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Abstract 

Artificial Intelligence (AI) has become an integral part of 

several modern-day solutions impacting many aspects of our 

lives. Therefore, it is of paramount importance that AI-

powered applications are fair and unbiased. In this work, we 

propose a domain knowledge infused AI-based system for 

public funding allocation in the transportation sector by 

keeping potential fairness-related pitfalls in mind. In the 

transportation sector, in general, the funding allocation in a 

particular geographic area corresponds to the population in 

that area. However, we found that areas with high diversity 

index have a higher public transit ridership, and this is a 

crucial piece of information to consider for an equitable 

distribution of funding. Therefore, in our proposed approach, 

we use the above fact as domain knowledge to guide the 

developed model to detect and mitigate the hidden bias in 

funding distribution. Our intervention has the potential to 

improve the declining rate of public transit ridership which 

has decreased by 3% in the last decade. An increase in public 

transit ridership has the potential to reduce the use of 

personal vehicles as well as to reduce the carbon footprint.  
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Introduction 

Available public data establishes a set of criteria based on 

census data to determine how funding is tabulated and 

granted to federal transit agencies in major Urbanized Areas 

(UZAs) in the United States (Giorgis 2020). The current 

system takes into consideration a range of census-based 

criteria (Giorgis 2020) and supposed to take into 

consideration of protected attributes defined in Title VI of 

the Civil Rights Act of 1964 (Title VI 1964) among other 

determinants. This raises the question as to how and if it is 

possible to use AI-based systems to allocate federal funding 

in an equitable fashion while abiding by Title VI guidelines. 

In this work, we investigate the federal allocation of 

funds for public transportation by keeping fairness issues in 

mind. When we talk about fairness in this paper, we are 

speaking to the mitigation of hidden bias that can be 

introduced inadvertently during the machine learning 

process. Ultimately, fairness in AI regarding this paper, 

looks to employ known techniques to eliminate hidden bias. 

Furthermore, the FTA is supposed to distributes public funds 

in an equitable fashion, as defined in Title VI of the Civil 

Rights Act of 1964, thus it is our goal to replicate that equity 

through using a machine learning approach that mitigates 

bias that may fabricate during the process. In the 

transportation sector, in general, the funding allocation in a 

particular geographic area corresponds to the population in 

that area. However, we found that areas with high diversity 

index have a higher public transit ridership and a crucial 

piece of information to consider for an equitable distribution 

of funding. Therefore, in our proposed approach, we use the 

above fact as domain knowledge to guide the developed 

model to detect and mitigate the hidden bias in funding 

distribution.  

Domain knowledge is a high-level, abstract concept 

that encompasses the problem area. For example, in a car 

classification problem from images, the domain knowledge 

could be that a convertible has no roof, or a sedan has four 

doors, etc. However, encoding this domain knowledge in a 

black-box model is challenging. Bias can occur during data 

collection, data preprocessing, algorithm processing, or the 

act of making an algorithmic decision. Through the 

comparison of machine learning models with and without 

domain knowledge, this work measures the effectiveness of 

domain knowledge integration. We use different machine 

learning classifiers such as Random Forests (RF), Extra 

Trees (ET), and K-nearest neighbor, to name a few, for the 

experiments. We also use IBM AI Fairness 360 to detect and 

mitigate bias and evaluate different standard fairness metrics 

to further emphasize the effect of incorporating domain 

knowledge into our proposed approach.  
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Background 

A good amount of work has been conducted on the domain 

of bias and fairness in AI. Mehrabi et. al. developed a general 

survey exploring this topic. They emphasize the importance 

of a continuous feedback loop between data, algorithms, and 

users (Mehrabi et. al. 2021). This accentuates how 

susceptible AI algorithms are to bias. This bias can be 

introduced when data is collected. It’s important to be aware 

of the kinds of bias that can occur as well.  

Seeing as unique the interaction between data and 

users is, there are two biases in particular that apply to the 

data that we are working with. One of those biases is the 

omitted variable bias, which occurs when one or more 

important variables are left out of the model (Riegg 2008, 

Mustard 2003, Clarke 2005). A simple example of this type 

of bias in play could be with an algorithm that is trained to 

predict when users will unsubscribe from a company’s 

service. A possible omitted variable here could be that a 

strong competitor enters the market that the algorithm was 

unaware of (Mehrabi et. al. 2021). The introduction of this 

competitor would be the omitted variable, which would then 

lead to bias being introduced in the algorithm when it tries 

to predict when a particular customer would unsubscribe. 

The other important form of bias is aggregation bias. 

Aggregation bias occurs when a one-size-fits-all model is 

used for groups with different conditional distributions 

(Suresh and Guttag 2019). Both the omitted variable bias and 

aggregation bias are unique in machine learning applications 

since they are technical biases that can occur at any point in 

the machine learning process. This leads to them being 

particularly difficult to counteract. The authors of this work 

discussed how the introduction of discrimination in AI is 

unique since it is a direct interaction between data and users. 

Again, domain knowledge is being used to attempt to 

counteract specific instances of bias like this.  

Furthermore, it is important to understand the 

problematic nature of introducing racial categories to 

machine learning. Programmers face a unique dilemma in 

this problem domain since they can either be blind to racial 

group disparities or be conscious of those racial categories 

(Benthall et. al. 2019). However, regardless of which path 

the programmer chooses to go down, both options ultimately 

reify the negative and inaccurate implications of race in 

society. Moreover, this observes differences in races in the 

United States, which is inherently problematic. Race 

differences are created by ascribing race classifications onto 

individuals who were previously racially unspecified. This 

ultimately leads to the newly racially classified individuals 

being linked to stereotyped and stigmatized beliefs about 

non-white groups (Omi and Winant 2014). With observing 

domain knowledge in the allocation of federal funds, we 

must be extremely cautious of these implications. Link and 

Phelan provide a clear definition of what stigma is. They 

define stigma as “the co-occurrence of labeling, 

stereotyping, separation (segregation), status debasement, 

and discrimination” (AI Fairness 360 2021). By 

understanding the systemic instillment of stigma in racial 

categories, this work will look for ways to introduce fair 

domain knowledge without reifying those dangerous 

stigmas. This ultimately leads to some implications in the 

development of a fair AI algorithm for allocating federal 

funds for public transportation. 

Public transit agencies are supposed to abide by the 

Title VI of the Civil Rights Act of 1964. The Federal Transit 

Agency (FTA) follows closely with the rules written in Title 

VI which protects people from discrimination based on race, 

color, and national origin in programs and activities 

receiving federal financial assistance (Title VI 1964). Within 

this work, we also abide by these laws to develop a legally 

applicable AI for allocating federal funds, and investigate 

the disparities. A fair and unbiased AI algorithm for 

allocating federal funds for public transportation could 

further help combat the national decline in public transit 

ridership. William J Mallet from the Congressional Research 

Service emphasized that public transit ridership has declined 

nationally by 7% over the last decade (Mallett et. al. 2018). 

Competing transportation options like personal vehicles, 

ride-sourcing (e.g., Uber), and bike-sharing are partially at 

the forefront of the national decline. Some solutions 

proposed by this work are incentive funding, raising user 

fees on personal automobiles, and improving general 

funding for public transportation (Mallett et. al. 2018). That 

is where this work comes in; to attempt and answer the 

question of if an AI algorithm embedded with fairness can 

contribute to a more equitable solution.  

Experiments and Results 

This project explores how domain knowledge can be 

integrated to ensure fairness in AI. A publicly available 

dataset on the allocation of federal funds to public 

transportation agencies is being used (Giorgis 2020). This 

dataset is the basis on which this exploration and application 

of machine learning is being used. The dataset includes 

official data from 2014-2019 on 449 Federal Transit Agency 

(FTA) defined public transportation agencies in the 

continental United States, Alaska, Hawaii, and Puerto Rico. 

The dataset is read into RStudio using R version 4.1.0 and 

Python version 3.8.0. The R programming language is being 

used in a simple R script while Python is being used in 
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isolated code chunks within an R markdown (Rmd) file. For 

bias detection and mitigation, we use IBM AI 360 fairness 

open-source toolkit (AI Fairness 360 2021).  

Data Preprocessing 

This dataset (Giorgis 2020) is being preprocessed into a 

summarized form which gives totals for individual transit 

agencies per year. The data started off with 42 columns and 

36,656 rows. Empty columns and rows are deleted which 

then leads to the dataset containing 40 columns and 18,673 

rows. The overall dataset is then split up into separate data 

containers for individual years; thus, producing six separate 

datasets for six individual years (2014-2019). Each of the six 

datasets contains 13 columns and anywhere from 440-444 

rows depending on the year. Finally, separate data containers 

are combined back into a single data container which now 

consists of summarized data for every given FTA UZA per 

year. This summarized data container containing all data 

from 2014-2019 has 13 columns and 2,615 rows.  

Furthermore, the measure of operating expenses is 

converted to classes in which supervised machine learning 

can take place. Operating expense classes are determined by 

examining the distribution of operating expenses across 

transit agencies. It was found that the distribution was 

skewed towards the lower end (< $100,000,000). However, 

it is also found that the total amount of operating expenses 

for a specific transit agency has a high correlation, roughly 

95%, with the population of its service area. These are the 

factors that lead to the current distribution of operating 

expense level classes. Data is currently being utilized from 

the 2020 national census, specifically diversity indices at the 

state and county level. Data engineering techniques are 

being used to incorporate both state and county-level 

diversity indices into the summarized public funds' 

allocation dataset. 

To evaluate the fairness of the models with domain 

knowledge, diversity index by county had to be sorted into 

classes. Diversity index by county is being used as the 

primary form of domain knowledge here since it provides a 

clearer vision of the diversity across populations. The 

diversity index serves as a measure of how likely it is that 

two individuals chosen at random from a population are 

from different races and ethnic groups (Bureau et. al. 2021). 

The diversity index is bound between 0 and 1 where a 0-

value indicates that everyone in the population has the same 

racial and ethnic characteristics. While a value closer to 1 

indicates that everyone in the population has different racial 

and ethnic characteristics (Bureau et. al. 2021). Therefore, 

we observe diversity index by county for each of the 449 

FTA-defined public transportation agencies, and found it as 

an effective incorporation of census-based domain 

knowledge. To convert the diversity index by county into 

class, the distribution of the values is being evaluated. As 

seen in Figure 1, there is a great number of observations 

(roughly 55%) that have a diversity index between 0.25 and 

0.5. 

Figure 1: Histogram of diversity index by county 

Therefore, since the distribution looked as such 

with 4 bins, the diversity index by county was split into 4 

classes. The first class is “Very Low”, which constitutes all 

observations that have a diversity index greater than or equal 

to 0 and less than 0.25. The next class was “Low” which is 

made up of observations that have a diversity index greater 

than or equal to 0.25 while also less than 0.5. Then the 

“Moderate” class includes all observations that have a 

diversity index greater than or equal to 0.5 and less than 0.75. 

Finally, the last class was “High” which included the 

remaining observations, or those that have a diversity index 

that is greater than or equal to 0.75 and less than 1 (since this 

is the maximum value possible). These class bounds are also 

supported by the fact that the diversity index by county had 

the largest correlation with the population of a particular 

UZA. It’s found that the correlation between these two 

values is 0.26, which again was the highest correlation that 

diversity index by county had with any other variable in the 

data set (see Figure 2). Furthermore, one of the variables that 

has the highest correlation with primary UZA population is 

unlinked passenger trips (0.76). Total unlinked passenger 

trips serves as an FTA defined measure of public 

transportation ridership. Therefore, we can see the relation 

here that urban areas with higher population tend to have 

higher public transit ridership as well as a higher diversity 

index by county.  
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Figure 2: Heatmap of all numeric variables in data set 

Furthermore, 7 out of the top 10 UZA is from the 

top 10 diverse states (Jensen et. al. 2021) – Hawaii, 

California, Nevada, Maryland, District of Columbia, Texas, 

New Jersey, New York, Georgia, and Florida (Jensen et. al. 

2021). 

Table 1. Top 10 UZA with the highest ridership 

New York-Newark, NY-NJ-CT 

Los Angeles-Long Beach-Anaheim, CA 

Chicago, IL-IN 

Washington, DC-VA-MD 

San Francisco-Oakland, CA 

Boston, MA-NH-RI 

Philadelphia, PA-NJ-DE-MD 

Seattle, WA 

Miami, FL 

Although the diversity index of a county has the highest 

correlation (.26) with the population of UZA, it has a 

comparatively low correlation (.14) with total operating 

expenses in that area. This finding encourages us to develop 

an equitable distribution technique.  

Model Creation 

Both the R and Python programming languages are being 

used to create machine learning models on the dataset. R is 

primarily being used to preprocess the dataset while Python 

is being used to develop classification models using a 70/30 

training and test set split. Random forest, extra trees, and k-

nearest neighbor models without domain knowledge (i.e., 

without considering diversity index) are being developed 

and analyzed. The scikit-learn package is being used to 

develop Python-based supervisor learning model (Random 

Forest), while the class package is being used to develop the 

k-nearest neighbor algorithm in R. For the models without

domain knowledge, 12 columns are being used. The 11

predictors are all numeric values and some of the variables

include Primary UZA Population, Total Unlinked Passenger

Trips, and Total Passenger Miles Traveled to name a few.

These 11 predictors are being used to predict Total

Operating Expenses, which serves as a general measure of

how much money a specific FTA transportation agency is

receiving/spending. The models with domain knowledge

have 12 predictors: the same 11 predictors as the models

without domain knowledge, plus our variable representing

Diversity Index by County employed as domain knowledge.

The goal of measuring the accuracy, precision, recall, and

ROC performance metrics was to take a trivial look as to if

incorporating domain knowledge into some simple

classification models will drastically affect those values. As

seen in Table 1, the accuracy, precision, recall, and ROC

metrics are calculated, each of which has a value of 0.99X.

The metrics with domain knowledge (i.e., after incorporating

diversity index as encoded domain knowledge) deviated

only slightly from the metrics produced by the models

without domain knowledge. The largest difference between

metrics of models with and without domain knowledge can

be seen in the K-Nearest Neighbor models. The average

difference between models without domain knowledge

minus the models with domain knowledge is 0.00265. This

difference is negligible and expected considering the overall

societal impact from it.

Table 2. Accuracy precision, recall, and ROC metrics for 

Random Forest models w/ and w/o domain knowledge 

Random 

Forest 

Without Domain 

Knowledge 

With Domain 

Knowledge 

Accuracy 0.99492 0.99490 

Precision 0.99488 0.99501 

Recall 0.99492 0.99490 

ROC 0.99998 0.99998 

Table 3. Accuracy precision, recall, and ROC metrics for Extra 

Trees models w/ and w/o domain knowledge 

Extra Trees Without Domain 

Knowledge 

With Domain 

Knowledge 

Accuracy 0.99619 0.99618 

Precision 0.99617 0.99622 

Recall 0.99619 0.99618 

ROC 0.99998 0.99998 
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Table 4. Accuracy, precision, recall, and ROC metrics for K-

Nearest Neighbor models w/ and w/o domain knowledge 

K-Nearest

Neighbor

Without Domain 

Knowledge 

With Domain 

Knowledge 

Accuracy 0.99111 0.98854 

Precision 0.99099 0.98849 

Recall 0.99111 0.98854 

ROC 0.99952 0.99655 

Fairness Evaluation Preprocessing 

For evaluating fairness in the models with domain 

knowledge, the IBM AI 360 tool is being used. We use the 

R package of this tool for our experiment. To begin the 

process of evaluating fairness, the data set needs to be 

converted into a binary representation of itself. The most 

important columns are being chosen to be present in the 

fairness evaluation. These variables were deemed the most 

important since they all presented the highest correlation 

with the variable being predicted: Total Operating Expenses. 

Furthermore, these variables are all numeric values which 

are imperative to the development of classification models 

that can be evaluated using the IBM AI 360 (AI Fairness 360 

2021). Considering that all these variables are numeric 

values, it is much clearer where to set bounds when 

converting variables to binary representations.  

This includes the population of the UZA in which 

transit agencies exist in, total unlinked passenger trips, year, 

and operating expense level. Since the operating expense 

level is already broken into classes (Low, Medium, High), a 

separate column is made for each. For example, there is one 

column labeled “Operating Expense Level Low”, which has 

a 1 in this column in the operating expenses are categorized 

as "Low" and a 0 in every other row. A little more nuance is 

being taken to convert the UZA population and total 

unlinked passenger trips columns to binary representations. 

The density of both these variables shows a heavy 

concentration of observations at the lower end (Figures 3 & 

4).   

Since both these variables have such many 

observations near the lower end of the range, the ranges for 

the classes are being chosen to reflect this trend. For UZA 

population, three classes are being created to split this 

column into a binary representation. The following is the 

range for each class for the UZA population: 

- Low: population [0, 250]

- Medium: population [250K, 1M)

- High: population [1M, MAX]

Figure 3: Density plot for Primary UZA Population 

Figure 4: Density plot for Total Unlinked Passenger Trips 

A very similar idea is being used to split up total unlinked 

passenger trips into classes. The National Transit Database 

(NTD) and the FTA provided the explain that unlinked 

passenger trips are the number of boardings on public 

transportation vehicles in a fiscal year for a specific 

transportation agency (Federal Transit Administration 

2021). Transit agencies must count each passenger that 

boards their vehicles, regardless of how many vehicles the 

passenger boards from origin to destination (Federal Transit 

Administration 2021). Similar to previous variables, 3 

classes are being created with the following ranges for each: 

• Low: total unlinked passenger trips [0, 5M)

• Medium: total unlinked passenger trips [5M, 100M)

• High: total unlinked passenger trips [100M, MAX)

The Year variable is also being split up into a binary 

representation. The year in this data set ranges from 2014 to 

2019. Thus, a separate column for each year is being made 

where a value of 1 means the specific observation is from 

that year. The last variable that is converted to a binary 

representation is, of course, the diversity index by county. 

Simply, for this column, a value of 1 is given if the diversity 
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index is categorized as “Moderate” or “High” and a value of 

0 is the diversity index is categorized as “Very Low” or 

“Low”. Figure 5 provides a snapshot of the data after all 

variables are done being converted to binary representations. 

The data set still has 2,615 rows, however, the binary data 

set has 16 columns.  

High 

Diversity 

Index by 

County 

High 

Operating 

Expenses 

Medium 

Operating 

Expenses 

Low 

Operating 

Expenses 

High 

Primary 

UZA 

Population 

Medium 

Primary 

UZA 

Population 

1 0 0 1 0 0 

0 1 0 0 0 1 

1 1 0 0 1 0 

0 1 0 0 1 0 

1 0 1 0 0 0 

0 1 0 0 0 1 

1 1 0 0 0 1 

0 1 0 0 1 0 

1 1 0 0 1 0 

0 1 0 0 1 0 

Figure 5: Snapshot of the binary representation of data 

Fairness Metrics Calculation 

We create a new R script to calculate the desired fairness 

metrics. A simple definition of a fairness metric, as provided 

in the documentation of the IBM AI 360 tool, is a 

quantification of unwanted bias in training data or models 

(AI Fairness 360 2021). The fairness metrics that are being 

evaluated in this project are statistical parity difference, 

disparate impact, equal opportunity difference, and the Theil 

index. A brief definition for each observed fairness metric is 

as follows: 

• Statistical parity difference: the difference in the rate of

favorable outcomes received by the unprivileged group to

the privileged group.

• Disparate impact: the ratio of the rate of a favorable

outcome for the unprivileged group to that of the

privileged group.

• Equal opportunity difference: the difference of true

positive rates between the unprivileged and the privileged

groups.

• Theil index: measures the inequality in benefit allocation

for individuals.

These four fairness metrics were chosen based on the 

information provided on the IBM AI 360 tool. Furthermore, 

these four metrics specifically evaluate privileged versus 

unprivileged groups in terms of individual and group 

fairness. Regarding this project, we are looking at the 

distribution of funds between FTA transportation agencies 

that are based in a county with a high diversity index (>= 

0.75). By observing these specific fairness metrics, we can 

see how favorable outcomes, or higher federal funding, may 

be unequally distributed among privileged and unprivileged 

groups. 

Furthermore, we chose to employ the IBM AI 360 

toolkit as it provided a compact and efficient collection of 

fairness evaluation libraries. The problem are of the project 

is perfectly encapsulated in the recommended uses of the 

toolkit. The creators of the IBM AI 360 toolkit explain that 

the toolkit should be used in very limited settings, one of 

which is allocation assessment problems with well-defined 

protected attributes (AI Fairness 360 2021). This project’s 

problem area deals with allocation of funds. Moreover, and 

more importantly, the dataset being used for the fairness 

evaluation has a well-defined protected attribute, which is 

diversity index by county, since as we have explained earlier 

in the paper, has unintentional bias defined by the FTA and 

protected by Title VI of the Civil Rights Act of 1964. 

The reweighing function is our tool of choice in the 

IBM AI 360 toolkit as it assigns weights to training set tuples 

instead of changing class labels (Kamiran et. al. 2012). This 

is favorable since we want to analyze how diversity index by 

county plays a role in the mitigation of bias in this problem.  

In the R environment, the “aif360” library is being 

used, which includes all the metrics and capabilities 

provided by the IBM AI 360 project. The project library is 

loaded into the R environment and the binary data set from 

Figure 5 is also loaded in. To run any metric calculations 

with this library, any R data frames must be converted into 

an aif data set, which asks for the protected attribute, the 

privileged (i.e., reference group) and unprivileged value for 

the protected attribute, and the target variable. For our case, 

the target variable is the “Operating Expense Level High” 

column. To reiterate, a value of 1 is given in this column if 

the observation is considered to have “High” operating 

expenses, or operating expenses of more than 

$1,000,000,000. The protected attribute in this project is the 

diversity index by county column that was added as a piece 

of domain knowledge. To capture the nature of the protected 

attribute, the privileged group are observations that have a 

value of 0, or “Very Low” and “Low” diversity indices, and 

the unprivileged group are observations that have a value of 

1, or “Moderate” and “High” diversity indices.  

The IBM AI 360 library uses underlying 

classification models to help develop and calculate fairness 

metrics. Since the IBM AI 360 library uses classification 

models, we need two data sets to compare the true data with 

the predicted data. Thus, we have one aif data set that is the 
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raw binary data, and another that is nearly identical, 

however, the “Total Operating Expenses High” variable was 

predicted by a simple logistic regression model (this is called 

the newly classified dataset). The reweighing technique 

(Kamiran et. al. 2012, Aif360 2021), which modifies the 

weights of different training examples, is being used to help 

mitigate any bias that is present in this project. The IBM AI 

360 tool includes a reweighing option that modifies the 

weight of different training instances. The reweigh algorithm 

is being applied to both the original binary data set as well 

as the classified data set. Once both data sets are reweighed, 

the fairness metrics can be calculated and compared to the 

original data. Graphs are being produced to show the 

difference and improvement after bias is mitigated through 

reweighing. Figures 6, 7, 8, and 9 show the comparison of 

fairness metrics between the original data and the reweighed 

data that has bias mitigated.  

Calculating all four desired fairness metrics shows 

that mitigating bias through reweighing leads to either 

metrics being the same, or slightly improving the value. As 

seen in all graphs, both the original data and the mitigated 

data are within the fair range. Statistical parity difference 

(i.e., discrimination) was reduced to .035 from .051 using 

domain knowledge (see Figure 6). Statistical parity, also 

called demographic parity, ensures each group has an equal 

probability of being assigned to the positive predicted class. 

By mitigating bias, we can produce fairness metrics 

that are closer to true fairness, which is a value of 0 for 

statistical parity difference, equal opportunity difference, 

and Theil index, and a value of 1 for disparate impact. 

Currently, we are infusing the diversity index as domain 

knowledge. However, in the future, we would also like to 

investigate the infusible domain knowledge more by 

examining other criteria such as native language spoken, and 

family income. 

Figure 6: Statistical parity difference of original vs mitigated 

data 

Figure 7: Disparate impact of original vs mitigated data 

Figure 8: Equal opportunity difference of original vs mitigated 

data 

Figure 9: Theil index of original vs mitigated data 

Contributions and Future Works 

By investigating the implications of domain knowledge on 

creating fair decision-making, this work explores how true 

fairness in AI can be achieved within the application of 

public funding allocation. This work investigates how 
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federal agencies like the FTA could apply AI in the process 

of allocating funds. In general, the allocation of FTA funds 

corresponds to the population in an area (i.e., UZA). 

However, it is found that areas with a higher diversity index 

have higher public transport ridership. Our proposed domain 

knowledge infused approach can reduce statistical parity 

difference which helps to ensure each group has an equal 

probability of being assigned to the positive predicted class. 

Finding the right domain knowledge is very challenging. 

Going forward, we want to incorporate and investigate the 

impact on other protected variables (e.g., native language 

spoken, family income), and find a way to enhance the 

infusible domain knowledge that reduces different 

disparities.  An increase in public transit ridership has the 

potential to reduce the use of personal vehicles as well as to 

reduce the carbon footprint. A quantitative analysis of this 

possibility could be another direction of research.  
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