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Abstract
Many nonlinear optimisation problems involving systems of multivariate polynomial constraints can
be expressed as Quantifier Elimination problems. In this regard, the need to eliminate quantifiers
presents itself in many real problems such as in economics, mechanics, and motion planning. We focus
on using Cylindrical Algebraic Decomposition and Virtual Term Substitution simultaneously. In this
paper, we introduce the state-of-the-art theory behind an implementation of these methods produced in
collaboration with Maplesoft .
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1. Introduction

Quantifier Elimination (QE) over the real numbers refers to problems in Computer Algebra
of producing a quantifier-free equivalent representation of a logical expression defined by
polynomial constraints. Quantifier Elimination is highly relevant and necessary for many
applications from different fields of study. Nonlinear optimisation problems and conditions on
solvability and satisfiability of systems of multivariate polynomial equations and inequalities can
canonically be presented as QE problems. QE problems are known to arise in economics [1, 2],
mechanics [3], mathematical biology [4, 5, 6], reaction networks [7], AI to pass mathematical
exams [8], and motion planning [9].

In this paper, we introduce the theoretic background that is inside the QE implementation of
the second author as a part of his Ph.D. studies under the guidance of the first author [10]. This
Maple implementation, the package QuantifierElimination, is now being integrated to
the main program by the second author and it will be available to all Maple users without the
need of downloading and installing a third party package. One main aim of this implementation
is to mitigate the high running times of QE problems by avoiding unnecessary and/or complex
computations by using a poly-algorithmic approach to QE to pick the route of expected least
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resistance. Moreover, the poly-algorithm offers full incrementality as a whole. Interested readers
can find more about the implementation and its design decisions in [10, 11]. In particular [10,
§7.4] has the benchmarking data.

2. Definitions

A logical formula of integral multivariate polynomial constraints, 𝑝𝑖(𝑥1, . . . , 𝑥𝑛)𝜎𝑖0 for some
𝑖 ∈ N and 𝜎𝑖 ∈ {=, ̸=, >,≥, <,≤}, joined together with logical connectives ∧, and ∨ is called
a Tarski formula. A single polynomial constraint in a Tarski formula is called an atom. Finally,
the language of all semi-algebraic propositions is called a Tarski-language.

Given a Tarski formula 𝐹 (𝑥1, . . . , 𝑥𝑛), and a list of quantifiers on 𝑥1, . . . , 𝑥𝑘 for some integer
1 ≤ 𝑘 ≤ 𝑛. A (prenex) quantified Tarski formula is

𝑄1𝑥1 𝑄2𝑥2 . . . 𝑄𝑘𝑥𝑘𝐹 (𝑥1, . . . , 𝑥𝑘, . . . , 𝑥𝑛), (1)

where 𝑄𝑖 = ∀ or ∃. The QE problem is then two-fold: Is there a quantifier-free Tarski formula
𝐺(𝑥𝑘+1, . . . , 𝑥𝑛) equivalent to (1)? And, if so, can it be computed?

In 1951, Tarski showed that the real quantifier elimination problem is decidable for Tarski
formulas involving multivariate polynomials with rational coefficients. Moreover, he gave an
algorithm (insuperable complexity) to calculate the equivalent quantifier-free formula.

Collins [12] produced a QE algorithm through calculating a sign-invariant Cylindrical Al-
gebraic Decomposition (CAD) in 1975, and proved that, starting with a Tarski formula with 𝑚
degree 𝑑 polynomials in 𝑛 variables, CAD computations have doubly exponential complexity:
𝑑ˆ2ˆ(2𝑛 + 𝒪(1)). This is due to the need of squaring the degree 𝑑 of the polynomials and
their number 𝑚 at each one of the 𝑛 variable elimination steps. McCallum [13] showed that,
under some assumptions that certain polynomials don’t vanish on some varieties, the doubly
exponential complexity of calculating a order-invariant CAD of a given Tarski formula can be
lowered to 𝑑ˆ2ˆ(𝑛+𝒪(1)). In 1994, Lazard [14] suggested a new procedure for projecting and
lifting for lex-least invariant CAD calculations that steers clear of the assumptions needed in
McCallum’s procedure, and in [15], McCallum–Parusiński–Paunescu justified the correctness of
Lazard’s procedure, and the same 𝑑ˆ2ˆ(𝑛+𝒪(1)) complexity. The first author and Heintz [16]
have shown that doubly-exponential complexity is intrinsic to quantifier elimination, admittedly
with a double exponent lower bound of 𝑛/5 +𝒪(1), later improved to 𝑛/3 +𝒪(1) by [17].

We should also note that the degrees of the polynomials and the number of polynomials in
a Tarski formula are not the only sources of the doubly exponential complexity of quantifier
elimination. Given a quantified Tarski formula, let 𝑎 be the number of alterations of quantifiers.
For example, 𝑎 = 3 if we have the quantifiers in the ∀∀∃∀∃∃∃ order. Brown and the first
author [17] have provided an example involving only linear polynomials that manifests a doubly
exponential behaviour in 𝑎, caused (in the case of VTS) by the repeated conversion between
conjunctive and disjunctive normal form forced by the alternations: see the remark at the start
of §4.

Starting from a different origin, Weispfenning introduced the technique of Virtual Term
Substitution (VTS) for purely existential QE problems for linear [18], quadratic [19] and cubic
[20] polynomials. Later in his doctoral studies Košta [21] wrote down explicit algorithms for
VTS for all degrees 𝑑 ≤ 3.



3. Quantifier Elimination by Projection and Lifting

This was originated in [12]. An improvement, but which could occasionally deliver a result
flagged as “potentially incomplete”, was in [13]. A solution was suggested by Lazard in [14], but
only proved in [15]. It uses lexicographically-least (lex-least) invariance rather than McCallum’s
order-invariance. The projection phases of both approaches are similar. A development, skipping
trailing coefficients in projection in many cases, was introduced in [22].

3.1. Lazard Projection and Lifting

The lex-least invariance means that we require polynomials to have a certain expansion on
varieties. For a given multivariate polynomial 𝑓(𝑥1, . . . , 𝑥𝑛) and a point a = (𝑎1, . . . , 𝑎𝑛), we
want the lex-least monomial of 𝑓 to have the expansion

𝑐a(𝑥1 − 𝑎1)
𝛼1(𝑥2 − 𝑎2)

𝛼2 . . . (𝑥𝑛 − 𝑎𝑛)
𝛼𝑛 , (2)

where 𝑐a is a non-zero integer and 𝛼𝑖s are non-negative integers. This selection creates a big
difference in the lifting phase. If 𝑓 becomes zero for a trail of variable assignments a, i.e. 𝑓
vanishes on some variety that a is in, the McCallum procedure would need to come to a halt.
On the other hand, for Lazard lifting, one can use the lex-least invariance and replace 𝑓 with
𝑐a𝑓 divided by (2). The outcome polynomial still has integer coefficients and it is in the Tarski
language. It is easy to see that the outcome polynomial is non-zero at a and one can proceed
with the lifting procedure.

The guaranteed lex-least factorisation and replacing a nullified polynomial by its zero-free
part is a clear advantage of Lazard lifting. However, this should not create a false image. There
are still cases where nullification of polynomials are a problem, especially when we have
equational constraints (§3.2) in the Tarski formulae. More on these special cases and relevant
research can be found in [23, 24].

Most projection-lifting1 CAD implementations available to the public today use McCallum’s
projection and lifting procedure to calculate CADs. To the best of our knowledge, the second
author’s implementation is the first QE implementation that uses Lazard’s procedure in CAD
calculations. This is certainly true for an implementation made in the Maple language.

3.2. Equational Constraints

In this section we assume that we start with a Tarski formula made up of 𝑚 polynomial
constraints where exactly 𝑐 of these constraints are equations:

𝑓1 = 0 ∧ 𝑓2 = 0 ∧ 𝑓𝑐 = 0 ∧ 𝑔1𝜎10 ∧ 𝑔2𝜎20 ∧ · · · ∧ 𝑔𝑚−𝑐𝜎𝑚−𝑐0, (3)

where all of the polynomials are from the polynomial ring Z[𝑥1, . . . , 𝑥𝑛] and 𝜎𝑖 ∈ {≠, <,≤, >
,≥}. The atoms in the Tarski formula with the equations are called equational constraints.

Collins [26] raised the question of whether an single equational constraint (𝑐 = 1 in (3)) in a
Tarski formula be used to our advantage in CAD calculations. In 1999 for 𝑐 = 1 case and in 2001

1As opposed to, say, Regular Chains approaches [25].



for general 𝑐, McCallum [27, 28] showed that the presence of 𝑐 equational constraints reduces
the double exponential complexity 𝑚ˆ2ˆ(𝑛+𝒪(1)) drastically to 𝑚ˆ2ˆ(𝑛− 𝑐+𝒪(1)).

We would also like to note that more improvements and extensions has been made on treating
equational constraints. The first author in collaboration with others [29] generalised the use of
equational constraints when only a part of the formula has equational constraints. In 2020, it
was shown that Gröbner bases can be used rather than just using iterated resultants [30] and
that this approach reduces the polynomial degree growth. Generically, this lowers the doubly
exponential complexity in the polynomial degrees to 𝑑ˆ2ˆ(𝑛− 𝑐+𝒪(1)).

These results make a clear case for their benefit. In essence the equational constraint treatment
reduces the doubly exponential complexity of CAD calculations significantly by removing the
number of such equalities from the Tarski formula. It should still be noted that all these
mentioned results are for the McCallum projection and lifting procedure and they require
well-orientedness assumptions.

The second author’s implementation, on the other hand, uses the Lazard’s procedure and
therefore cannot yet enjoy all the simplifications that equational constraints have to offer. The
research on equational constraints while using Lazard’s approach is at its early stages. At
the time of implementation, by the Ph.D. work of Nair [24] we only knew how to process a
single equational constraint in Lazard-based CAD computations (this has now been extended).
Moreover, we require the polynomial in the equational constraint to satisfy some non-vanishing
properties on varieties. The QE implementation of the second author handles Tarski formulae
with a single equational constraint, and it has the capabilities to notice whether this equational
constraints satisfies the assumptions necessary coming from Nair’s conditions. Moreover, the
QuantifierElimination package implements bespoke routines Nair outlined [24] for the
recovery of problematic cases once such a problem is identified. On top of it all, this software
takes full advantage of the avoidance and recovery of the problematic cases by employing
Collins and Hong’s partial CAD [31] construction.

4. Virtual Term Substitution (VTS)

Virtual Term Substitution (VTS) is a method with geometric roots to handle QE problems
where the Tarski formulae are purely existentially quantified: see [18]. One can still apply
VTS to a universally quantified problem by logically negating the QE problem first: ∀𝑥𝑃 (𝑥) ≡
¬∃𝑥¬𝑃 (𝑥). This is a step that can give rise to complexity growth: ∃𝑥¬𝑃 (𝑥) is a disjunction
over all the guards (see (4)), which will be turned by ¬ into a conjunction, and conversion to
disjunctive normal form can cause exponential blowup.

Consider an existentially quantified Tarski formula ∃𝑥𝐹 (u, 𝑥), where explicit negations in
𝐹 have been eliminated by De Morgan’s Laws.. The aim of VTS is to compute a finite list of
conditions (called guards) and relative virtual substitution points for the existentially quantified
variable 𝑥 so that QE can be performed by turning the problem replacing 𝑥 under the conditions
of the guards. More precisely, VTS tries to split the 𝑥-axis into all relevant intervals and tries
to identify a finite set 𝐸 = {(𝛾𝑖, 𝑒𝑖)} of pairs where 𝛾𝑖 are guard conditions and 𝑒𝑖 are sample
points from each interval on the real axis. Under these conditions we can see the following



correspondence
∃𝑥𝐹 (u, 𝑥) ⇔

⋁︁
(𝛾𝑖,𝑒𝑖)∈𝐸

(𝛾𝑖 ∧ 𝐹 (u, 𝑥//𝑒𝑖)) . (4)

Definition 1 (Virtual Substitution). [21, Section 2.3] The virtual substitution of a structural
test point 𝑇 (u) for 𝑥 into a quantifier free relation 𝑔(u, 𝑥)𝜎0 is 𝐹 (u) := 𝑔[𝑥//𝑇 ] a quantifier
free formula such that for any parameter values a ∈ R𝑛−1, if a satisfies the guard of 𝑇 , then a
satisfies 𝐹 if and only if 𝑔(a, 𝑇 (a))𝜎0 is true. 𝑇 (a) is well-defined because the guard is satisfied.

In addition, we have to deal with virtually substituting ±∞: see [21, p. 36].

4.1. Example

We would like to exemplify this idea on a simple case with a single existential quantifier. Assume
that we start with the simple quantified Tarski formula

∃𝑥 (𝑎𝑥− 𝑏 = 0 ∧ 𝑐𝑥+ 𝑑 > 0) . (5)

Naïvely, one can solve this QE problem by algebraically (and carelessly) solving the first atom
of the Tarski formula as 𝑥 = 𝑏/𝑎 (to be our virtual substitution point) and by plugging this 𝑥
value in the second atom:

𝑐(𝑏/𝑎) + 𝑑 > 0. (6)

This simple approach ignores many possibilities that requires attention. As it is given, (6) is
only meaningful under the guard that 𝑎 ̸= 0. Furthermore, the Tarski language does not include
rational values therefore clearing any denominators is necessary. Even at this step one needs to
consider that 𝑎 is either negative or positive, therefore clearing denominators might change the
inequality. We can instead clear the denominators by multiplying each side of (6) with 𝑎2 to
keep the constraint unchanged. These considerations give us one of the right-hand sides cases
in (4) as

(𝑎 ̸= 0 ∧ 𝑎𝑐𝑏+ 𝑎2𝑑 > 0). (7)

Remark that (7) is not equivalent to (5). For that one also needs other conditions such as

(𝑎 = 0 ∧ 𝑏 = 0 ∧ 𝑐 ̸= 0) ∨ (𝑎 = 0 ∧ 𝑏 = 0 ∧ 𝑐 = 0 ∧ 𝑑 > 0). (8)

The Tarski formulae (7) and (8) put together with disjunction is logically equivalent to (5) and it
is free of the quantified variable 𝑥.

4.2. VTS in general

It is easy to see that once the VTS points 𝐸 are established, an ∃𝑥 quantifier is eliminated by
moving from the problem on the left-hand side of (4) to the right-hand side. Having said that, it
is not always possible to identify the set 𝐸. Weispfenning [18, 19] gave us 𝐸 for the linear and
quadratic cases, and [20] outlined the cubic case.

Including Košta’s [21] detailed algorithms for cubic VTS and the corrections in Appendix A,
this method is implemented in second author’s QE package. This QE implementation is believed
to be the first in Maple, and certainly the first in Maple to include the degree 3 VTS algorithms.



4.3. Degree Growth in VTS

Although at the start all the variables in the Tarski formula (5) appeared linearly, after the
suggested virtual substitution and simplification (7), we saw that the degree of variable 𝑎
increased. This hints shows successive runs of VTS might affect the applicability of VTS since
this method requires the degrees of the variables to be ≤ 3. For example, let’s start with the
quantified Tarski formula

∃𝑎∃𝑥
(︀
𝑎3𝑥− 𝑏 = 0 ∧ 𝑐𝑥+ 𝑑 > 0

)︀
(9)

similar to (5). The application of VTS to the variable 𝑥, as it was done for (5), yields

∃𝑎
(︀
(𝑎3 ̸= 0 ∧ 𝑎3𝑐𝑏+ 𝑎6𝑑 > 0) ∨ (𝑎3 = 0 ∧ 𝑏 = 0 ∧ 𝑐 ̸= 0) (10)

∨(𝑎3 = 0 ∧ 𝑏 = 0 ∧ 𝑐 = 0 ∧ 𝑑 > 0)
)︀
.

The degree of the variable 𝑎 in the first Tarski formula of (10) is 6. Therefore, without a change
of variables, VTS can no longer be employed for elimination of the existential quantifier on 𝑎.
Such a problem can be avoided by a better variable ordering. We look at the following Tarski
formula:

∃𝑥∃𝑎
(︀
𝑎3𝑥− 𝑏 = 0 ∧ 𝑐𝑥+ 𝑑 > 0

)︀
, (11)

which is equivalent to (9). After applying VTS for variable 𝑎, we get

∃𝑥 ((𝑥 ̸= 0 ∧ 𝑐𝑥+ 𝑑 > 0) ∨ (𝑥 = 0 ∧ 𝑏 = 0 ∧ 𝑐𝑥+ 𝑑 > 0)) . (12)

This time it is possible to apply VTS to all parts of (10) to eliminate the quantifier on 𝑥 (as
this variable appears with degree ≤ 3 in the output). Hence, we see that the variable ordering
can have an effect on the applicability of VTS. This is a characteristic difference between VTS
and CAD; in CAD, the order of variables can affect the running time heavily but the variable
ordering never renders this method inapplicable.

5. Conclusion and Future Directions

The poly-algorithmic QE implementation is a promising tool that is at its early stages. With
its various variable ordering strategies and QE methods it already is a sophisticated system
that offers Maple users a lot of options. Moreover, any research done, especially on Lazard’s
CAD construction procedure, would directly benefit this implementation. For that, it is of
interest to us to compare and understand the strengths of McCallum and Lazard’s procedures
against each other and to find ways to identify the situations where these approaches fail to
yield answers. It is also a top priority to develop theory around equational constraints using
Lazard’s projection/lifting that is analogous to the theory already developed around McCallum’s
procedure.

Neither the guards nor the virtual sample points are unique; we are optimistic that a different
splitting of a given problem (such as (5)) can help to keep the variable degrees low. Not only that,
similar to the CAD case, the variable ordering in VTS can be relevant when the QE problem
has multiple existential constraints in a block (see §4.3). More experiments on different guard
selections and variable orderings are needed to make full use of virtual term substitutions.
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A. Correction to [21]

There is a correction necessary with respect to [21, p. 58]. The setting is that 𝑓 is a cubic, with a
root 𝑎 defined by 𝑓 and an index 𝑆. We wish to investigate 𝑔(𝑎), where 𝑔 is linear or quadratic
in 𝑎 (the highest degrees necessary when 𝑎 is defined by a cubic). Let 𝜌* be ≤ if 𝜌 is <, and < if
𝜌 is ≤.

Step 3.1 the value assigned to 𝜓− should be ¬(−𝑔𝜌*0)[𝑥//(𝑓, 𝑆)] in the cases 𝜌 is not =.

Step 4 has a typo: instead of 𝜌 ∈ {=, <,≤} it should be 𝜌 ∈ {≠, >,≥}.

Step 4.1 An analogous change to 3.1, but the way the code in [10] is written, this case is never
reached, provided that the 𝑔 ̸= 0 case is handled separately.
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