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Abstract
Pre-trained Language Models (LMs) have advanced a range of semantic tasks, and have also shown
promise for factual knowledge extraction encoded in them. Although several works have explored
this ability in the LM probing setting, viability of knowledge base construction from LMs has not yet
been explored. In light of this, we hosted the LM-KBC challenge at the 21st International Semantic Web
Conference (ISWC 2022). Participants were asked to build actual knowledge bases from LMs, for a given
set of subjects and relations. In crucial difference to existing probing benchmarks like LAMA [1], we
made no simplifying assumptions on relation cardinalities, i.e., a subject-entity could stand in relation
with zero, one, or many object-entities. Furthermore, submitted systems were required to go beyond
just ranking the predictions and materialize the outputs, which we evaluated using the established KB
metrics of precision, recall, and 𝐹1-score. The challenge had two tracks: (1) a BERT-type LM track with
low computational requirements and (2) an open track, where participants could use any LM of their
choice. In this first edition of the challenge, we received a total of five submissions, four for track 1 and
one for track 2. We present the contributions and insights of our peer-reviewed submissions and lay out
the possible paths for future work. The challenge website is https://lm-kbc.github.io.
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1. About LM-KBC

Background Large-scale LMs such as BERT [2] and GPT-3 [3] are optimized to either pre-
dict masked-out textual inputs or perform sentence completion and have notably advanced
performances on a range of downstream NLP tasks like question answering and machine trans-
lation. Recently, LMs gained attention for their purported ability to yield structured pieces of
knowledge directly from their parameters. This is promising as current knowledge bases (KBs)
such as Wikidata [4], DBpedia [5], Yago [6] and ConceptNet [7] are part of the backbone of
the Semantic Web ecosystem, yet are inherently incomplete. While constructing a KB, major
challenges include relations being optional (e.g., academic-degree, place-of-death, or
parent-organization) and presence of multiple correct object-entities per subject-relation
pair (e.g., shares-border, occupation, or speaks-language). Additionally, KBs need ma-
terialization, i.e., deliberate decisions on which statements to include or exclude, for scrutability
and consistent downstream usage.
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Previous approaches to KB construction utilized unstructured text [8, 9], crowdsourcing, or
semi-structured resources [10, 5, 11]. In the seminal LAMA paper [1], Petroni et al. showed
that LMs achieved encouraging results in masked knowledge ranking tasks—ranking candi-
date objects for a given subject-relation pair. Despite much follow-up work reporting further
advancements [12, 13, 14, 15], as well as criticism [16, 17, 18, 19, 20], the prospect of using
LMs for KB construction remains under-explored. The LAMA benchmark, and its variants, are
not suited to investigate actual KB construction since they (i) evaluate on randomly sampled
subject-object pairs, thus missing out on assessing per-subject recall, and on deciding whether a
subject has objects at all, (ii) focus on single word object-entities due to the limitation of single
masked token prediction specification of the underlying LM, and (iii) only evaluate a model’s
ranking abilities, but do not force it to make deliberate accept/reject decisions. Knowledge base
construction is a task different from ranking—it requires challenging decisions on how to obtain
recall in the long tail [21, 22] and how to decide acceptance thresholds.

In our challenge, we invited participants to present LM-based systems for actual KB construc-
tion, with three main challenges:

1. Variance in the number of true objects per subject-relation pair. For example, Germany
shares borders with 9 countries, whereas Vietnam borders only 3 countries. Thus, systems
had to make decisions on how many objects to retain.

2. Instances without any true object. For example, Apple has no parent organization, while
Google is owned by Alphabet. Thus, systems had to make decisions on whether to output
any objects at all.

3. Materialization. Systems were required to output lists of objects for each subject-relation
pair, hence had to make deliberate binary retain/discard decisions on candidates and
could not hide behind ranking metrics.

We evaluated the resulting KBs using established precision, recall, and 𝐹1 metrics.

Task Description Given an input tuple of a subject-entity 𝑠 and a relation 𝑟, the task is to
generate the correct object-entities [𝑜1, 𝑜2, . . . , 𝑜𝑘], using language model probing.

For example, as shown in Table 1, for a given input consisting of a subject-entity and relation
pair, when BERT is probed using the sample prompt, we obtain the following top predictions
with likelihood in the placeholder position “[MASK]”. The last column gives the correct ground-
truth objects. The crux of the task is that across various subject-relation pairs, there is no optimal
solution to make accept/reject decisions using a uniform threshold on the LM’s likelihood. The
problem lies even within a single relation: if we retain predictions up to 10.7% likelihood,
Germany’s neighbour Belgium would be dropped. Conversely, if the threshold is lowered to
2.2%, for Vietnam, wrongly, India would be asserted as its neighbour.

BERT-style models only annotate outputs with these problematic relative likelihoods over
each other; nevertheless, participating systems need to make decisions on which and how
many of the candidates to retain. Participants were allowed to paraphrase the input prompts
manually or through existing prompt engineering techniques [23, 24], and could even form
prompt ensembles [25] for final predictions.



Input Sample Prompt LM Prediction Ground Truth& Likelihood

Vietnam, shares-border
Vietnam shares a land
border with [MASK].

Cambodia, 12.1% China,
China, 10.7% Cambodia,
India, 10.1% Laos

Germany, shares-border
Germany shares a land
border with [MASK].

Austria, 17.7% Austria,
... ...

Belgium, 2.2% Belgium

Carbon dioxiode, consists-of
Carbon dioxiode consists of
[MASK].

Oxygen, 20.8% Carbon,
Water, 14% Oxygen

Nitrogen, 11.5%

Angela Merkel, speaks-language
Angela Merkel can speak in
[MASK].

German, 89.1% German,
English, 5.3% English,
Italian, 0.5% Russian

Elon Musk, place-of-death Elon Musk died in [MASK].
office, 4.8%
prison, 3% ∅

Chicago, 2.8%

Table 1
Sample inputs and the corresponding top-3 predicted outputs by BERT.

The challenge had two tracks:

1. BERT track, where only computationally modest BERT-type models were allowed;
2. Open track, where any language model, also autoregressive or generative models, could

be used.

Using a public training dataset, participants were allowed to prompt-engineer, retrain, fine-tune,
use context examples (e.g., for GPT-3 [3]), or use additional textual data (e.g., Wikipedia snippets
as prompt context), to optimize their output.

LM-KBC22 Dataset We curated a dataset comprising 12 relations, each comprising a set of
subjects and a complete list of ground-truth objects per subject-relation-pair. For each relation,
maximum of 100 subjects were provided for training, another 50 for validation and testing,
while a third 50 were withheld (private test) for challenge evaluation. Table 2 gives more
details on our released dataset. The relations were chosen so as to ensure diversity, and the
subject-entities were of different types, e.g., person, country, organization. To further increase
realism, 5 relations also contained subjects without any correct ground truth objects (e.g., Apple
having no parent organization). We provided aliases for ground-truth objects that are known
under multiple names, and outputting any one of them was sufficient. In particular, to facilitate
usage of LMs like BERT (which are constrained by single-token predictions), we provided a
valid single-token form for multi-token object-entities, wherever such a form was meaningful.

Evaluation For each test instance, predictions submitted by participating systems were
evaluated by calculating precision, recall, and 𝐹1 metrics against ground-truth values. Let 𝒫



Relation Description Example |Train| |Dev| |Test| Range(Train) Range(Dev) Range(Test)

shares-
border

country (𝑠) shares a
land border with an-
other country (𝑜)

⟨Argentina, shares-border,
[Bolivia, Brazil, Paraguay, Chile,

Uruguay]⟩
100 47 50 [0, 17] [0, 14] [0, 11]

official-
language

country (𝑠) has an offi-
cial language (𝑜)

⟨Belarus, official-language,
[Belarusian, Russian]⟩ 100 47 50 [1, 4] [1, 15] [1, 11]

shares-
border

state (𝑠) of a country
shares a land border
with another state (𝑜)

⟨Oregon, shares-border,
[California, Idaho, Washington,

Nevada]⟩
100 50 50 [1, 14] [1, 15] [1, 14]

basin-
country

river (𝑠) basins in a
country (𝑜)

⟨Saar, basin-country,
[Germany, France]⟩ 100 50 50 [1, 6] [1, 10] [1, 9]

consists-
of

chemical compound
(𝑠) consists of an
element (𝑜)

⟨Nitroglycerin, consists-of,
[Hydrogen, Oxygen, Nitrogen,

Carbon]⟩
100 50 50 [2, 6] [2, 6] [2, 6]

speaks-
language

person (𝑠) speaks in a
language (𝑜)

⟨Bruno Mars, speaks-
language, [Spanish, English]⟩ 100 50 50 [1, 6] [1, 5] [1, 7]

plays-
instrument

person (𝑠) plays an in-
strument (𝑜)

⟨Chester Bennington, plays-
instrument, [None]⟩ 100 50 50 [0, 7] [0, 14] [0, 7]

employer
person (𝑠) is employed
by a company (𝑜)

⟨Susan Wojcicki, employer,
[Google]⟩ 100 50 50 [1, 8] [1, 8] [1, 8]

profession
person (𝑠) held a pro-

fession (𝑜)

⟨Shakira, profession,
[[Singer-Songwriter, Singer,

Songwriter], Guitarist]⟩
100 50 50 [1, 23] [1, 19] [1, 20]

place-of-
death

person (𝑠) died at a lo-
cation (𝑜)

⟨Elvis Presley, place-of-death,
[Graceland] ⟩ 100 50 50 [0, 1] [0, 1] [0, 1]

cause-of-
death

person (𝑠) died due to
a cause (𝑜)

⟨John lewis, cause-of-death,
[[Pancreatic Cancer, Cancer]]⟩ 100 50 50 [0, 1] [0, 1] [0, 1]

parent-
org

company (𝑠) has an-
other company (𝑜) as
its parent organization

⟨Apple Inc, parent-org, [None]⟩ 100 50 50 [0, 5] [0, 1] [0, 3]

Table 2
Characteristics of the LM-KBC22 dataset. It contains 12 diverse relations, among which 5 relations can
have subjects without any objects. Since there are less than 200 countries in the world, shares-border
and official-language relations had less than 50 subjects in the dev. The no. of subjects in each
data split is in col 3-5, and the cardinality of each relation—[min, max] no. of objects—is in col 6-9.

be the prediction list of object-entities for a test subject-entity and 𝒢𝒯 be it’s corresponding
ground-truth list of object-entities, then the metrics are calculated as follows:

Precision =
𝒫 ∩ 𝒢𝒯

|𝒫|
Recall =

𝒫 ∩ 𝒢𝒯
|𝒢𝒯 | 𝐹1 =

2× Precision × Recall
Precision + Recall

When 𝒫 is empty, and 𝒢𝒯 is not, precision = 1 and recall = 0, leading to 𝐹1 = 0. On
the other hand, when 𝒢𝒯 is empty, recall = 1 but precision = 1 only when 𝒫 is empty, else
precision = 0, leading to either 1 or 0𝐹1-score. Scores were macro-averaged across subjects, and
across relations, and systems were ranked by the final macro-𝐹1-score. Participants could submit
their system predictions on CodaLab at https://codalab.lisn.upsaclay.fr/competitions/5815 to get
scores on the private test dataset, and check their submission ranking on the leaderboard.

To ease participation, we released a baseline implementation that probed the BERT language
model using one sample prompt per relation, like “China shares border with [MASK]”, and
selected the object-entities predicted in the [MASK] position with greater than or equal to 0.5
likelihood as outputs. This baseline achieved 31.08% 𝐹1-score on the hidden test dataset. We also
submitted a second baseline on CodaLab, where the predictions list 𝒫 for all test instances was

https://codalab.lisn.upsaclay.fr/competitions/5815


empty. This baseline achieve 18% 𝐹1-score, highlighting that predicting nothing is also a plausi-
ble baseline, with non-zero 𝐹1 scores, since in realistic KBC scenarios subjects without objects
do occur. We also released a Juptyer Notebook for getting started at https://github.com/lm-
kbc/dataset/blob/main/getting_started.ipynb, where the baseline is explained, and modularized.

2. System Submissions

The challenge received five submissions—four based on the BERT model (track 1) and one based
on GPT-3 (track 2). Below we list the contributions and main insights of each participating
system.

[Track 1 Winner]: Task-specific Pre-training and Prompt Decomposition for Knowl-
edge Graph Population with Language Models
Tianyi Li, Wenyu Huang, Nikos Papasarantopoulos, Pavlos Vougiouklis, Jeff.Z Pan

The authors present a system that performed task-specific pre-training of BERT, employed
prompt decomposition for progressive generation of candidate objects, and use adaptive thresh-
olds for final candidate object selection. They collected additional knowledge triples from
Wikidata KB and further pre-trained BERT on the masked token prediction objective. They
formulated the input as a cloze-style prompt and masked the object-entity, ensuring that the
model knows what to recover during prediction. In this modified pre-training step, they also
experimented with additionally masking tokens (window size of 1 or 2) appearing in vicinity
of the object-entity; however, this did not lead to a gain in the overall performance. They also
showed that task-specific pre-training of BERT specific to a relation performed better than
pre-training for all relations.

Following Jiang et al. [25], they mined prompts from Wikipedia, and used the top-20 retrieved
sentences as potential prompts. These top-20 prompted where used in an ensemble fashion
with averaged voting for the final object-entity prediction. For the shares-border relation
with subject-entities as state-type, they proposed a pre-condition prompt, “[SUBJECT], as a
place, is a [MASK]”, which generated the exact type (state, province , department, city or region)
for the subject-entity leading to higher gain in performance.

Finally, for candidate selection, they proposed sticky thresholds, which essentially selected
a candidate in the ranked list if its likelihood was at least 80% of the previous candidate’s
likelihood. This system scored 55.01% 𝐹1-score on the private test dataset, and won track 1 of
the challenge. The code for this system is available at github.com/Teddy-Li/LMKBC-Track1.

[Track 2 Winner]: Prompting as Probing: Using Language Models for Knowledge Base
Construction
Dimitrios Alivanistos, Selene Baez Santamaria, Michael Cochez, Jan-Christoph Kalo, Thiviyan
Thanapalasingam, Emile van Krieken

The authors present the Prompting as Probing (ProP) system, which probes the GPT-3 model
under few-shot setting for KB construction. ProP combines various prompting techniques
including careful manual prompt creation and question style prompts for checking the veracity
of GPT-3 generated claims. Since the GPT-3 model performs well with in-context examples
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illustrating the task, ProP system uses four representative examples from the training set for
each relation, and allows the model to generate after the subject entity of interest is mentioned
in the end.

Their context examples had the following properties: 1) answer sets of varying length was
used to force the model to generate multiple objects; 2) subjects with empty answer set was given
whenever possible; 3) examples formulated as question-answer pairs, e.g., “Which countries
neighbour Dominica? [‘Venezuela’]”, to enforce learning the task style; 4) answer list formatted
as a list to accurately post-process the generations. Following Jung et al. [26], ProP has a
post-processing step called fact probing, which checks the veracity of GPT-3 generated answers.
In fact probing, they probe GPT-3 by converting the previous generations into natural language
fact prompt, and ask the model to further generate either True or False, leading to a high gain in
performance.

Finally, they also experimented with GPT-3 models differing in size (Ada < Babbage < Curie
< Da-vinci), and found an analogous increase in performance as the size increased. ProP won
track 2 of the challenge, with an 𝐹1-score of 67.56 % on the private test dataset. Their code is
available at github.com/HEmile/iswc-challenge.

Knowledge Base Construction from Pre-trained Language Models by Prompt learning
Xiao Ning, Remzi Celebi
The authors used manual prompts, designed based on three automated sources, and also tried en-
semble learning for generating the final predictions. The descriptive information from Wikidata
is used in the following three ways for designing prompts: 1) “middle-word” strategy, which
selects the words occurring between subject and object as a prompt, 2) “dependency-based”,
which uses the syntactic structure or dependency path of the description as the prompt, and 3)
“paraphrasing-based”, where the original prompts are paraphrased using semantically similar
expressions. Each of these prompts are used to probe the BERT-large model, and for a given
subject, the five most frequent and likely objects are selected from the ensemble. Before selecting
the top-5 objects, the candidate list is post-processed by removing stopwords. They also treated
the threshold for candidate selection as a hyper-parameter and tuned it on the train dataset
for each relation separately. This system obtained 49.35 % 𝐹1-score on the private test dataset.
Their code is available at github.com/xiao-nx/LMKBC_2022.

Prompt Design and Answer Processing for Knowledge Base Construction from Pre-
trained Language Models (KBC-LM)
Xiao Fang, Alex Kalinowski, Haoran Zhao, Ziao You, Huhao Zhang, Yuan An
The authors propose manual prompts for each relation and probe the BERT-large model. They
used semantics and domain knowledge of each relation to craft the prompts carefully. Uniquely,
they used the intuition behind word co-occurrences in a context to design the prompt for
place-of-death and cause-of-death relations. The system first checked the relative like-
lihoods of dead or alive tokens using a question prompt, “[SUBJECT] (is|has) [MASK]”, and
then probed the model for original relation only when the dead token had a higher probability.
This simple and intuitive idea led to an overall gain in performance. For plays-instrument
relation, authors observed that changing the article from ‘an’ to ‘a’ in the prompt improved
the performance, although ‘an’ was grammatically correct. Similarly, even for other relations,

https://github.com/HEmile/iswc-challenge
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UserID Paper Track Precision Recall F1-score

doctor_who Alivanistos et al. 2 79.84 % 69.00 % 67.56 %
Teddy487 Li et al. 1 76.55 % 56.58 % 55.01 %

Xiao Ning and Celebi 1 69.34 % 50.84 % 49.35 %
xf49 Fang et al. 1 73.43 % 53.29 % 49.27 %

anonuser123 66.44 % 47.42 % 45.63 %
SumitDalal Dalal et al. 1 63.07 % 43.82 % 33.71 %

abhiseksharma 64.82 % 43.71 % 33.69 %
baseline-1 96.00 % 31.65 % 31.08 %
chitrank 35.75 % 53.82 % 27.96 %
baseline-2 100.00 % 18.00 % 18.00 %

Table 3
Challenge leaderboard showcasing the final scores on the test dataset.

authors tried to reason out the relationship between subject and objects in question for optimal
prompt design. They achieved 49.27 % 𝐹1-score on the private test dataset. Their code is
available at github.com/anyuanay/KBC-LM-Drexel.

Manual Prompt Generation For Language Model Probing
Sumit Dalal, Abhisek Sharma, Sarika Jain, Mayank Dave
The authors experiment with various manual prompts and thresholds for candidate selection
for each relation while probing the BERT model. Notably, they also check if selecting more
candidate in the object list (100, 150, 180, or 200) has an effect on the overall performance. They
also created an ensemble of their manually crafted prompts, finally achieving an 𝐹1-score of
33.7 % on the private test dataset.

3. Discussion

The first edition of our LM-KBC challenge received encouraging uptake, with five teams going
past the finish line and submitting both code and system descriptions. Table 3 presents the final
leaderboard of our challenge.

3.1. Main Observations

The main findings across all the submissions towards KB construction using existing language
models are:

1. Designing optimal prompts is crucial for effective knowledge elicitation from
LMs. The majority of the submissions focused on manual prompt engineering, tuning
them using domain knowledge and training data. Prompt choices, sometimes even just
based on small syntactic variations, had a major impact on overall system performance,
and all teams reported that variations there gave huge gains in evaluation metrics.

2. Relation specific tuning of LMs leads to better performance compared to iteratively
tuning a single LM on all relations. This may appear surprising insofar as language models

https://github.com/anyuanay/KBC-LM-Drexel


are generally held to be multi-task learners. Still, it may be explained by the significant
topical and distributional differences between relations, where transfer of learning results
was not beneficial.

3. Relation-specific thresholding is necessary. Given that LMs heavily rely on word
co-occurrences and patterns during training stage, LM’s confidence score highly varied for
object-entity prediction and a fixed threshold across all relations for candidate selection
is inadequate.

4. Subjects without objects are challenging, and few systems identified them at high
accuracy. For example, even the best-performing system incorrectly predicted some object
for 10% of those subjects. Further research on how to identify whether objects exist for a
given subject-relation pair at all appears necessary.

3.2. Challenge Extensions

Deciding on the challenge complexity required navigating a trade-off between ease of access,
and realism. Several avenues for extension are:

1. Including entity disambiguation: We consciously decided not to require resolution
to specific entity identifiers, but to match only on String labels, in order to keep the
challenge pure (not require pipelined systems). Yet this also creates some challenges in
evaluation, such as when lists of aliases are long, or labels are ambiguous (e.g., should
Korea be accepted as correct as birth place for someone born in South Korea?). Evaluating
systems on disambiguated identifiers is a possible extension, for example, by using an
entity-aware LM as default [27].

2. Expanding training data size: The LM-KBC22 dataset contains 100 samples per relation,
which is too little for most supervised approaches. Providing more training data could
open the challenge to more machine-learning centric approaches.

3. Other metrics: Our evaluation focused on macro-averaged 𝐹1-scores, which give equal
weight to precision and recall. It might be interesting to explore other trade-offs, as for
KBs, precision often is way more critical than recall. Also, as subjects with no objects
dominate many domains (e.g., very few people hold political offices), a higher presence,
or more weight on no-object-subjects, might be interesting.

4. Reviewing Process

All papers received 2-3 single-blind peer reviews. The following researchers contributed reviews:

1. Emile van Krieken, Vrije Universiteit Amsterdam, Netherlands
2. Dimitrios Alivanistos, Vrije Universiteit Amsterdam, Netherlands
3. Tianyi Li, University of Edinburgh, UK
4. Yuan An, Drexel University, USA
5. Xiao Ning, Southeast University, China
6. Abhisek Sharma, National Institute of Technology Kurukshetra, India
7. Sneha Singhania, Max Planck Institute for Informatics, Germany
8. Simon Razniewski, Max Planck Institute for Informatics, Germany
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