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Abstract
This paper proposes the novel REM estimation method
based on the combination of REM estimations with multi-
timescale logarithmic spectrums calculated from overnight
bio-vibration data acquired from mattress sensor. Concretely,
this paper learns each Random Forests for multiple scale
spectrums, and counts the number of REM estimation in the
length of the window, and estimates REM if the counted
number exceeds the threshold. The threshold is automatically
determined based on the REM estimation ratio to the total
sleep length for each person to consider individual differ-
ences. Through the human subject experiments, the following
implications have been revealed: (1) the combination of RFs
learned with each scale spectrum improves the Precision and
Recall of REM estimation, and Accuracy, Precision, Recall
and Specificity are 80.2%, 51.4%, 47.0% and 48.5%, respec-
tively; and (2) the automatic adjustment of the threshold can
be flexibly adapted to data with large individual differences
without the need to retrain the model.

Introduction
According to the survey conducted by the Ministry of
Health, Labour and Welfare, it is estimated that about one in
three Japanese adults feel sleepy during the day at least three
times a week. In addition to that, Japan has the shortest sleep
time among the OECD member countries (Organization for
Economic Cooperation and Development 2019), which sug-
gests that many people in Japan are sleep-deprived. The
accumulation of sleep deprivation (especially4-6 hours of
sleep) leads to a state of sleep debt. In the state of sleep
debt, the ability to think and make decisions is equivalent
to staying up all night (Van Dongen et al. 2003), and it is a
factor in the increased risk of industrial and traffic accidents.
It also decreases immune function and increases the risk of
developing lifestyle-related diseases such as depression and
dementia (Mullington et al. 2009; Holingue et al. 2018). For
individuals to stay healthy and for the government to reduce
health care costs, these sleep problems should be solved as
soon as possible.

To solve these sleep problems, it is important to increase
the amount of sleep time, but many people suffer from
the problem of poor sleep quality even if they sleep for
a long time. For the facts, it is necessary to understand
sleep quality. The standard method for measuring sleep qual-
ity (sleep stage) is to evaluate biological data acquired by

Polysomnography (PSG) test based on the Rechtschaffen
& Kales (R&K) method (Rechtschaffen and Kales 1968).
However, the PSG test is a highly restrictive method and re-
quires a person to attach multiple electrodes to his/her head
and body, which burdens physical and mental on his/her and
prevents obtaining data of sleep as usual. To address the
problems, the demand for sleep stage estimation methods
by simple sensors (such as mattress sensors) has increased
as an alternative to the PSG test. For example, Watanabe
developed a mattress sensor and focused on the relation be-
tween heart rate variability and sleep stage (Watanabe and
Watanabe 2004). The accuracies of the method are reported
as follows: 42.8% in three stages (NREM/REM/WAKE) es-
timation; 82.6% in NREM estimation; 70.5% in WAKE esti-
mation; and 38.3% in REM estimation. As the results show,
the accuracy of the method is not high, especially the ac-
curacy of REM sleep estimation. This is because that REM
sleep estimation is mainly based on rapid eye movements in
the R&K method, and mattress sensors cannot measure eye
movements. Even though REM sleep has other characteris-
tics (i.e., unstable heart and respiration rate) acquired from
the mattress sensor, it is hard to estimate REM sleep because
of the following points. (1) The characteristics that appear
in REM sleep appear intermittently rather than all the time
during REM sleep. (2) The heart rate gets unstable by body
movements. (3) The heart rate is easily affected by individ-
ual differences and daily physical condition.

To tackle the problems, it is necessary to estimate REM
sleep from a new perspective, including physiological char-
acteristics. However, since we do not know what to fo-
cus on, machine learning (ML) is a good way to estimate
REM sleep from a new perspective. In this study, Random
Forests (Breiman 2001) is employed for the ML model be-
cause it is easier to analyze what the model learned from the
data than deep learning (Goodfellow et al. 2016), which is
widely employed because of its high prediction accuracy. It
is essential for analyzing models easier because it leads to
the interpretability of the model in the future. However, it
cannot deal with the problem (1) mentioned before by ap-
plying the ML to sleep stage estimation because each epoch
(30 seconds) is estimated without considering before/after
the corresponding epoch. Due to this, it is difficult to esti-
mate REM sleep when the characteristics do not appear at
the epoch. In addition to that, the ML is not good at learning

___________________________________
In T. Kido, K. Takadama (Eds.), Proceedings of the AAAI 2022 Spring Symposium
“How Fair is Fair? Achieving Wellbeing AI”, Stanford University, Palo Alto, California, 
USA, March 21–23, 2022. Copyright © 2022 for this paper by its authors. Use permitted 
under Creative Commons License Attribution 4.0 International (CC BY 4.0).

74



data with individual differences.
To overcome these problems, this paper aims to improve

the accuracy of REM sleep estimation and proposes the
novel REM sleep estimation method with a mattress sensor
that can consider before/after the corresponding epoch and
be automatically adjusted the REM sleep estimation thresh-
old for each person. Concretely, this paper employs TANITA
sleep scan SL511 (Japan) as the mattress sensor for acquir-
ing bio-vibration data, and prepares several RFs for learning
multi-timescale logarithmic spectrums. It is combined that
the REM sleep estimations by each RF for the final output
of estimation, and the estimation sensitivity is automatically
adjusted based on the REM sleep estimation ratio out of all
epochs in an overnight sleep.

This paper is organized as follows. The next section de-
scribes the sleep mechanism especially REM sleep. Section
3 describes the related works of non-contact sleep stage es-
timation and RF which is the main ML method in our pro-
posed method and Section 4 proposes our multiple scales
REM estimation method. The experiment is conducted in
Section 5 and the result are analyzed in Sections 6. Finally,
our conclusion is given in Section 7.

Sleep Mechanism
Sleep Stage
The sleep stage is an indicator of the depth of sleep defined
by the R&K method. The depth of sleep is classified into six
stages in each epoch (30 seconds), i.e., WAKE, REM, Non-
REM1 (N1), N2, N3, and N4 (N4 is often included in N3).
The proportion of each sleep stage in healthy young adults
per night is as follows: WAKE is 1-5%; REM is 15-25%;
N1 is 5-20%; N2 is 45-75%; and N3 is 10-22% (depending
on age and physical condition on that day). In order to de-
termine the sleep stage, the R&K method needs biological
data such as electroencephalography (EEG), electrooculo-
gram (EOG), and electromyogram (EMG) acquired by the
PSG test. Figure 1 shows the example of the overnight sleep
stages, where the vertical axis indicates the sleep stage and
the horizontal axis indicates the time. As shown in Figure 1,
the structure of the sleep stage in a healthy person repeats
deep sleep (N3 sleep) and shallow sleep (above N3 sleep)
alternately, and the regular sleep repeats this cycle (about
90 to 120 minutes) three to five times a night. Each cycle is
connected by about 20 to 30 minutes of REM sleep, and this
cycle is called the ultradian rhythm.

Characteristics of REM Sleep
The physiological characteristics of REM sleep are as fol-
lows:
• rapid eye movement;
• decreased skeletal muscle activity;
• increased or unstable heart rate and respiratory rate;
• changes in autonomic function.

In particular, REM sleep is determined by focusing on “rapid
eye movement” and “decreased skeletal muscle activity” in
the R&K method. This is because that the two characteris-
tics are clearly expressed in the biological data acquired by

WAKE
REM

NREM1
NREM2
NREM3

Time (min)90 180 270 3600

Figure 1: Example of the overnight sleep stage.

the PSG test and are easy to evaluate. Note that these char-
acteristics occur intermittently, rather than continuously.

Related Works
Sleep Stage Estimation by mattress sensor
Watanabe et al. tried to extract the relation between the
change in the heart rate and sleep stages through the fre-
quency band containing the multiple biological rhythms of a
human to build a foundation of sleep stage estimation from
heart rate variability (HRV) (Watanabe and Watanabe 2001).
They focused on two biological rhythms that the ultradian
rhythm and the circadian rhythm, which is an approximate
25 hours cycle. From their study, the relations between the
frequency of HRV and sleep stage have been revealed, and
they built a sleep stage estimation method based on the heart
rate data acquired from the air mattress sensor (Watanabe
and Watanabe 2004).

Random Forests
This study employs Random Forests (RF) (Breiman 2001).
The RF model repeats random sampling from training data,
randomly construct decision trees with different conditional
branches, and classify them by majority rule of those results.
In this research, Gini impurity is the splitting condition, it
becomes low when all the samples contained in each node of
the decision tree are the same. RF processing is as follows:

1. Generate bootstrapped sample (Sj) from training data set
(S).

2. One-third of the original data is called Out-Of-Bug
(OOB), and it is used for constructing decision tree. Each
node processing is as follows:

(a) Extract mtry features randomly with not allowing du-
plicate value.

(b) Choose the feature that minimizes Gini impurity, and
divide nodes.

3. Repeat 1. to 2. Ntree times.

Where Ntree is the number of decision trees to be con-
structed. In the classification problem, it is recommended
to use the square root of the total number of features for the
variable mtry, which used to divide the nodes of decision
trees.

Proposed Method: Multi-Timescale REM
Estimation

The proposed method, Multi-Timescale REM estimation
starts from learning several RFs with each scale bio-
vibration data, then combines REM predictions by each RF,
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Figure 2: Examples of (a) power spectrum and (b) logarith-
mic spectrum (L = 64).
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128 sec. of data

Figure 3: Example of strides and how to label sleep stage to
the spectrum.

and estimates REM sleep based on the REM estimation
threshold adjusted for each person.

Input data
To extract characteristics of bio-vibration data by the ML,
the frequency analysis is applied for decomposing each vi-
brations (i.e., heartbeats, respiration and body movement) to
frequencies. This process is conducted as follows.
1. Applying the Fast Fourier Transform (FFT) (Cooley and

Tukey 1965) to the bio-vibration data in a L-second win-
dow to convert the data to a power spectrum (note that
the sampling frequency of the mattress sensor is 16Hz,
and data size is L× 16). In this study, window size (L) is
set as next for capturing several scales of REM. L = {32,
64, 128, 256}. According to the sampling theorem (Shan-
non 1949), the frequency that can be analyzed by FFT
is up to 8Hz, so that the data size of power spectrum is
L×8, and the frequency resolution is 1/L Hz. Figure 2(a)
shows the example of power spectrum (L = 64) calcu-
lated from bio-vibration data, where the vertical axis in-
dicates the density of power spectrum and the horizontal
axis indicates the frequency. In particular, the frequency
band between 0.1Hz and 0.3Hz is related to the respira-
tion, and the frequency band between 0.6Hz and 1.5Hz is
related to the heartbeats. Regarding the BM, the larger/s-
maller BM, the higher/lower density of the power spec-
trum. However, as shown in Figure 2(a), it is difficult to
understand the shape of the power spectrum above 1Hz
because of the high density of frequencies below 1Hz.

2. In order to make it easier to understand above 1Hz and
for RF to learn, power spectrum is converted into a loga-
rithmic spectrum (log10). Figure 2(b) shows the example
of the logarithmic spectrum converted from the power
spectrum of Figure 2(a), where the vertical axis indicates

RF
32 sec.

RF
64 sec.

RF
128 sec.

RF
256 sec.

(1) Learning each scale spectrum by each RF

TH REM estimation ratio
1 60%

2 38%

Time

1 1 10 0 0 1 4 2 2

(2) Combining the REM predictions

2 2 7 81 1 1 5

prediction
count

windowed
prediction

count

PC:

WPC:

5 21%

(3) Exploring optimal threshold and estimating REM

…
…

if WPC ≥ 5 then REM
if WPC < 5 then not REM

Figure 4: Overview of Multi-Timescale REM Estimation.

the density (logarithmic value) of the spectrum and the
horizontal axis indicates the frequency. Furthermore, the
density of each frequency in the logarithmic spectrum is
normalized to 0, 1 based on the value of the density of
the overall frequency.

3. This logarithmic spectrum is calculated per 30-second
(stride size is 30-second) and labeled with the correct
sleep stage (REM/Not-REM) determine by R&K method
for RF to learn. Figure 3 shows the example of strides
(window size is 128 seconds) and how to label sleep stage
to the spectrum. When labeling sleep stage to the spec-
trum, bio-vibration data often have multiple sleep stages,
so that, in this study, the sleep stage which is labeled to
the spectrum is determined by a majority vote of the pro-
portions occupied by those sleep stages. Note that, when
using RF for REM prediction (not learning phase), the
logarithmic spectrum is not labeled with the correct sleep
stage, and the output of the prediction is for first epoch.
The number of the input data that can be calculated from
one subject (in case of seven hours of sleep) is about 840.

REM estimation based on multiple scales spectrum
Figure 4 shows the overview of the proposed Multi-
Timescale REM Estimation. The flow of the method is as
follows: (1) preparing RFs for a number of scales (each
window size spectrum), and learning each scale spectrum
by each RF; (2) combining the number of REM predictions
by each RF in each window (note that, this window is dif-
ferent from window size of spectrum); (3) exploring opti-
mal threshold for REM estimation from overnight data, and
REM sleep is detected when the number of REM predictions
in a window counted in (2) exceeds the threshold.

Combining REM predictions by each RF: Our method
outputs four REM predictions for each epoch from RF of 32
sec., 64 sec., 128 sec. and 256 sec., and the REM Prediction
Count (PC) is counted for each epoch as shown in top of Fig-
ure 4(2). Since REM sleep do not occur singly (one epoch)
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Algorithm 1: Exploring optimal threshold

1: r list[ ]: REM estimation ratio for each threshold
2: WPC list[ ]: WPC for each epoch in overnight sleep
3: N EPOCH: Number of epoch in overnight sleep
4: current TH ⇐ 1: Start to explore from 1
5: IS CONTINUE⇐ true
6: while IS CONTINUE do
7: REM COUNT ⇐ count epochs detected as REM

from WPC list
8: r list.append(REM COUNT / N EPOCH)
9: if REM COUNT is equal to 0 then

10: IS CONTINUE = false
11: end if
12: current TH++
13: end while
14: optimal TH: Optimal threshold found by the exploring
15: for i = 0 to r list.length−1 do
16: if r list[ i] > 0.25 then
17: break
18: end if
19: optimal TH = i
20: end for

but in clusters (successive epochs), in order to consider the
state before/after the epoch wanted to estimate, the method
prepare a window to count PC for Ne epochs before/after the
epoch, which called Windowed Prediction Count (WPC) as
shown in bottom of Figure 4(2).

Automatic adjustment of REM estimation threshold:
The finally output of the proposed REM estimation for an
epoch is determined by the value of WPC. If the WPC ex-
ceeded a certain threshold, then the epoch is detected as
REM sleep, as shown in the Figure 4(3). It has a propor-
tional relationship between the size of the threshold and the
REM estimation ratio, which means the ratio of estimation
out of all epochs in an overnight sleep (without considering
correct and incorrect answers). According to the physiologi-
cal characteristics of sleep, the proportion of REM sleep per
overnight sleep is about 20%, so that the proposed method
explores the threshold which the REM estimation ratio is
about 20% for each person to avoid excessive or negative
estimation.

The algorithm of exploring optimal threshold is described
in Algorithm 1 The algorithm counts the number of epoch
detected as REM sleep by a threshold in overnight sleep, and
calculate the REM estimation ratio, while the REM sleep
count is equal to 0 (see line 6 to 13). Then, the optimal
threshold is extracted as the previous threshold where the
REM estimation ratio exceeds 25% (see line 15 to 20).

Experiments
To investigate the effectiveness of the proposed Multi-
Timescale REM Estimation, this paper conducted the hu-
man subject experiment of the nine of healthy subjects.
The performance of the REM estimation is compared with
RFs learned with each window size of logarithmic spec-
trum. The information of subjects is summarized in Table 1.

Table 1: Information of healthy subjects.

ID (Age) WAKE REM N1 N2 N34 Total
A (20’s) 46 176 41 421 164 848
B (20’s) 53 113 48 368 2 584
C (30’s) 103 184 35 382 0 704
D (40’s) 75 65 46 419 2 607
E (40’s) 44 85 53 390 23 595
F (40’s) 34 121 40 225 0 420
G (40’s) 53 110 80 407 1 651
H (50’s) 35 249 56 520 0 860
I (60’s) 98 159 27 436 0 720

The column “ID (Age)” indicates the ID of the subject and
age of that. The columns from “WAKE” to “N34” indicate
the number of epochs in each sleep stage (WAKE, REM,
NREM1, NREM2 and NREM34), and the column “Total”
indicates the total number of epochs in one night. The av-
erage number of epochs (30 seconds) of sleep is 664±130.
As evaluation criteria, this study employs five evaluation in-
dicators, Accuracy, Precision, Recall, F-measure and Speci-
ficity of REM estimation. In addition, this study evaluates
the REM estimation ratio to see if REM estimations are be-
ing made at an appropriate frequency.

setup
The electrodes were attached to the body and head of each
subject to acquire EEG, EOG and EMG, and mattress sen-
sor was placed under the mattress in the bed to acquire bio-
vibration data in one night. After sleep, the correct sleep
stages for each subject were determined according to the
R&K method based on the data measured by PSG (helped
by medical specialist), and the bio-vibration data measured
by mattress sensor is converted to logarithmic spectrums of
several scales (i.e., window sizes are L = {32, 64, 128, 256,
512}) of which are labeled with the correct sleep stage in
each epoch.

The logarithmic spectrum of each scale is learned with
different RFs from each other. The training data is gener-
ated from the eight subjects, and the validation data is the
other subjects. The ratio of REM sleep and not-REM sleep
of training data is 1:3 because REM sleep accounts for 20%
of one night sleep and to prevent excessive REM estimation.
The data which have large BM are excluded because it af-
fect the shape of the spectrum and difficult to learn with RF.
The parameters of RF are set as follows: (i) the maximum
depth of decision tree is 10; (ii) the number of decision tree
is 50; (iii) the number of the features employed to construct
the decision tree is 16, 23, 32, 46 and 64 for window size 32,
64, 128, 256 and 512 respectively. The window size Ne for
counting WPC is set as 3.

Results
Table 2 shows the results of REM estimations. The column
“Type of RF” indicates the RF learned with each window
size of spectrum and rows “proposed 1” and “proposed 2”
are the combination of multiple RF results, and the other
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Table 2: Reaults of REM estimation by RFs learned with each window size and the proposed method.
Values are expressed as mean ± standard deviation.

Type of RF Accuracy Precision Recall F-measure Specificity REM estimation ratio
32 sec. window 74.1 ± 8.5 33.0 ± 21.3 9.8 ± 13.6 11.3 ± 10.3 91.5 ± 12.2 8.8 ± 12.3
64 sec. window 76.0 ± 7.1 38.5 ± 21.3 12.9 ± 18.9 14.2 ± 12.3 92.9 ± 11.6 8.4 ± 13.3

128 sec. window 76.6 ± 8.3 47.3 ± 14.8 20.6 ± 16.5 24.8 ± 9.8 91.5 ± 12.3 11.0 ± 13.3
256 sec. window 78.0 ± 7.8 52.8 ± 20.8 24.5 ± 17.4 29.9 ± 12.6 92.0 ± 11.2 11.6 ± 12.4
512 sec. window 76.3 ± 5.9 25.8 ± 16.8 4.6 ± 3.8 7.2 ± 5.3 95.6 ± 4.4 4.5 ± 4.1

Proposed 1
(same TH (= 2)) 79.0 ± 8.1 52.8 ± 20.7 55.4 ± 21.3 51.1 ± 16.4 84.9 ± 9.8 23.3 ± 11.1

Proposed 2
(consider individual) 80.2 ± 5.5 51.4 ± 15.0 47.0 ± 15.5 48.5 ± 13.7 89.0 ± 3.0 18.5 ± 3.4

0

1

2

3

0:00:00 0:57:36 1:55:12 2:52:48 3:50:24 4:48:00

correct sleep stage 32sec. detection 64sec. Detection 128sec. Detection 256sec. detection

W

R

N12

N34

Figure 5: Estimation result of subject “E”.

columns are the evaluation indicators. Each value of indica-
tors are expressed as mean value of nine subjects± standard
deviation value of those, and the value is a percentage. As
shown in Table 2, the Accuracy, Precision, Recall and F-
measure are getting high rate as window size of spectrum
getting wide, but when window size of spectrum is too wide
(i.e., 512 sec.), these evaluation indicators get worsen than
any other results. The reason why the value of Specificity in
512 seconds is most largest than any other results is that the
REM estimation ratio of the RF leaned with 512 seconds is
small (i.e., the REM estimation is passive).

Focusing on the results of two proposed methods, the val-
ues of Accuracy, Recall and F-measure outperform any other
results (i.e., single RF leaned with each window size of spec-
trum). The values of Precision and Specificity are not the
best among the result but these values are close to the best.
In addition, the REM estimation ratio is larger than any other
results, and the ratio is close to the average ratio of REM
sleep per one night (about 20%). The standard deviation
of each evaluation indicators are smaller for the proposed
method 2, which considers individual differences, than for
the proposed method 1, which does not considers individual
differences, and this fact suggests the results are stable for
each subject.

Discussion
How the combination of multiple RF results
contributes?
Figure 5 shows the estimation result of subject E, where the
vertical axis indicates sleep stage (WAKE, REM, NREM12,

NREM34), the horizontal axis indicates the time, the blue
line indicates the correct sleep stage, and orange line, gray
line, yellow line and green line are REM estimation result of
32, 64, 128 and 256 seconds respectively. As shown in Fig-
ure 5, the areas of the actual REM sleep marked by red cy-
cles tend to have a concentration of REM estimation by four
types of RF. On the other hand, the actual not REM sleep
areas tend to have few REM estimations. Based on the pro-
posed method, the number of REM estimations by each RF
in a window interval of 3 epochs (1.5 minutes) before/after
is shown in Figure 6. In Figure 6, the left and right verti-
cal axes indicate the number of windowed REM prediction
count (WPC) and sleep stage, respectively, the horizontal
axis indicates the time, and the orange and blue lines indicate
the WPC and correct sleep stage, respectively. As shown in
Figure 6, the WPC tends to be high in the areas of the actual
REM sleep, and it tends to be low in that of actual not REM
sleep. The proposed method (the combination of multiple
RF results) exploits this tendency and estimates REM sleep
when the WPC exceeds a certain threshold. The threshold
for REM estimation in the proposed method was determined
by the sensitivity analysis of REM estimation threshold as
shown in the Figure 8, where the vertical axis indicates the
percentage, horizontal axis indicates the threshold, and blue,
orange, gray, yellow, purple and green lines indicate Accu-
racy, Precision, Recall, F-measure, Specificity and REM es-
timation ratio, respectively. From the figure, the smaller the
threshold value, the higher the REM estimation ratio, and
the better the estimation of the actual REM sleep (as shown
in the Figure 8, Recall), while the larger the threshold value,
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Figure 6: The number of windowed REM prediction count (WPC): subject “E”.
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Figure 7: The number of windowed REM prediction count (WPC): subject “I”.
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Figure 8: Sensitivity analysis of REM estimation threshold
in the proposed method.

the lower the REM estimation ratio and the better the esti-
mation of actual not-REM sleep (as shown in the Figure 8,
Specificity). In this study, the threshold value (= 2) was cho-
sen based on the Precision and Recall are almost equal and
F-measure is the largest. However, this threshold is suscep-
tible to individual differences (e.g., age and physical condi-
tion on the day) and must be carefully determined for each
subject.

Consideration of individual differences in the
proposed method
As mentioned above, this section discusses the importance
of the threshold setting in the proposed method with subject

“I” who have to set a significantly different threshold com-
pared to other subjects. Figure 7 shows the number of WPC
of subject I, where the left and right vertical axes indicate the
number of REM estimations and sleep stage, respectively,
the horizontal axis indicates the time, and the orange and
blue lines indicate the WPC and correct sleep stage, respec-
tively. Compared to the results of subject “E” in Figure 6, the
WPC of subject “I” is excessive, and it is not desirable to set
a threshold of the same value. To deal with the individual
differences the proposed method focused on the physiolog-
ical characteristics about sleep that REM sleep accounts for
about 20% of the total sleep in one night.

Table 3 shows the thresholds and results that were auto-
matically adjusted for each subject so that the REM esti-
mation ratio to the overall sleep time is about 20%. In the
Table 3, the column “ID (Age)” indicates the subject ID and
age, the columns “TH” and “REM estimation ratio” indicate
the threshold (the value is an integer) for REM estimation
and REM estimation ratio (the value is percentage) based
on the threshold. The other columns indicate each evalua-
tion indicators (the value is a percentage). Each threshold
is set to a value close to 20% without the REM estimation
ratio exceeding 25%. As shown in Table 3, the thresholds
for all subjects, except subject “I”, are set between 1 and 4.
If the threshold value of 4 is given to the subject “I” like
the other subjects, the REM estimation ratio will be 86.1%
and the Accuracy, Precision, Recall, F-measure and Speci-
ficity will be 35.9%, 25.7%, 99.4%,40.9% and 17.7%, re-
spectively. This situation should be avoided in real applica-
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Table 3: The results of proposed method considering the individual differences (the row “proposed 2” in Table 2) in detail.

ID (Age) TH REM estimation ratio Accuracy Precision Recall F-measure Specificity
A (20’s) 3 17.2 87.0 73.1 60.2 66.0 94.1
B (20’s) 4 19.4 72.4 29.5 29.2 29.3 83.0
C (30’s) 3 19.4 77.8 60.7 44.6 51.4 89.7
D (40’s) 2 9.3 84.8 23.2 21.3 22.2 92.0
E (40’s) 1 19.6 87.4 54.8 74.1 63.0 89.7
F (40’s) 4 20.1 77.7 63.9 46.1 53.5 89.9
G (40’s) 4 20.0 84.0 52.7 61.8 56.9 88.6
H (50’s) 1 21.1 72.7 54.4 39.4 45.7 86.4
I (60’s) 20 20.2 78.0 50.7 45.9 48.2 87.2

tions, and the proposed method makes the REM estimation
with fewer wrong estimation by the condition that the keep
the REM estimation ratio around 20%.

In general, to improve the accuracy of the estimation for
such data, it is necessary to retrain the model by collect-
ing similar data or devising new input features, which are
difficult tasks and take a long time to do. By contrast, the
proposed method does not need to do these things to im-
prove the accuracy, and the only thing needed to do is set
the REM estimation threshold. In addition, the threshold can
be automatically determined based on the REM estimation
ratio so that the proposed method makes it easy to adapt to
individual differences. Therefore, the differences in the au-
tomatically determined thresholds, as shown in column TH
of Table 3, represent individual differences. Since the heart
rate is increased or unstable during REM sleep, it can be in-
ferred, for example, that if the value of the threshold is high,
heart rate of overnight may be higher or more unstable than
an average person.

Conclusion
This paper proposed the novel REM estimation method that
combination of multiple RF learned with different timescale
of spectrums and investigates its effectiveness through com-
parison of the REM estimation by single RF learned with
each scale spectrums. Concretely, the proposed method
learns several RFs with each scale spectrums, then counts
the number of REM estimation in the length of the window
and estimates REM sleep if the counted number exceeds the
threshold. Furthermore, the threshold is automatically de-
termined for each person based on the REM estimation ra-
tio to the overall sleep time for considering individual dif-
ferences. The results of the human subject experiments, the
Accuracy, Precision, Recall and Specificity of the REM esti-
mation are 80.2(±5.5)%, 51.4(±15.0)%, 47.0(±15.5)% and
48.5(±13.7)%, respectively. Through experiments, the fol-
lowing implications have been revealed: (1) the combination
of RFs learned with multiple window sizes spectrum sepa-
rately improves the Precision of REM estimation and Recall
of that, rather than RF learned with only a particular window
size spectrum; (2) the automatic adjustment of the threshold
based on the REM estimation ratio to the total sleep length
can be flexibly adapted to data with large individual differ-
ences without the need to retrain the model.

The future task is following: (1) to investigate the validity
of the combination of multiple RFs; (2) to validate whether
it is effective for other sleep stages.
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