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Abstract
The algorithmic fairness field has boomed with discrimination mitigation methods to make Machine Learning (ML) model
predictions fairer across individuals and groups. However, recent research shows that these measures can sometimes lead
to harming the very people Artificial Intelligence practitioners want to uplift. In this paper, we take this research a step
further by including real ML models, multiple fairness metrics, and discrimination mitigation methods in our experiments to
understand their relationship with the impact on groups being classified. We highlight how carefully selecting a fairness
metric is not enough when taking into consideration later effects of a model’s predictions–the ML model, discrimination
mitigation method, and domain must be taken into account. Our experiments show that most of the mitigation methods,
although they produce “fairer” predictions, actually do not improve the impact for the disadvantaged group, and for those
methods that do improve impact, the improvement is minimal. We highlight that using mitigation methods to make models
more “fair” can have unintended negative consequences, particularly on groups that are already disadvantaged.

Keywords
algorithmic fairness, machine learning, artificial intelligence, impacts

1. Introduction
Since the rise of Machine Learning (ML), using data to
train models to make predictions has become custom-
ary. These models can help decide who makes it to
the next stage of a job interview or who gets a loan—
outcomes that, potentially, massively impact individuals’
lives. Models can maintain or exacerbate already existing
inequalities in society by outputting unfair predictions.
For instance, Amazon scrapped an Artificial Intelligence
(AI) tool that aided recruitment in sifting through re-
sumes because it was sexist [1]. The model was trained
on data from previously submitted resumes and the ma-
jority of those resumes were from men.

To mitigate unfair predictions, algorithmic fairness
research has boomed in recent years but it has actually
been around for over 50 years [2]. Many different fair-
ness metrics, which can be used to measure how “fair”
outcomes are, have been formalized, e.g., [3, 4, 5, 6, 7],
and operationalized in techniques intended to ensure
fairer ML predictions, e.g. [3, 4, 8, 7]. These techniques
are a part of a larger set of methods called discrimination
mitigation methods, e.g. [9, 10, 11]. Little consensus has
been drawn as to which fairness metrics and methods
are better than others [12], especially since there is no
universally accepted fairness definition [13].

The fairness metrics and discrimination methods pro-

AIofAI ‘22: 2nd Workshop on Adverse Impacts and Collateral Effects of
Artificial Intelligence Technologies, Vienna, Austria
$ mackenzie.jorgensen@kcl.ac.uk (M. Jorgensen);
elizabeth.black@kcl.ac.uk (E. Black); ncriado@upv.es (N. Criado);
jose.such@kcl.ac.uk (J. Such)

© 2022 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

posed have their flaws though. Recent research has
shown that although the intuition behind using fairness
metrics is valid, the application of the techniques can
lead to harming the very groups they aim to protect, e.g.
[14, 5, 15]. For instance, Liu et al. [15] used a loan re-
payment domain to showcase this phenomena–by using
a fairness metric with an optimized threshold decision
boundary, individuals, who might otherwise have been
denied a loan are accepted for a loan. Although accep-
tance for the loan initially appears “fair,” if the individuals
ultimately are unable to pay, their credit scores might
drop, arguably, a financial harm.

Liu et al. coined this financial harm a “delayed impact”–
a later effect on a person classified. However, Liu et
al. did not use a typical ML model, but an optimized
decision threshold, which implied that an off-the-shelf
discrimination mitigation method for applying a fairness
metric could not be used on top of existing ML models.
In addition, they only considered two fairness metrics,
Demographic Parity and Equality of Opportunity.

In this paper, we provide the first empirical evaluation
of delayed impact using actual ML models and consid-
ering different off-the-shelf discrimination mitigation
methods and different fairness metrics. Through our
comprehensive empirical study, we show the complex
relationships that exist between real ML models, methods
for discrimination mitigation, and fairness metrics, and
the resulting delayed impacts on groups of users.

Through our results, we highlight that the fairness
metric and discrimination mitigation method affect the
delayed impact substantially more than the ML model
itself. We find that with the usage of discrimination
mitigation methods and fairness metrics the advantaged
group benefited the majority of the time, while the disad-
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vantaged group was actually worse off than without the
mitigation techniques. The choice of metric is especially
important. In general, our results suggest that the com-
bination of domain, ML model choice, fairness metric,
and discrimination mitigation method determines the
interplay with the delayed impact.

The rest of this paper is structured as follows: the
literature review in Section 2, the problem formulation
and experimental design in Section 3, our experimental
results in Section 4, a discussion of the results in Section
5, and our conclusion in Section 6.

2. Literature Review
In this section, we will cover fairness metrics and discrim-
ination mitigation methods. In addition, we will outline
attempts to tackle the Discriminatory Impact Problem
(DIP) and subproblems that arise from it. The “Discrim-
inatory Impact Problem,” coined by Kusner et al. asks:
“How can we reduce discrimination arising from the real-
world impact of decisions?” [16].

2.1. Fairness Metrics
More than 20 fairness metrics have been proposed [17].
The definition of fairness has been a philosophical debate
for centuries and, actually, it is essentially contested [18,
19]. Different values and assumptions (often implicit) are
behind different fairness definitions and metrics [20, 19,
21]. Also, a model cannot satisfy more than one fairness
metric at once, unless the case is very constrained [22,
23]. Kleinberg et al. highlight how fairness metrics can
be incompatible with one another and they present a
framework for understanding the trade-offs of different
metrics. They reveal how calibration and balancing the
two classes are incompatible. Thus, the context of a
classification system is crucial in understanding what
metrics should be used [23].

Measures are incredibly important because they create
society through classification systems [24, 19]. In a more
general sense, Watkins et al. argue that these systems are
inherently proposals for how the world should be [25].
Friedler et al. ascertain every model has some inherent
values behind its decision making [21]. They also argue
that every fairness metric also has inherent values, as-
sumptions, and aims encoded. Mitchell et al. explicitly
define such assumptions for different metrics [20].

Wachter et al. highlight a comprehensive list of fair-
ness metrics, originally from [26], and whether or not
those metrics are Bias Preserving (BP) or Bias Transform-
ing (BT) [27]. BP metrics typically keep outcomes in
relation to society’s status quo; often times, this means
matching group error rates. BT metrics change the status
quo by usually matching group outcome rates.

2.2. Discrimination Mitigation Methods
The three key discrimination mitigation method types
are pre-processing (changing the data before it is used
for training a model), in-processing (applying a fairness
metric as a constraint or adapting the models’ learning),
and post-processing (updating a model’s output to make
it more fair) [12]. They are used at different points along
the ML pipeline. In this paper, we focus on an post-
processing method because we wanted to see how dif-
ferent ML models, fairness metrics, and discrimination
mitigation methods all worked together to affect the de-
layed impact, so we will cover those methods here.

Calders and Verwer developed a modified naive bayes
classifier that is independent of the protected attribute to
make a discrimination-free model [28]. Taking another
ML model, decision tree classifiers, Kamiran et al. crafted
discrimination-aware tree construction and relabeling
methods [29]. Kamishima et al. compared their method,
an indirect prejudice remover through regularization in
the objective function, to the two previously described
methods [30]. Zemel et al. improved upon Dwork et al.’s
theoretical framework [3] and showed that models could
learn group and individual fairness [31].

Zafar et al. focused on mitigating disparate mistreat-
ment by using a decision boundary around a fairness
metric–they used a convex-concave program to solve
the problem [32]. Goel et al. utilized a weighted sum
of logs technique to make a model non-discriminatory
[33]. They essentially defined and solved a non-convex
optimization problem. Similarly, Cotter et al. solved a
non-convex optimization problem through an approxi-
mate bayesian optimization oracle which focused on the
Equality of Opportunity (EOO) fairness metric[34].

Celis et al. developed a meta-algorithm that achieves
near-perfect fairness on multiple metrics with more than
one protected attribute [35]. Agarwal et al. adopted a
reduction approach with the Exponentiated Gradient and
Grid Search algorithms to guarantee the most accurate
fair model [8]. We use these two reduction algorithms
for our discrimination mitigation method.

2.3. Discriminatory Impact Problem
Much of the algorithmic fairness research that deals with
delayed or long-term impacts is inspired by economics
and its principles, such as social welfare. Hu and Chen
developed a model focused on the labor market, consid-
ering fairness and long-term outcomes. They showcased
that by using Demographic Parity (DP) in a short-term
labor market that farther down the line, an equitable
long-term equilibrium could be reached in a permanent
labor market [36].

Liu et al. developed an outcome curve for a loan alloca-
tion problem to measure the delayed impact on different



Figure 1: The ML pipeline for the experiments is here with the fairness metrics, ML models, and discrimination mitigation
methods (Reduction Algorithms).

groups given DP and EOO as thresholds a bank would use
to decide who gets a loan [15]. The outcome curve mod-
eled at what point a given group would experience active
harm, relative harm or relative improvement. Through
their proofs, they articulate that EOO and DP both have
the potential to benefit or harm groups, that DP, under
certain conditions, might harm groups by overaccepting
but that EOO does not, and that EOO might cause harm
by under-accepting but that DP will not under-accept
under a certain assumption [15]. They conducted simula-
tions with a credit score dataset and optimized a decision
threshold constrained by a fairness metric, but did not
use an actual ML model nor a typical discrimination mit-
igation method.

In a related thread, Speicher et al. implemented a bene-
fit function where certain outcomes have certain benefits
[37]. But, unlike Liu et al., they did not consider ben-
efit later in the future. Also, Fuster et al. ascertained
that using newer prediction models led to an increase
in credit provision, but that the disparities between and
within-groups were exacerbated [38]. Other researchers,
in the affirmative action context, developed a dynamic
model where the selection rates changed over time [39],
not just over one time step like in Liu et al’s model.

Kusner et al. took a different approach through causal
methods [16]. They proposed a constraint that reduces
the discrimination coming from the impact and show-
cased how to efficiently solve this as a constrained op-
timization problem. The previous approaches focused
on specific instances of the DIP; meanwhile, we inspect
the problem from a different angle with more practical
considerations by using multiple ML models, fairness
metrics, and reduction algorithms.

3. Methods
In this section, we outline the problem formulation and
the important aspects of our experiments, including the
fairness metrics, ML models, discrimination mitigation
methods, and delayed impact measurements used.

3.1. Problem Formulation
In our paper, we consider a binary supervised learning
setting. We leave multi-class classification problems for
future work. We intend to focus on the simpler binary
case in our initial exploration, where we assume access to
data or features, 𝑋 , a binary protected attribute consist-
ing of two demographic groups, 𝐴, and the true labels,
𝑌 . We also assume access to a model, ℎ, trained on
(𝑋,𝐴, 𝑌 ) assuming the protected attribute, 𝐴, was used
in training. The model’s predictions are 𝑌 .

To analyze a model’s performance, confusion matrices
are commonly used. Confusion matrix cells include the
True Positives (TP), False Positives (FP or Type I Error),
True Negatives (TN), and False Negatives (FN or Type II
Error), when looking at the predicted and true classes.
These terms are the building blocks for model perfor-
mance metrics (e.g. accuracy, precision, recall, and F-1
score). Most fairness metrics can also be explained by TP,
FP, TN, and FN [17]. From this point on, we will refer to
TP, FP, TN, and FN as model outcomes.

We aim to investigate whether the findings in Liu et
al.’s work (see Section 2.3) hold true in an empirical set-
ting with actual ML models and discrimination mitiga-
tion methods. Specifically, we explore the complex rela-
tionships between ML models, discrimination mitigation



Table 1
The fairness metrics considered are listed here and where 𝑦 ∈ {0, 1}. They are categorized as Bias Transforming (BT) or Bias
Preserving (BP) metrics.

Name BT/BP Expression

Demographic Parity [3] BT 𝑃 (𝑌 = 1|𝐴 = 0) = 𝑃 (𝑌 = 1|𝐴 = 1)

Equalized Odds [4] BP 𝑃 (𝑌 = 1|𝑌 = 𝑦,𝐴 = 0) = 𝑃 (𝑌 = 1|𝑌 = 𝑦,𝐴 = 1)

Equality of Opportunity [4] BP 𝑃 (𝑌 = 1|𝑌 = 1, 𝐴 = 0) = 𝑃 (𝑌 = 1|𝑌 = 1, 𝐴 = 1)

False Positive Error Rate [5] BP 𝑃 (𝑌 = 1|𝑌 = 0, 𝐴 = 0) = 𝑃 (𝑌 = 1|𝑌 = 0, 𝐴 = 1)

Error Rate Parity [7] BP 𝑃 (𝑌 = 𝑦|𝑌 ̸= 𝑦,𝐴 = 0) = 𝑃 (𝑌 = 𝑦|𝑌 ̸= 𝑦,𝐴 = 1)

methods, and fairness metrics, and the delayed impacts
on those being classified within the loan repayment do-
main. To find these answers, we undertake an experi-
mental study which is defined in the next subsection.

We consider a classification problem where an ML
model predicts the likelihood that a loan applicant will
repay the bank if given a loan. We have different delayed
impact assumptions, depending on what the benefits or
losses are for different model outcomes (i.e. TP, FP, TN,
and FN). In our scenario, we assume that being a FP has
a higher negative weight than a TP has a positive weight
with regard to the delayed impact. We will dive deeper
into these ideas in Section 3.2.4.

3.2. Experiments
Through this paper, we conduct a systematic study of
fairness metrics paired with discrimination mitigation
methods and ML models within a single domain of focus–
loan repayment prediction. For a visualization of our ML
pipeline for our experiments, see Figure 1.

3.2.1. Fairness Metrics

In this section, we delve into the fairness metrics con-
sidered for our initial assessment. Our fairness goal, as
Friedler et al. impresses on researchers to state, is nondis-
crimination and we use group fairness metrics as the
mechanism to work towards that goal [21]. We use the
same formalizations from Section 3.1. The conditional
probability that the hypothesis model, ℎ, outputs a given
prediction, 𝑦, given a protected attribute, 𝑎, is defined as
𝑃 (𝑦|𝑎), where 𝑦 ∈ {0, 1} and 𝑎 ∈ {0, 1}. The fairness
metrics chosen are defined in Table 1. These metrics are
among the most used ones (being available in the major-
ity of fairness toolkits and libraries) and do not require
expert knowledge to be used.

DP also goes by other names including Statistical Par-
ity and Acceptance Rate. Equalized Odds (EO) has been
referred to as Disparate Mistreatment but we will call
it EO here. EOO and False Negative Error Rate balance
[5] are the mathematically equivalent because if a model
has equal True Positive Rate for both groups it will also,

in turn, have an equal False Negative Rate. For the rest
of this paper, we will say EOO. False Positive Error Rate
(FPER) balance is also called Predictive Equality and is re-
lated to the True Negative Rate. We highlight that Liu et
al. use DP and EOO in their delayed impact research. We
use those two metrics again here for comparison and in-
clude three others: EO, FPER, and Error Rate Parity (ERP).
All metrics we consider are Bias Preserving, except for
DP which is Bias Transforming [27].

3.2.2. ML Models and Reduction Algorithms

For the purposes of creating a replicable experiment, we
utilize off-the-shelf ML models from sklearn1. The mod-
els we use include: Decision Tree (DT), Gaussian Naive
Bayes (GNB), Logistic Regression (LGR), and Gradient
Boosted Tree (GBT) classifiers. We also used these models
because their fit functions all included a sample weights
parameter which was needed for using the mitigation
methods from Fairlearn2.

We employ the two reduction algorithms, Exponenti-
ated Gradient (EG) and Grid Search (GS) [8], which are
implemented in Fairlearn for our discrimination mitiga-
tion method. These algorithms take a trained ML model
and a fairness constraint as parameters and reduce the
binary classification to weighted classification problems.
The goal of the reduction algorithms is to optimize the
tradeoff between accuracy and the fairness constraint.
The fairness constraints are used as Lagrange multipliers
in the method3. One of the strengths of using the reduc-
tion algorithms as our discrimination mitigation method
is that we can utilize multiple ML models in our experi-
ments, unlike other discrimination mitigation methods
which tend to be ML model specific.

3.2.3. Credit Score Data

We utilize the same dataset as Liu et al. but we trans-
formed it into a tabular dataset that can be used by ML

1https://scikit-learn.org/stable/
2https://fairlearn.org/
3For more information on how the reduction algorithms work,

we recommend reading Agarwal et al.’s paper for indepth explana-
tions [8].
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models [15]. The original data includes FICO scores (of-
ten times used for showing credit worthiness) prepro-
cessed by Hardt et al., which were collected from 301,536
TransUnion TransRisk scores from 2003 [4]. Further, the
data includes FICO score distributions by race, cummula-
tive distribution functions which tell us the fraction of
the group by race that falls under or below a given score,
and probability mass functions which tell us what the
probability of an individual (by race) repaying is given
their score. The scores range from 300 to 850. For the
score distributions by race, see Figure 2.

To generate a tabular dataset from the FICO score data,
we randomly sample scores and their probabilities by
race from the data such that the demographic racial pro-
portions remain the same (approximately 12% Black and
88% White). We take the Black group as disadvantaged
and the White group as advantaged. We created a dataset
with 100k rows or 100k individuals. To generate the y
label for our binary classification problem, we follow the
probabilities of repayment by credit score and race.

For a visualization of the repayment indices distribu-
tions by race, see Figure 3. Our tabular dataset has two
columns as features–it includes the credit score and the
race of an individual as the X for training and the label as
to whether they repaid or not as y. For more information
about how we transformed the initial FICO score dataset,
please see our Github4.

Figure 2: The histograms of the credit score distribution by
race from the generated dataset.

3.2.4. Measuring Delayed Impact

We follow Liu et al.’s function of delayed impact change
such that if an individual is a FP then their credit score
drops by 150 points and if an individual is a TP then their
credit score increases by 75 points [15]. To formalize this,
before the model prediction, let us consider we have an
individual’s credit score 𝑠. After the model’s prediction,
we update that individual’s score such that they have a

4https://github.com/mjorgen1/delayedimpact

Figure 3: The histograms of the repayment indices by race
which are used as the label in the classification system.

new credit score 𝑠*. To calculate this change, we follow
this equation: 𝑠* = 𝑠+ 𝑢, where 𝑢 is the update value,
75 for a TP individual and -150 for a FP individual. When
quantifying the delayed impact from the groups, we take
the average score difference of each racial group–we will
refer to this as the “impact change” hereafter.

When considering the delayed impact, we only focus
on TP and FP outcomes. These outcomes are the two
positive class cases where an individual would then be
given a loan, since they were predicted to repay the bank.
In time, their credit scores would change. This scenario
is especially interesting because typically being classified
as the positive class has a positive or neutral benefit, but
in this scenario, for individuals classified as FPs, that is
not the case. Our focus on the negative delayed impact
for FPs highlights the issue of predatory lending.

4. Results
For our results, we compare how the different fairness
metric, reduction algorithm, and ML model combinations
performed in relation to the impact change by group. To
understand how those combinations affected the delayed
impact, we track if the delayed impact (by group) im-
proves (credit score increases in the case of TPs) or falls
(credit score drops for FPs) in comparison to the delayed
impact of the unmitigated model. We will cover the re-
sults with respect to the fairness metrics, ML models, and
reduction algorithms used.

For results showing the percentage increase or de-
crease of the impact change in comparison to the un-
mitigated model, see Table 2 for the White group results
and Table 4 for the Black group results. For the raw im-
pact change results, which are key to understand the
magnitude changes beyond the percentage changes, see
Tables 3 and 5, where we show the raw impact for the
ML models without any mitigation method for reference.

https://github.com/mjorgen1/delayedimpact


Table 2
The average impact change results for the White group for all the different fairness metric (along the left column) and reduction
algorithm and ML model combinations (along the top row) are here. The percentage change (with the decimal rounded to the
nearest hundredth) in impact is calculated from the unmitigated model results to the mitigated model results.

Fairness Metric EG+DT EG+GNB EG+LGR EG+GBT GS+DT GS+GNB GS+LGR GS+GBT

DP 0.61% 3.27% 1.62% 0.61% 0.61% 7.21% 1.52% 0.61%
EO -2.7% -0.92% -3.24% -3.21% 0.61% 4.11% 0.9% 0.61%
EOO 0.92% 6.13% 1.85% 1.04% 0% 3.11% 0.51% 0%
FPER 0.61% -26.74% 1.52% 0.61% 0% 0% 0% 0%
ERP -6.14% -6.65% -5.47% -6.21% 0% 0.95% 0% 0%

Table 3
The average impact change for the White group for the unmitigated models, together with all the different fairness metric,
reduction algorithm and ML model combinations. *Note the unmitigated means that no metric nor reduction algorithm were
applied.

Fairness Metric EG+DT EG+GNB EG+LGR EG+GBT GS+DT GS+GNB GS+LGR GS+GBT

Unmitigated* 39.28 37.02 38.93 39.28 39.28 37.02 38.93 39.28
DP 39.52 38.23 39.56 39.52 39.52 39.69 39.52 39.52
EO 38.22 36.68 37.67 38.02 39.52 38.54 39.28 39.52
EOO 39.64 39.29 39.65 39.69 39.28 38.17 39.13 39.28
FPER 39.52 27.12 39.52 39.52 39.28 37.02 38.93 39.28
ERP 36.87 34.56 36.8 36.84 39.28 37.37 38.93 39.28

In addition, in Appendix A, we include the full break-
down of our ML model specific performance results (e.g.
accuracy) in Tables 6, 7, 8, and 9.

In all the Tables, we use the following notation, where
“𝐴+𝑀” refers to a reduction algorithm 𝐴 paired with a
ML model 𝑀 . Recall, “EG” is the Exponentiated Gradient
reduction algorithm, “GS” is the Grid Search reduction
algorithm, “DT” is a Decision Tree classifier, “GNB” is
a Gaussian Naive Bayes classifier, “LGR” is a Logistic
Regression classifier, and “GBT” is a Gradient Boosted
Tree classifier.

4.1. Fairness Metric-Focused Results
Here, we will delve into how the fairness metrics affected
the two groups’ impact changes. For the White group,
we see that for all DP model results led to a positive
impact change; meanwhile, for the Black group, all model
results with DP led to a negative impact change. Our
results highlight a limitation when using DP as a fairness
constraint; while selection rates are forced to be as equal
as possible across the groups (when the groups have
different true outcomes), one group will be less qualified
in comparison to the other [7]. Thus, on face value, the
less qualified group could continue or begin a negative
record for their demographic group. Dwork et al. coined
this problem the "self-fulfilling prophecy" [3].

When EO was used with the EG reduction algorithm,
we see that the White group’s impact change drops
slightly; contrastingly, when the GS reduction algorithm

was used, the White group’s impact change remains
about the same or increases very slightly. With regards to
the Black group’s runs with EO, the impact change drops
significantly, except for one run when it rises (GS+GNB).

For the runs with EOO, the White group’s impact
change is stagnant or minimally rises; meanwhile, the
Black group’s impact change drops substantially for all
but one run (GS+GNB). In that single case for the Black
group, the impact improves, particularly when consid-
ering the percentage increase, but when looking at the
raw impact figures, one can easily see that GNB unmiti-
gated has almost neutral impact. Further, the raw impact
achieved by applying EOO with GS, while one of the high-
est, is still very far from the raw impact for the White
group, and not that far from the highest impact for the
Black group with unmitigated model (LGR).

When the FPER metric constrains the models, the
White group’s impact change increases slightly or re-
mains stagnant and there is one run where the impact
change falls (EG+GNB). When FPER was paired with
the EG reduction algorithm, we highlight that the Black
group’s impact change drops significantly; surprisingly,
when GS was the reduction algorithm with FPER, the
impact change is stagnant.

When ERP constrains the models, the White group’s
impact change either drops slightly or remains the same,
and in one instance, it increases extremely slightly. The
Black group’s impact change either increases, remains
stagnant, or drops (in one case, GS+GBT). In fact, ERP



Table 4
The average impact change results for the Black group for all the different fairness metric (along the left column) and reduction
algorithm and ML model combinations (along the top row) are here. The percentage change (with the decimal rounded to the
nearest hundredth) in impact is calculated from the unmitigated model results to the mitigated model results. ∅ is used for the
values when the unmitigated model impact was 0 to begin with, making percent changes not possible to calculate.

Fairness Metric EG+DT EG+GNB EG+LGR EG+GBT GS+DT GS+GNB GS+LGR GS+GBT

DP -712.78% ∅ -613.22% -694.76% -469.97% ∅ -412.28% -484.59%
EO -166.61% ∅ -177.7% -139.14% -131.46% ∅ -230.71% -129.43%
EOO -325.4% ∅ -301.34% -311.86% -114.54% ∅ -163.02% -129.43%
FPER -171.25% ∅ -164.35% -168.1% 0% ∅ 0% 0%
ERP 0% ∅ 0.27% 0.92% 0% ∅ 0% -1.23%

Table 5
The average impact change for the Black group for the unmitigated models, together with all the different fairness metric,
reduction algorithm and ML model combinations. *Note the unmitigated means that no metric nor reduction algorithm were
applied.

Fairness Metric EG+DT EG+GNB EG+LGR EG+GBT GS+DT GS+GNB GS+LGR GS+GBT

Unmitigated* 6.26 0 7.49 6.49 6.26 0 7.49 6.49
DP -38.36 -26.62 -38.44 -38.6 -23.16 -35.72 -23.39 -24.96
EO -4.17 -11.48 -5.82 -2.54 -1.97 6.41 -9.79 -1.91
EOO -14.11 -16.86 -15.08 -13.75 -0.91 7.49 -4.72 -1.91
FPER -4.46 -15.92 -4.82 -4.42 6.26 0 7.49 6.49
ERP 6.26 8.1 7.51 6.55 6.26 8.31 7.49 6.41

seems to be the only metric that has the least negative
impact on the Black group from all the metrics; even
though, most of the time, there is no improvement or
only marginal improvement, and in one case, there is a
small drop in impact. We note, however, that when ERP
is used together with GNB, regardless of the reduction
method, there is a significant improvement in terms of
proportion for the Black group. Though in terms of total
improvement, GNB constrained by ERP only offers a
slight improvement for the Black group over the best
impact for the unmitigated models.

Finally, we now focus only on DP and EOO to compare
our results with those of Liu et al. [15], as they only used
these two metrics. Our results reveal that although their
findings were theoretically valid given their assumptions
and the way they modelled the problem without actual
ML models; in practice, with actual ML models, reduction
algorithms, and different metrics, we found both similar
and different results with regard to fairness metric be-
havior. As aforementioned, a motivation for our work
was to overcome the limitations of their study and to
analyse to what extent their fairness metric and delayed
impact results hold when an off-the-shelf ML model and
reduction algorithm are used.

In particular, our results support Liu et al.’s claim that
EOO and DP both have the potential to positively and
negatively impact groups. In contrast to their finding
that under certain conditions EOO will not overaccept

and negatively impact groups, we highlight that EOO
actually over-accepts and causes a drop in impact change
for the Black group when using DT and LGR models with
both reduction algorithms and the GNB model with the
EG reduction algorithm (see Selection Rates in Tables 6,
8, and 7 and the decrease in impact change in Table 4).
The majority of our results support their claim that given
an assumption, EOO might negatively impact groups by
under-accepting, while DP will not. The only exception
in our results in contradiction to this was DP constraining
the GNB model with EG where we see DP underaccepting
for the Black group (see Selection Rates in Table 7).

4.2. ML Model and Reduction
Algorithm-Focused Results

Now that we have covered the impact changes for the
two groups by fairness metric, let us consider how the
different ML models affected the impact change. When
looking column wise by race and ML model, we notice
that the impact changes do not vary too much. For in-
stance, when looking at the DT model impact change
results for the Black group, we see that when EG was
used, the impact change dropped for 4 out of 5 runs and
when GS was used, 3 out of 5 runs had an impact change
drop. When looking at the White group model results
for DT, we see ML model column-wise numbers are not
drastically different either; for EG, 2 runs had a slight



drop in impact while the other 3 had a slight impact in-
crease and for GS, 3 runs had no changes to the impact
while two slightly increased it.

Concerning impact change stagnating, we highlight
that that happens more when using GS than when us-
ing EG as the reduction algorithm. We also note that,
when comparing the two reduction algorithms (and their
respective ML model pairs) for the Black group impact
change, results reveal that the impact changes are less
severe when GS was used for the majority of 4 out of 5
metric runs (see the first four rows in Table 4). For the
White group, all GS runs either kept the impact change
stagnant or increased it slightly; meanwhile, there were
more fluctuations and drop in impact change when EG
was used (see Table 2).

Focusing on each reduction algorithm, when using the
EG reduction algorithm with DP, EO, EOO, and FPER,
the Black group had a decrease in impact in comparison
to the unmitigated model. We find similar but slightly
different results for the GS reduction algorithm results for
the Black group. We only see increases in the GS+GNB
model paired with the fairness metrics: EO, EOO, and
ERP. All other combinations with GS leave the Black
group with no change in impact or a decrease in it.

5. Discussion
We now discuss more in detail the implications of the
results we obtained. One key aspect was that we were
intrigued that the delayed impact changes were not uni-
versal across the two reduction algorithms and fairness
metrics. There was a great deal of variation. We present
a few of our key findings below.

“Fair predictions” can result in worse impacts for
both the advantaged and disadvantaged groups.
As shown in our results, by just applying a fairness met-
ric with a reduction algorithm, we have by no means a
guarantee that the delayed impact on any of the groups
considered will improve. In fact, we have seen that some
combinations of metrics and reduction algorithms can
lead to worse impacts for both groups considered.

Most “fair predictions” fail to improve impact for
the disadvantaged group. While the drops in impact
for the White group are rather small, and, in general,
we see that the White group’s impact change is not sub-
stantially different when using discrimination mitigation
methods, the Black group’s impact change drops signif-
icantly when using most fairness metric and reduction
algorithm combinations. We see that overall, the White
group does better except for a few cases when using fair-
ness metrics. However, this result is not the same for the
Black group. The Black group, for the majority of the

runs, was worse off delayed impact wise as a result of
using the fairness metric and reduction algorithm.

Improvement for the disadvantaged group, when
achieved, is quite modest. For the rare cases where
there was an improvement for the Black group, the rise
in impact was minimal. The one metric that seemed to
benefit the Black group, for 4 out of 8 model runs, was
ERP. However, in two cases the improvement is negligi-
ble, and in the other two cases, while getting to the best
impact for that group, it is a minimal improvement over
the best unmitigated model impact result.

Fairness metrics are not the only aspect influenc-
ing impacts. All the three main aspects we consid-
ered, namely the ML model, the discrimination mitigation
method (reduction algorithm,) and the fairness metric
seemed to have an influence on the impacts. However,
the ML model choice appeared to have less of an effect
on the delayed impact than the discrimination mitigation
method (reduction algorithms in our experiments) and
fairness metric. Thus, we claim that both the discrimina-
tion mitigation method and fairness metric choice have
a larger role in a group’s delayed impact.

Fairness metrics results do not always match expec-
tations. Our results highlight that the fairness metrics
will not reveal much about the delayed impact unless the
effect metrics have on the other outcomes is known in
advance. For example, one could expect that in a case
like our case study, where FP entails a negative impact,
a metric aiming at having equal error rates (like FPER)
would lead to fairer classifications. In this case, we con-
cluded that optimization of that metric could lead to the
error rate for the Black group being greater, which in turn
makes it more difficult for the model to classify Black
individuals correctly.

6. Conclusion
Through our study, we empirically investigated how de-
layed impact of a group changes depending on what
fairness metric, discrimination mitigation method, and
ML model is utilized. Our experiments highlight how AI
Practitioners must not only consider the fairness met-
ric but also the discrimination mitigation method used
because they both matter when considering the domain
specific delayed impact. We also argue that predictions
made by “fair models” need to be closely scrutinised in
terms of the impact of such predictions.

In this paper, we emphasized why the interplay be-
tween delayed impact, fairness metric, discrimination
mitigation method, and ML models needs to be consid-
ered to avoid undesired delayed impacts, particularly on



disadvantaged groups. For future work, we plan to ana-
lyze the statistical significance of our results and study
more datasets from other domains to better understand
the relationships that we have outlined and the type of
generalizations that could be made across different types
of domains. We also aim to explore what other delayed
impacts can arise from other outcomes such as FN ones
and how to formalize them.
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A. Extended Results
In our performance tables for each of our ML models, we
include the Accuracy (Acc), F1 weighted score (F1), and
Selection Rate (SR). We utilize the F1 weighted metric so
we take into consideration the proportion of labels, since
our dataset is imbalanced. We also considered Accuracy
since it is a common performance metric for classification
systems. Further, Selection Rate is especially interesting
in this scenario because of the effect of being classified as
the positive class. In our model result tables below, the
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“Base” results column refers to our ML model without any
discrimination mitigation techniques used. Then, to the
right of that column we include “E” or “G” to state what
reduction algorithm was used and the other acronym, af-
ter the “+” there, represents the fairness metric, e.g. “DP”
for Demographic Parity. The scores shown are out of 100.
For our model specific results, see Table 6 for Decision
Tree model results, Table 7 for Gaussian Naive Bayes
model results, Table 8 for Logistic Regression model re-
sults, and Table 9 for the Gradient Boosted Tree model
results.



Table 6
The Decision Tree Classifier model performance results for all of our different combinations of runs.

Base E+DP E+EO E+EOO E+FPRP E+ERP G+DP G+EO G+EOO G+FPRP G+ERP

Acc 88.32 85.07 85.63 86.96 87.75 85.4 86.37 87.92 87.96 88.32 88.43
F1 88.2 84.46 85.65 86.71 87.54 85.4 85.97 87.74 87.75 88.2 88.2
SR 72.96 77.52 70.82 74.45 74.06 71.01 75.92 73.8 74.16 72.96 72.96

Table 7
The Gaussian Naive Bayes model performance results for all of our different combinations of runs.

Base E+DP E+EO E+EOO E+FPRP E+ERP G+DP G+EO G+EOO G+FPRP G+ERP

Acc 85.72 81.89 84.62 86.83 69.32 83.82 85.29 88.39 88.25 85.72 87.65
F1 85.59 81.96 84.36 86.46 70.66 83.84 84.81 88.13 87.98 85.59 87.39
SR 72.66 70.23 74.08 75.75 56.39 70.75 76.37 74.86 74.99 72.66 74.81

Table 8
The Logistic Regression model performance results for all of our different combinations of runs.

Base E+DP E+EO E+EOO E+FPRP E+ERP G+DP G+EO G+EOO G+FPRP G+ERP

Acc 88.41 85.11 85.09 86.95 87.72 85.49 86.38 87.36 87.73 88.41 88.41
F1 88.24 84.51 85.08 86.67 87.51 85.57 85.98 87.06 87.44 88.24 88.24
SR 73.68 77.43 71.13 74.71 74.08 69.91 75.92 75.16 74.99 73.68 73.68

Table 9
The Gradient Boosted Tree model performance results for all of our different combinations of runs.

Base E+DP E+EO E+EOO E+FPRP E+ERP G+DP G+EO G+EOO G+FPRP G+ERP

Acc 88.32 85.06 85.19 86.97 87.77 85.42 86.26 87.94 87.91 88.32 88.39
F1 88.21 84.45 85.32 86.73 87.56 85.42 85.84 87.75 87.69 88.21 88.26
SR 72.9 77.52 69.3 74.25 74.11 71.01 76.06 73.83 74.32 72.9 73.13
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