.

2.3. McCallum’s improvement

Collins considered sign-invariant polynomials, i.e. in every region of the cylindrical algebraic
decomposition, each polynomial must be uniformly positive, or negative, or zero. Since a
polynomial cannot go from positive to negative except via zero, we are really looking at
vanishing/non-vanishing. McCallum [5] strengthened this to order-invariant, i.e. we insist on
the same order of vanishing. He also did not consider the subresultants. This gave him 𝑒𝑚, 𝑒𝑑 =
𝑛+𝑂(1), at the cost of not handling nullification. This gave rise to various developments.

[5] Lift order-invariant polynomials: 22
𝑛+𝑂(1)

.
But we give up (i.e. revert to [1]) if any polynomial becomes identically zero over any region,

e.g. (𝑥2 + 𝑦2)𝑧 + (𝑥4 + 𝑦4) over 𝑥 = 𝑦 = 0: these are nullifying regions.
[11] If we have Φ := 𝑃 (𝑦1, . . . , 𝑦𝑛) = 0 ∧ Φ̂ (equational constraint). Reduces 𝑛 by 1 in 𝑒𝑚.
[12] Several 𝑠 equational constraints. Reduces 𝑛 by 𝑠 in 𝑒𝑚.
[13] The equational constraints don’t need to be ∧ with the rest: consider Φ as a truth table.
[14] Shows that 𝑠 equational constraints reduce 𝑛 by 𝑠 in both 𝑒𝑚 and 𝑒𝑑, if the relevant

projection polynomials are primitive, necessary by [8]. See [15].
[2] Lift Lex-least invariant polynomials (idea from [6], flawed proof) — gets rid of the But

issue with [5] and slightly improves the complexity.
[16] Improvement to [2]: doesn’t change asymptotic complexity but useful in practice.

Challenge: can we merge [2, 16] with equational constraints, either [11] or [12], or [13] or
even [15]?

3. Equational Constraints

Consider 𝑓(𝑦1, . . . , 𝑦𝑛) = 0 ∧ (𝑔1 > 0 * 𝑔2 > 0) (and in general 𝑘 𝑔𝑖), where * is either ∧ or ∨.

[5] To understandR𝑛 we projectdisc𝑦𝑛(𝑓), disc𝑦𝑛(𝑔1), disc𝑦𝑛(𝑔2), res𝑦𝑛(𝑓, 𝑔1), res𝑦𝑛(𝑓, 𝑔2),
res𝑦𝑛(𝑔1, 𝑔2) (and in general 𝑘(𝑘 + 3)/2 polynomials), assuming none of these have nul-
lifying regions.



[11] To understand R𝑛|𝑓=0 we project just disc𝑦𝑛(𝑓), res𝑦𝑛(𝑓, 𝑔1), res𝑦𝑛(𝑓, 𝑔2) (and in gen-
eral 𝑘 + 1 polynomials). In the absence of nullification this is sufficient: for example
res𝑦𝑛−1(res𝑦𝑛(𝑓, 𝑔1), res𝑦𝑛(𝑓, 𝑔2)) contains all the information we need from res𝑦𝑛(𝑔1, 𝑔2),
and disc𝑦𝑛−1(res𝑦𝑛(𝑓, 𝑔𝑖)) contains all the information we need from disc𝑦𝑛(𝑔𝑖), as we
are only interested in their intersection with 𝑓 = 0.

3.1. One Equational Constraint and Lex-least

The details of this challenge are in Akshar Nair’s thesis [7]. The “obvious” merger is true:
[17]. If there are no nullifying regions, then [11] transfers to [2] (and presumably [16], but
this hasn’t been formally proved). But if res𝑦𝑛−1(res𝑦𝑛(𝑓, 𝑔1), res𝑦𝑛(𝑓, 𝑔2)) nullifies on a region
(the foot of the curtain), we can no longer infer what 𝑔1 and 𝑔2 do on the curtain. The first
task [18] is to detect the curtains, and determine if the foot is zero-dimensional or not. If the
foot is zero-dimensional, we can still use equational constraint methodology. If the foot is
not zero-dimensional, we can always revert to the original projection without considering
equational constraints, a good solution is still an open problem.

3.2. Multiple Equational Constraints

[12] points out that, if we have 𝑓1(𝑦1, . . . , 𝑦𝑛) = 0∧𝑓2(𝑦1, . . . , 𝑦𝑛) = 0∧(𝑔1 > 0*𝑔2 > 0), and
we apply the techniques of §3 with 𝑓1 as the equational constraint (and treating 𝑓2 as a 𝑔𝑖), then
in 𝑦1, . . . , 𝑦𝑛−1, res𝑦𝑛(𝑓1, 𝑓2) is still an equational constraint. Since [11] lifted order-invariant
decompositions to sign-invariant decompositions, we cannot nest this directly, but [12] adjusts
the projection process and solves this difficulty.

4. Virtual Term Substitution

This idea, generally abbreviated to VTS, was introduced by Weispfenning in [19] for lin-
ear problems. Here · · ·𝑄𝑛𝑦𝑛Φ(𝑦1, . . . , 𝑦𝑛) in which 𝑦𝑛 occurs linearly can be replaced by
· · · Φ̂(𝑦1, . . . , 𝑦𝑛−1). This was extended in [20, 21] to the quadratic case and beyond, with
details of the cubic case being in [22]. An extension to unbounded degree is given in [23],
but the author knows of no public implementation, and this seems to be limited to univariate
problems (i.e. no parameters), so we pass over it for the moment, though it is a suitable subject
for further research.

A crude description would be “substituting in the critical values and their neighbours”, but
the details are more subtle, hence Weispfenning’s concept of virtual term substitution.

In particular, if 𝑦𝑛 occurs quadratically in 𝑎𝑦2𝑛 + 𝑏𝑦𝑛 + 𝑐, with corresponding critical values

𝑦𝑛 = 1
2𝑎

(︁
−𝑏±

√
𝑏2 − 4𝑎𝑐

)︁
, there might be 0, 1 or 2 critical values, and we also need to worry

about the case 𝑎 = 0: hence VTS has substitutions with guards, and the result of eliminating
an ∃ quantifier, and hence a block of ∃, is a disjunction, often large. However, VTS treats ∀
as ¬1∃¬2, so ¬2 turns the disjunction into a conjunction, processing the ∃ builds a further
disjunction on top of this, which ¬1 turns back into a conjunction. Each of these conversions
could have exponential blowup. Hence provided we remain within the scope of VTS, we might



expect to have (this is a long way from being a proof!) a process which is doubly exponential in
the number of alternations, but only singly exponential in the number of variables.

The details of work at Bath are in Zak Tonks’ thesis [24]. As described in [25], he has
implemented a poly-algorithm that does linear/quadratic VTS where feasible, and reverts to [2]
(this is also the first known implementation of [2]) when not. The cubic case is also implemented,
after some elaboration of the details in [22]. As described in [26], this implementation is
“SMT-friendly”, in the sense of supporting adding and retracting 𝐹𝑖, i.e. interfacing with the
backtracking nature of DPLL(T) solvers.

5. Comprehensive Gröbner Systems

This method was also introduced by Weispfenning, in [27], and has a recent exploration in [28].
The key idea is this. We consider an “innermost block” in this form:

∃𝑥

⎛⎝ 𝑓1(𝑦, 𝑥) = 0 ∧ · · · 𝑓𝑟(𝑦, 𝑥) = 0∧
𝑝1(𝑦, 𝑥) > 0 ∧ · · · 𝑝𝑠(𝑦, 𝑥) > 0∧
𝑞1(𝑦, 𝑥) ̸= 0 ∧ · · · 𝑞𝑡(𝑦, 𝑥) ̸= 0

⎞⎠ (1)

where 𝑦 represents the remaining variables, and 𝑓𝑖, 𝑝𝑗 , 𝑞𝑘 ∈ Q[𝑦, 𝑥] ∖Q[𝑦]. We introduce new
variables 𝑧 and 𝑤, with 𝑧, 𝑤 ≻ 𝑥, and consider the polynomials

{𝑓1, . . . , 𝑓𝑟, 𝑧21𝑝1 − 1, . . . , 𝑧2𝑠𝑝𝑠 − 1⏟  ⏞  
forcing positive

, 𝑤1𝑞1 − 1, . . . , 𝑤𝑡𝑞𝑡 − 1⏟  ⏞  
forcing nonzero

}. (2)

Let 𝒢 = (𝑆𝑖, 𝐺𝑖)𝑖∈𝐼 be a Comprehensive Gröbner System (with parameters 𝑦) for (2) so that 𝑦
space is partitioned by the 𝑆𝑖. Then the truth of (1) is equivalent to the truth of⋁︁

𝑖∈𝐼
(Φ(𝑆𝑖) ∧Ψ(𝐺𝑖)) , (3)

where Φ(𝑆𝑖) is the defining formula for 𝑆𝑖 and Ψ(𝐺𝑖) is the condition for 𝐺𝑖 to have real roots,
and hence (by (2)) for (1) to be satisfied. The derivation of Ψ(𝐺𝑖) from 𝐺𝑖 is given in [28], and
uses [29] to derive conditions for the 𝐺𝑖 to have real roots.

Like VTS, this method treats ∀ as ¬1∃¬2, so ¬2 turns the disjunction in (3) into a conjunc-
tion, processing the ∃ builds a further disjunction on top of this, which ¬1 turns back into
a conjunction. Hence again we might expect doubly exponential behaviour in the number
of alternations, and possibly only singly-exponential in the number of variables. This would
require the Comprehensive Gröbner basis computations to have that property, and this is not
obvious (see [30, §5]).

Question 1. What can we say about the complexity of Comprehensive Gröbner Systems-based
methods?



6. Regular Chains

The Regular Chains method is a fundamentally different way of solving polynomial systems
than Gröbner bases: in particular it proceeds variable-by-variable: see [31]. Their complexity is
discussed in [32], from which we take the following.

Definition 1. The Gallo–Mishra degree of a polynomial 𝑓 ∈ 𝐾[𝑥1, . . . , 𝑥𝑛], degGM(𝑓), is∑︀
𝑖 deg𝑥𝑖

(𝑓).

We have degtotal(𝑓) ≤ degGM(𝑓) ≤ 𝑛 degtotal(𝑓). When 𝑓 = 𝑥𝑘1 + · · ·+ 𝑥𝑘𝑛, degGM(𝑓) = 𝑛𝑘
but degtotal(𝑓) = 𝑘.

Definition 2. Let I be an ideal in 𝐾[𝑥1, . . . , 𝑥𝑛], and TVar(𝐼) be a maximal set of independent
variables 𝑥𝑖1 , . . . , 𝑥𝑖𝑟 , i.e. 𝐼 ∩𝐾[𝑥𝑖1 , . . . , 𝑥𝑖𝑟 ] = {0}. Let AlgVar(𝐼) be the remaining 𝑥𝑖.

Notation 1 (Gallo–Mishra Assumption). Assume, after renumbering if necessary, that
AlgVar(𝐼) = {𝑥𝑙+1, . . . , 𝑥𝑛}, and that we have an ordering with the non-algebraic variables
before the algebraic ones.

Theorem 2 ([32, Theorem 3.4]). Let 𝐼 = (𝑓1, . . . , 𝑓𝑠) be an ideal in 𝐾[𝑥1, . . . , 𝑥𝑛], and
degGM(𝑓𝑖) ≤ 𝑑. Then, under Assumption 1, 𝐼 has a characteristic set 𝐺 = (𝑔1, . . . , 𝑔𝑟) where:

1. mvar(𝑔𝑗) = 𝑥𝑗+𝑙;
2. degGM(𝑔𝑗) ≤ 4(𝑠+ 1)(9𝑟)2𝑟𝑑(𝑑+ 1)4𝑟

2
;

3. 𝑔𝑗 =
∑︀

𝑎𝑖,𝑗𝑓𝑖 where degGM(𝑎𝑖,𝑗𝑓𝑖) ≤ 11(𝑠+ 1)(9𝑟)2𝑟𝑑(𝑑+ 1)4𝑟
2
.

This theorem tells us that for this order, the degree is “only” singly-exponential, albeit 𝑂(𝑟2) =
𝑂(𝑛2). It is less useful than it might seem, for it supposes that we know one of the options for
AlgVar(𝑇 ) before we start the process. In reality, we may not even know |AlgVar(𝑇 )|. [32]
refers to [33], but that deals with unmixed ideals (and we may not know that in advance) and is
exponential with 𝑂(𝑛2) as the exponent, rather than 𝑂(𝑟2).

Regular Chains can be used to produce, first a complex cylindrical tree, and then a cylindrical
algebraic decomposition: see [34] for the construction of Cylindrical Algebraic Decompositions
and [35, 36] for Quantifier Elimination. The complexity of these translations from complex
cylindrical trees has not been studied, to the best of the author’s knowledge. However, it is (at
least in the worst case) bad, since Theorem 2 has only a singly-exponential complexity, and
Theorem 1 shows Real QE/CAD have doubly-exponential complexity.

Question 2. What can we say about the complexity of Regular Chains-based methods?

The paper [37] shows that the theory of equational constraints, which [38] extends to partial
equational constraints, can be adapted to the Regular Chains approach, with significant gains
in practice.



7. Next steps

The author is part of a joint Bath/Coventry project [39] to explore this area further.

Question 3. In terms of practical efficiency gains, we said in §2.1 that res𝑦(𝑓, 𝑔) might have a
real root 𝑥0, but the corresponding 𝑦 values might be complex. We might therefore want to discard
𝑥0, but an implementation challenge is knowing there are no other reasons for considering 𝑥0.

Also, as part of a wider collaboration, [40] have produced a variant Cylindrical Algebraic
Coverings (CAC) on CAD. Among other advantages, this might make discarding such 𝑥0 easier to
implement, as 𝑥0 would only be being considered locally, and “other reasons” would be irrelevant.

Modern SAT solvers may be 10KLOC, and “hard to trust”1, but Maple+CAD is probably 1MLOC,
and much harder to trust if it says UNSAT, i.e. that the original problem has no solutions. We
hope [41] that CAC may produce a proof outline for an instance that one could feed to a prover
such as Coq or Isabelle, or quite possibly Lean: this is relevant as previous efforts to verify CAD
algorithms in general have failed [42].

How might the ideas outlined in this paper actually all interface with a SAT solver to produce
integrated SMT taking advantage of the strengths of both?
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A. Collins Complexity

In [1], he derived 𝑒𝑑 = 2𝑛+ 8, whereas Table 1 has (log2 3)𝑛+𝑂(1). The more precise figure
comes from three improvements.

1. [1, Theorem 15] is derived from [1, Theorem 14] “by observing that 3ℎ ≤ 22ℎ”, so we
should use Theorem 14 directly.

2. “For example, the analysis depends strongly on the root separation theorem, and it seems
likely that this theorem is far from optimal” [1, p. 173]. [43, Proposition 8] provides a
better theorem, in that it shows that 𝐶(𝑓), the number of subdivisions needed to separate
all the roots of a polynomial 𝑓 of degree 𝑑, is asymptotically no worse than that needed
to separate the closest pair.

3. If the 𝛼
(𝑗)
𝑖 are the real roots of the polynomials 𝑓𝑖, and we need to separate all the 𝛼

(𝑗)
𝑖 ,

[1] considers this as 𝐶(
∏︀

𝑖 𝑓𝑖). But it is
∑︀

𝑖,𝑗 𝐶(𝑓𝑖𝑓𝑗), which is smaller because of [43,
Proposition 8].
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