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Abstract

In recent years, Explainable AI (XAI) has seen increasing interest: new theoretical approaches and

libraries providing computationally efficient explanation algorithms are proposed daily. Given the

increasing number of algorithms, as well as the fact that there is a lack of standardized evaluation metrics,

it is difficult to evaluate the goodness of explanation methods from a quantitative point of view. In this

paper, we propose a benchmark of explanation methods. In particular, we focused on post-hoc methods

that produce explanations of a black-box. We target our analysis for most used XAI methods. Using the

metrics proposed in the literature, we quantitatively compare different explanation methods categorizing

them with respect to the type of data required in input and the type of explanation output.
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1. Introduction

Artificial intelligence (AI) systems have been used everywhere for the past few years. This is

due to their impressive performance, achieved by adopting complex Machine Learning (ML)

models that “hide" the logic of their internal processes. For this reason, such models are often

referred to as “black-box models” [1, 2, 3]. Their opacity may hide potential problems inherited

from training on biased or incorrect data [4]. Thus, there is a substantial risk that relying on

opaque models may lead us to make decisions we do not fully understand or violate ethical

principles. Companies are increasingly incorporating ML models into their AI products and

applications, incurring a potential loss of confidence and trust [5]. These risks are particularly

relevant in high-risk decision-making scenarios, such as medicine and finance. For these reasons,

Explainable AI methods have been proposed in recent years: they aim to explain the reasons

that led the ML model to that particular prediction.

Along with them, there has also arisen an urgency to evaluate them, to understand the

pros and cons of various explanations and in what contexts they should be used. Hence, new

metrics are proposed every day. Despite this, the literature still lacks systematic analysis of

explainers, combining different types of metrics and allowing for an overview. Therefore, this

article presents an in-depth analysis of the most popular explanation methods both for tabular
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data and for images, making a quantitative assessment by taking advantage of the metrics

in the literature. Section 2 present the related works in the literature. In section 3 we will

describe the XAI methods analyzed and the metrics used. Section 4 describes the methodology

used to compare the methods and produce the experiments presented in Section 5. Finally the

conclusions are reported in Section 6. ti

2. Related Work

The widespread need for XAI in recent years has caused an explosion of interest in the design of

explanation methods and consequently an increase in surveys about them. Several books have

been published [6, 7] detailing the best-known methodologies for making general ML models

interpretable and for explaining the results of machine learning models [7]. There is no clear

view in the literature on how to classify explanation methods. Some works [8, 9] focus their

analysis on the type of data the XAI algorithm can use. Other works [10, 11, 12], on the other

hand, have focused on only one type of explanation.

However, only a few papers have attempted to compare the explanations analyzed and often

only qualitatively. Evaluating an explanation objectively is not an easy task, as the goodness of

an explanation can sometimes vary from subject to subject. A good explanation should follow

the criteria of fidelity, stability and accuracy [13, 14]. Fidelity [15, 16] aims to assess how good

the explainer is at imitating black-box decisions. Several works have pointed out that most

explainer methods are not robust and therefore undermining their applicability in safety-risk

applications [17, 18]. Therefore, another important property of explanations is stability [16, 19]:

we want the explanation not to change for successive runs with the same parameters and

we also want it to be stable for small perturbations of the input. Finally, we can measure the

accuracy [20, 21] of the explanation, i.e., how well the explanation revealed the aspects of the

data that are effectively the most relevant for the black-box decision.

3. Background

In this section we present the building blocks necessary for the quantitative assessment of the

explanations. Firstly, in Section 3.1, we present the different explanation methods to use for

providing explanations. Then, in Section 3.2 we present a brief overview of the metrics available

in the literature for evaluating the explanations.

3.1. Explainers

Because of the multitude of explanatory methods in the literature, we briefly present a taxonomy

of methods [1, 22] to allow the reader understanding the proposed categorization of explanatory

methods. In a first step, we distinguish between interpretable-by-design methods from post-

hoc methods. The goal of the former is to build an inherently transparent model, while the

latter seek to provide explanations for an external black-box model. The second differentiation

distinguishes explainers methods into global and local. Global methods aim to explain the

overall logic of a black-box model, while local methods focus on explaining a prediction for



specific instances. In this paper, we focus on local post-hoc methods because they can be easily

compared using existing metrics in the literature. We selected the most popular explainers with

a working Python implementation available.

Tabular data We focus our analysis on the feature importance and rule explanation methods

since these are the most popular explanations for tabular data. To allow a better comparison,

we selected 5 methods that exploit different processes to construct an explanation.

LIME [23], is a local model agnostic method in which the explanation is derived locally from

records generated randomly in the neighborhood of the instance 𝑥 to explain. lime samples

instances both in the vicinity of 𝑥 (with a high weight) and far away from 𝑥 (low weight) to

approximate the decision boundary in proximity of the instance to explain but still capturing

different types of instances. These generated samples are then used to train a sparse linear

model (e.g. a surrogate model, 𝑔) whose weights are the local feature importance consists of the

weights of the sparse linear model.

SHAP [24], is a method for computing approximated Shapley values [25], a concept from game

theory, and use them as explanation.The shapley value of a feature represents the contribution

of that feature to the final prediction of the black-box. shap is an additive feature attribution
method and respect the following definition: 𝜑0+

∑︀𝑀
𝑖=1 𝜑𝑖𝑥𝑖, where 𝜑𝑖 ∈ R are effects assigned

to each feature, 𝑀 is the number of input features, and 𝜑0 is the value of the prediction if all

the features are removed. We consider the KernelExplainer : an agnostic approach.

DALEX [26] contains an implementation of a variable attribution approach [27]. Mathemati-

cally, it consists of a decomposition of the model’s predictions, in which each decomposition

can be seen as a local gradient and used to identify the contribution of each attribute.

ANCHOR [28] is a model-agnostic explainer that outputs rules, called anchors. An anchor

has the same structure of a rule with the characteristic that for decisions in which the anchor is

valid, changes in the values of other instance features do not change the result.

LORE [15], is a method, similar to lime, that provides faithful explanations exploiting a

genetic algorithm for creating the neighborhood of the record to explain. After the creation of

the synthetic samples, it retrieves an explanation composed of a decision rule, that corresponds

to the path on a learned decision tree followed by the instance 𝑥 to reach the decision 𝑦 and a

set of counterfactual rules, which have a different classification w.r.t. 𝑦.

We choose lime and anchor, which are two of the fastest explanation methods available in

the literature due to the random generation of the neighborhood. However, this randomicity

does, by construction, also affect the explanation’s stability and validity. To check this expected

behavior, we also considered lore. This method exploits a genetic algorithm to create the

synthetic neighborhood. Hence we expect greater stability w.r.t. lime and anchor. shap is a

very popular explanation method based on a completely different approach compared to the

ones just mentioned. However, for non linear methods, shap performs an approximation, hence

it is important to validate the goodness of the explanation in this setting. Also dalex exploits

different approximations, hence this is the reason why we considered this last method.

Image data For image data we compared the most well known attribution mechanism called

saliency maps. A Saliency Map method assign to every pixel of an image a score representing



how important the pixel is to the prediction. There are two approaches to producing saliency

maps: segmentation-based methods and pixel-based methods. The former, first segment the

image and assign each portion a single value, while the latter assign a value for each pixel.

Pixel-wise methods are more common and the most popular approaches are:

INTGRAD, Integrated Gradient [29] utilizes the gradients of a black-box along with the

sensitivity techniques of 𝜖-lrp. Given the black-box 𝑏, the instance to explain 𝑥, and let 𝑥′ be

the baseline input
1
. intgrad constructs a path, varying opacity, from 𝑥′ to 𝑥 and computes the

gradients of points along the path. The points are taken by gradually modifying the opacity of

𝑥. Integrated gradients are obtained by cumulating the gradients of these points.

LRP, Layer-wise Relevance Propagation [30] explains the classifier’s decisions by decomposi-

tion. 𝜖-lrp redistributes the black-box prediction backward to the input using local redistribution

rules until it assigns a relevance score to each input pixels. The simple 𝜖-lrp rule redistributes

relevance from layer 𝑙 + 1 to layer 𝑙: 𝑅𝑖 =
∑︀

𝑗
𝑎𝑖𝑤𝑖𝑗∑︀
𝑖 𝑎𝑖𝑤𝑖𝑗+𝜖𝑅𝑗 where 𝑎𝑖 and is the activation of

the neuron 𝑖, 𝑤𝑖𝑗 is the weight connecting the neurons of 𝑖 and 𝑗 of the two layers and a small

stabilization term 𝜖 is added to prevent division by zero.

DEEPLIFT [31], computes saliency maps in a backward fashion similarly to 𝜖-lrp, but it

uses a baseline reference like in intgrad. deeplift uses the slope, instead of the gradients,

which describes how the output 𝑦 = 𝑏(𝑥) changes as the input 𝑥 differs from the baseline 𝑥′.
Like 𝜖-lrp, an attribution value 𝑟 is assigned to each layer 𝑖 of the black-box going backward

from the output 𝑦.

SHAP has two variants that can be employed for image classification: deep-shap and grad-

shap. deep-shap is a high-speed approximation algorithm for shap values for deep learning

models for images that builds on a connection with deeplift. The implementation differs from

the original deeplift by using as baseline, a distribution of background samples instead of a

single value and it uses Shapley equations to linearise non-linear components of the black-box

such as max, softmax, products, divisions, etc. grad-shap, instead, is based on intgrad and

smoothgrad, presented in the following of this section. As an adaptation to make intgrad

value approximate shap values, grad-shap reformulates the integral as an expectation and

combines that expectation with sampling reference values from the background dataset as done

in smoothgrad.

Among the segmentation based methods we have lime and xrai.

LIME can also be used for retrieving feature importance, also supports images lime divides

the input image into segments called superpixels. Then it creates the neighbourhood by randomly

substituting the super-pixels with a uniform, possibly neutral, color.

XRAI [32] is intgrad augmented with segmentation. xrai iteratively segment the image and

tests each region’s importance using intgrad, fusing smaller regions into larger segments based

on attribution scores. The segmentation is repeated several times to reduce the dependency on

image segmentation algorithm.

Apart from these two types of methods, there are hybrid approaches that create very coarse

saliency maps that in some parts highlight large clusters of pixels while in others are more

detailed.

GRAD-CAM [33] uses the gradient information flowing into the last convolutional layer of a

1

The baseline 𝑥′
is generally chosen as a zero matrix. or a black image.



convolutional neural network to assign saliency values to each neuron for a particular decision.

GRAD-CAM++ [34] extends grad-cam solving some related issues about robustness. If

multiple objects have slightly different orientations or views, different feature maps may be

activated with differing spatial footprints. grad-cam++ fix this problem by taking a weighted

average of the pixel gradients.

RISE [20] produces saliency map for an image 𝑥 using a masking mechanism. rise generates

𝑁 random mask 𝑀𝑖 ∈ [0, 1] from Gaussian noise. The input image 𝑥 is element-wise multiplied

with these masks 𝑀𝑖, and the result is fed to the black-box. The saliency map is obtained as a

linear combination of the masks with the predictions corresponding to the respective masked

inputs.

SMOOTHGRAD [35] is a different type of method which tries to improve the saliency maps

produced by other approaches. Usually, a saliency map is created directly on the gradient of the

model’s output signal w.r.t. the input 𝜕𝑦/𝜕𝑥. smoothgrad augments this process by smoothing

the gradients.

3.2. Metrics

There are two ways of evaluating explanations: qualitative evaluation, which focuses on the

actual usability of the explanations from the end user’s point of view. The other validation

method is the quantitative method, which is considered for this work. In this case, the evaluation

focuses on the performance of the explainer and how close the explanation method 𝑓 is to

the black-box model 𝑏. In this section, we briefly describe the validation metrics used for

bench-marking local post-hoc explainer methods.

Tabular data For tabular data, one of the metric most used is the fidelity: the objective of this

metric is to measure how good the explanation method is at mimicking the black-box decisions.

In methods where there is a creation of a surrogate model 𝑔 to mimic 𝑏, such as lime, the fidelity

is computed with the accuracy of the predictions of 𝑔 w.r.t. 𝑏 on the instances used to train

𝑔 [15]. For methods without a surrogate model, a very simple model can be created using the

explanation and then the fidelity is computed as the accuracy of such model on the prediction

of the black-box. The closer to one, the better.

Another measure we considered is the stability: it aims at validating how stable the expla-

nations are for similar records. The main idea is that, if we have two similar records, also the

explanations should be close. To calculate this metric the Lipschitz constant [19] is exploited:

given a record to explain 𝑥 and a neighborhood 𝒩𝑥 and 𝑥′ composed of instances similar to

𝑥, the explanation method 𝐸 provides explanations 𝑒𝑥 and 𝑒𝑥′ and the stability is computed:

𝐿𝑥 = max
‖𝑒𝑥−𝑒𝑥′‖
‖𝑥−𝑥′‖ ,∀𝑥′ ∈ 𝒩𝑥. Intuitively, the higher the value, the better is the model to

present similar explanations for similar inputs.

Other metrics have been proposed [36] with the aim of validating the goodness of explanations

by changing the input record, depending on the explanations. The idea is that it is possible

to validate the correctness of explanations by removing (in order of importance) the features

that the explanation method considers important. The more features removed, the more the

performance of the black-box should degrade. In this work, we consider the faithfulness [19],

which aims at validating whether the importance scores obtained from the explanation method



Figure 1: Example of Insertion (on the left) and Deletion (on the right) metric computation performed

on lime and the hockey image. The area under the curve is 0.2156 for deletion and 0.5941 for Insertion.

indicate true importance. Mathematically, given a black-box 𝑏 and the feature importance 𝑒
extracted from an explanation method, the faithfulness removes attributes in order of importance

given by 𝑒. At each removal, the effect on the performance of 𝑏 is evaluated and these values

are then employed to compute the overall correlation between feature importance and model

performance. It results in a value range [−1, 1]: the higher the value, the better the faithfulness.

We also consider monotonicity that takes the complementary approach w.r.t. faithfulness. It

evaluates the effect of 𝑏 by incrementally adding each attribute in order of increasing importance.

In an opposite way than before, we expect that the black-box performance increases by adding

more and more features, thereby resulting in monotonically increasing model performance
2
.

Beside these metrics, during the comparison of different explanation methods, standard metrics

like accuracy, precision and recall are also evaluated, as well as the running time.

Image data For image data, a strategy to validate the correctness of the explanation 𝑒 =
𝑓(𝑏, 𝑥) is to remove the features that the explanation method 𝑓 found important and see how

the accuracy of the black-box 𝑏 degrades. These metrics are called deletion and insertion [20].

The intuition behind deletion is that removing the “cause” will force the black-box to change its

decision. For the computation of the deletion metric, we substitute pixels in order of importance

scores given by the explanation method with black pixels. For the insertion metric, we blurred

the whole image with a Gaussian Kernel and then slowly inserted high definition pixels in

order of importance. For every substitution we made, we query the image to the black-box,

obtaining an accuracy. The final score is obtained by taking the area under the curve (AUC) [37]

of accuracy as a function of the percentage of removed pixels. For the deletion metric, the

lower the better, for insertion metric, the highest the better. In Figure 1 we have an example

of this metric computed on the hockey figure of imagenet. We remark that the selection of

substituting the meaningful pixels with black ones is a standard procedure in the literature,

even if this selection may not correspond to the absence of information, which is our goal. To

further check this problem we exploited sensitivity, presented in the following.

The deletion and insertion metrics compute the accuracy of the explanation method to rank

2

An implementation of monotonicity and faithfulness is available in aix360



the most important pixels. However, another important desirable property is the stability of the

explanation, i.e., that the explanation should not change for small perturbations of the input

image. Explanation sensitivity [16] measures the extent of explanation change when the input is

slightly perturbed. The sensitivity metric measures the maximum sensitivity of an explanation

using the Monte Carlo sampling-based approximation. By default, it samples multiple data

points from a subspace of an infinite sphere of predefined radius. Note that the maximum

sensitivity is similar to the Lipschitz [38] continuity metric, however, it is more robust and

easier to estimate for image data.

4. Benchmarking Settings

The main focus of this paper is to quantitatively assess the quality of explanations. Each

time a new method is proposed, some of the available metrics are exploited to evaluate the

goodness of the explanations extracted, such as in [15, 26]. In addition, some authors also

propose new metrics along with their methods of explanation. This thus leads to great difficulty

in comparing explanations obtained from different explainers. For this reason, we evaluate,

using the same quantitative methodology, the goodness of explanations obtained using the

most popular explainers. To achieve this goal, we compared the explanations, obtained from

the application of different explanation methods, considering the different metrics present in

the literature. Given a dataset 𝒟ℒ with labels ℒ, the methodology followed for comparing the

different explanations is as follows:

1. Split the dataset 𝒟ℒ into train and test, obtaining 𝐷𝑡𝑟𝑎𝑖𝑛 with its labels 𝐿𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡

with its labels 𝐿𝑡𝑒𝑠𝑡;

2. Define and train a black-box model 𝑏 on the train set 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐿𝑡𝑟𝑎𝑖𝑛;

3. Test the black-box 𝑏 on the test set 𝐷𝑡𝑒𝑠𝑡, obtaining 𝑇𝑝𝑟𝑒𝑑 = 𝑏(𝐷𝑡𝑒𝑠𝑡);

3. Explain 𝑇𝑝𝑟𝑒𝑑, the local predictions of 𝑏, using an explanation method 𝐸, obtaining a set

of explanations Exps = 𝐸(𝑏,𝐷𝑡𝑒𝑠𝑡, 𝑇𝑝𝑟𝑒𝑑).

4. Depending on the type of input data and on the kind of explanation provided, apply the

metrics available.

To compare the performance of the metrics, we adapted the Nemenyi test. For each dataset, we

record the average ranking of explainers for a given metric and then run the Nemenyi test to

see if one method is statistically better than another.

5. Experiments

The aim of this paper is to analyze quantitatively the goodness of the explanations available in

the literature. To do this, the experimentation and validation part is of utmost importance. Below,

we have divided the experiments into several sections, one for each type of data considered: in

Section 5.1, we present the datasets, black-boxes, explanation methods and the metrics used in

the context of tabular data, while in Section 5.2 for images.



adult german compas-m mnist cifar imagenet sst imdb yelp
black-box LG XGB CAT LG XGB CAT LG XGB CAT CNN CNN VGG16 BERT BERT BERT

F1-score 0.65 0.82 0.80 0.66 0.75 0.79 0.63 0.69 0.68 0.99 0.74 0.76 0.93 0.90 0.84

Table 1: We report here the weighted F1 score for the various black-boxes.

Fidelity FaithfulnessDataset Black-Box
lime shap dalex anchor lore lime shap dalex

adult
LG 0.98 (0.21) 0.61 (0.43) 0.35 (0.03) 0.99 (0.05) 0.98 (0.03) 0.10 (0.30) 0.38 (0.37) 0.08 (0.03)

XGB 0.98 (0.03) 0.88 (0.02) 0.64 (0.07) 0.98 (0.03) 0.98 (0.04) 0.03 (0.32) 0.36 (0.49) 0.27 (0.31)

CAT 0.96 (0.32) 0.78 (0.51) 0.70 (0.15) 0.99 (0.21) 0.98 (0.43) 0.10 (0.32) 0.44 (0.37) 0.11 (0.30)

german
LG 0.98 (0.06) 0.91 (0.23) 0.57 (0.21) 0.73 (0.09) 0.98 (0.12) 0.23 (0.60) 0.19 (0.63) 0.20 (0.03)

XGB 0.99 (0.10) 0.82 (0.02) 0.65 (0.03) 0.80 (0.03) 0.98 (0.21) 0.16 (0.26) 0.44 (0.21) 0.31 (0.09)

CAT 0.98 (0.05) 0.67 (0.12) 0.63 (0.09) 0.62 (0.31) 0.98 (0.35) 0.34 (0.33) 0.43 (0.32) 0.33 (0.12)

compas-m
LG 0.95 (0.31) 0.83 (0.41) 0.23 (0.03) 0.53 (0.46) 0.82 (0.03) 0.12 (0.56) 0.41 (0.54) 0.11 (0.08)

XGB 0.97 (0.21) 0.43 (0.33) 0.45 (0.23) 0.67 (0.42) 0.87 (0.03) 0.19 (0.44) 0.56 (0.38) 0.13 (0.13)

CAT 0.98 (0.27) 0.54 (0.10) 0.55 (0.30) 0.22 (0.92) 0.81 (0.02) 0.22 (0.42) 0.57 (0.32) 0.18 (0.07)

Table 2: Comparison on fidelity and faithfulness of the explanation methods. We report the

mean and the standard deviation over a subset of 50 test set records.

5.1. Tabular Data

Dataset For the tabular data we consider three benchmark datasets: all of them have different

characteristics that may affect the performance of the explanation methods. For all of them, we

apply a standard pre-process: we replaced the categorical variables using a TargetEncoder, we

replaced the missing values using the mean (of median) of the column under analysis, and we

removed the outliers by visualizing the statistical distribution of the variables. We analyzed

adult3
: a binary classification with the task of predicting if a person earns more or less than

50K per year. It has 14 attributes (numerical and categorical) and 48842 records. Then, we

considered german4
: a binary classification for predicting the credit risk of a person. It has 20

attributes, mostly categorical, with 1000 records. Lastly, compas-m5
: a multi-class dataset, in

which the goal is to predict the recidivism of a convicted person, with 3 classes of risk recidivism.

It has 21800 record and 10 variables, all of them categorical except 𝑎𝑔𝑒.

Black-box For comparing the explanations, we define and train 3 ML models, for each dataset:

a Logistic Regression (LG), then XGBoost6
(XGB), and Catboost7

(CAT). The performance of the

black-box models are reported in Table 1
8
.

Explanation methods For validating the explanations on tabular data, we refer to seven

explanation methods already presented in Section 3. For feature importance we considered

3adult: https://archive.ics.uci.edu/ml/datasets/adult

4german: https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

5compas-m: https://www.kaggle.com/datasets/danofer/compass

6

https://xgboost.readthedocs.io/en/stable/

7

https://catboost.ai/

8

The dataset was split into train and test with ratio 80%− 20%

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://www.kaggle.com/datasets/danofer/compass


StabilityDataset Black-Box
lime shap dalex anchor lore

adult
LG 24.37 (2.74) 1.52 (4.49) 5.40 (0.10) 22.36 (8.37) 21.76 (11.80)

XGB 10.16 (6.48) 2.17 (2.18) 6.00 (0.06) 26.53 (13.08) 30.01 (20.52)

CAT 0.35 (0.43) 0.03 (0.01) 4.3 (0.04) 6.51 (4.40) 27.80 (70.05)

german
LG 18.8 (0.73) 19.01 (23.4) 12.54 (0.05) 101.0 (62.7) 622.1 (256.7)

XGB 26.08 (14.5) 38.43 (30.6) 5.12 (0.10) 121.4 (98.4) 725.8 (337.2)

CAT 2.49 (9.91) 15.92 (10.71) 3.54 (0.9) 123.7 (76.86) 756.7 (348.2)

compas-m
LG 0.51 (0.21) 0.54 (0.10) 11.42 (19.24) 112 (23.52) 321.3 (261.4)

XGB 0.676 (0.30) 13.67 (21.64) 6.00 (0.06) 97.20 (18.04) 229.1 (39.61)

CAT 2.49 (9.91) 14.22 (10.01) 4.33 (0.04) 100.7 (60.60) 526.9 (341.5)

Table 3: Comparison on the stability metric. We report the mean and the standard deviation

over a subset of 50 test records.

Figure 2: Critical difference plot for Nemenyi test (𝛼 = 0.05). We compare the tabular explanations in

terms of fidelity and stability computable for all the explanation kinds.

lime with 5000 synthetic samples to generate for each record to explain, shap, and dalex with

the break down method.

Metrics For tabular data we consider the four different metrics already presented in Section 3.2:

fidelity, stability, faithfulness, and monotonicity. The results obtained from the applications of

these metrics are reported in Table 2 for the fidelity and faithfulness, while in Table 3 we report

the stability. The monotonicity is not reported since for every method it was False, showing

that no method is compliant with this requirement.

Discussion In Figure 2, we report an overall ranking evaluation of the explanation methods

in terms of fidelity and stability. From this plot, we can clearly see that lore and anchor,

which are the rule-based methods, perform better than the feature importance ones. This

result is particularly interesting because feature importance methods are more studied than

logical explanations even though the latter are more similar to human thinking. [8]. Our

experiments show that rule-based methods have very high fidelity, correctly replicating the

black-box behavior. This fact is also highlighted by the results on stability, that are extremely

good for lore, followed by anchor. Regarding the feature importance methods, lime also has

excellent fidelity, but unfortunately this method suffers in terms of stability due to its random



Insertion Deletion
mnist cifar imagenet mnist cifar imagenet

lime 0.807 (0.14) 0.41 (0.21) 0.34 (0.25) 0.388 (0.21) 0.221 (0.19) 0.051 (0.05)

deep-shap 0.981 (0.01) 0.32 (0.28) 0.25 (0.22) 0.182 (0.18) 0.187 (0.32) 0.098 (0.09)

grad-shap 0.980 (0.01) 0.46 (0.24) 0.35 (0.24) 0.188 (0.19) 0.153 (0.24) 0.056 (0.07)

𝜖-lrp 0.976 (0.02) 0.56 (0.20) 0.28 (0.19) 0.120 (0.01) 0.127 (0.11) 0.014 (0.02)

intgrad 0.975 (0.03) 0.64 (0.22) 0.37 (0.23) 0.128 (0.01) 0.118 (0.07) 0.019 (0.04)

deeplift 0.976 (0.02) 0.57 (0.20) 0.28 (0.19) 0.120 (0.01) 0.127 (0.11) 0.014 (0.02)

smoothgrad 0.959 (0.03) 0.55 (0.23) 0.34 (0.26) 0.135 (0.04) 0.153 (0.13) 0.033 (0.05)

xrai 0.956 (0.04) 0.58 (0.21) 0.40 (0.26) 0.151 (0.04) 0.144 (0.07) 0.086 (0.11)

grad-cam 0.941 (0.04) 0.57 (0.20) 0.21 (0.19) 0.297 (0.20) 0.153 (0.12) 0.139 (0.12)

grad-cam++ 0.941 (0.04) 0.52 (0.22) 0.32 (0.26) 0.252 (0.13) 0.283 (0.24) 0.081 (0.10)

rise 0.978 (0.03) 0.61 (0.21) 0.50 (0.26) 0.120 (0.01) 0.124 (0.07) 0.044 (0.05)

Table 4: Insertion (left) and deletion (right) metrics expressed as AUC of accuracy vs. percentage

of removed/inserted pixels. The reported value represents the mean of the scores obtained on a

subset of 100 instances of the dataset and the value on the parenthesis is the standard deviation.

Best results are highlighted in bold and second best results are underlined.

generation of the neighborhood. shap and dalex, instead, do not exhibit a good fidelity but

are better in terms of stability w.r.t. lime. Finally, in Table 2, we present the faithfulness. shap

achieves the best results, being the metrics with values between −1 and 1. However, we remark

that none of the methods reached optimality. Nevertheless, shap turns out to be the best in this

context, followed by dalex and lime.

5.2. Image Data

Dataset For the experiments on images, we considered three datasets. The handwritten

number classification dataset mnist9
. It has 10 classes, from 9 to 10, the images are in low

resolution (28x28) and greyscale. Then, cifar10
: low resolution (32x32) color images dataset

with 10 classes, ranging from dogs to airplanes. Lastly, imagenet11
: composed of high resolution

color images (224x224), with a 1000 classes. We chose these datasets because they are the most

utilized, and we have different classes with various image dimensions.

Black-box On these three datasets, we trained the models most used in literature to evaluate

the explanation methods: for mnist and cifar we trained a convolutional neural network

with two convolutions and two linear layers, while for imagenet we decided to use the VGG16

network [39]. The performance of the black-box models are reported in Table 1.

Explanation methods We tested every method presented in Section 3.1 with the following

specifications. For the lime segmentation we used the quickshift algorithm [40] with a neigh-

9

http://yann.lecun.com/exdb/mnist/

10

http://image-net.org/

11

https://www.cs.toronto.edu/~kriz/cifar.html

http://yann.lecun.com/exdb/mnist/
http://image-net.org/
https://www.cs.toronto.edu/~kriz/cifar.html


Sensitivity Runtime
mnist cifar imagenet mnist cifar imagenet

lime 2.509 (1.261) 1.529 (2.176) 2.090 (0.612) 1.9 10 50

deep-shap 0.198 (0.071) 1.649 (1.054) 0.089 (0.189) 4.4 5.2 8.4

grad-shap 0.615 (0.099) 1.986 (0.931) 0.153 (0.357) 3.1 4.2 6.5

𝜖-lrp 0.394 (0.113) 2.311 (0.752) 0.207 (0.806) 1.5 1.3 2.1

intgrad 0.262 (0.121) 1.851 (1.063) 0.131 (0.738) 0.03 0.06 5.01

deeplift 0.293 (0.132) 2.272 (1.039) 0.055 (0.010) 2.2 1.3 3.2

smoothgrad 9.498 (5.847) 1.367 (0.506) 1.829 (0.350) 0.04 0.07 0.8

xrai 2.256 (0.512) 1.072 (0.621) 0.310 (0.225) 1.1 1.5 18

grad-cam 0.605 (1.519) 0.877 (1.110) 0.093 (0.592) 0.1 0.15 0.25
grad-cam++ 0.132 (0.165) 0.339 (0.537) 0.047 (0.292) 0.1 0.15 0.25

rise 0.117 (0.041) 0.501 (1.310) 0.501 (0.461) 0.5 2.3 21.4

Table 5: Sensitivity metric and runtime results, the lower the better. Best results are highlighted

in bold, second best results are underlined. The reported value represents the mean of the scores

obtained on a subset of 100 instances of the dataset and the value on the parenthesis is the

standard deviation. Runtime is expressed in seconds, uncertainty is on the last decimal.

Figure 3: Critical difference plot for Nemenyi test with 𝛼 = 0.05.

borhood size of 2000. In intgrad, xrai, and deeplift we used a black image as background.

For deep-shap and grad-shap, 100 images are taken randomly from the training set and used

to approximate the Shapley values. In grad-cam and grad-cam++ the last convolutional layer

was selected from which to calculate the gradients. For the masking of rise, we used 2000 masks

generate randomly.

Metrics We evaluated the metrics reported in Section 3.2: Deletion/Insertion results are

reported in Table 4 and the Sensitivity results in Table 5.2.

Discussion For image data the best method in general is rise, however as highlighted from

Figure 3 none of the methods has statistical significance to be considered better than the rest.

All the methods are very noisy and unstable as pointed out from the stability and the high



standard deviation among all the methods in the deletion/insertion metrics. lime and xrai

suffers of stability issues due to the randomness of the segmentation preprocessing. lime is

also the worst method when measuring accuracy. Guided methods like smoothgrad are even

worst than random methods when computing the stability of the explanations. We support

the findings of [41] in which they pointed out that guided methods are not good explainers.

smoothgrad is not that bad in high resolution images, but this is caused by the fact that the

guided perturbation plays an inferior role than the gradient computation. In general gradient

approaches like intgrad and deeplift are the best approaches for accuracy, especially when

dealing with high-resolution images. The computation are fast, and stable, even if we compute

the second order gradients like in grad-cam++. intgrad and deeplift are more precise than

grad-cam and grad-cam++ since the saliency maps produced by these last two methods is

coarse and unrefined. shap based methods works only on low resolution images due to the

approximation factor. The higher the resolution the more images you need as background to

better approximate the Shapley values. However in doing this the memory used and the runtime

increase exponentially. rise is the best compromise and can reach high level of accuracy and

stability even if it is based on random masking.

6. Conclusions

We proposed a benchmark of explanation methods, taking advantage of metrics proposed in the

literature to compare different explanation methods quantitatively. The quantitative analysis

showed that the best-performing explanation methods for tabular data are the rule-based ones,

which have high fidelity and stability, providing explanations faithful to the black-box decisions.

For images, the most stable methods are those based on gradients, while segmentation-based

methods have difficulty because of their random nature. Regarding accuracy, none of the

methods is statistically better than the others; however, the best method in our experiments was

rise. In general, no one method predominated over the others, emphasizing the difficulty of

creating effective and solid explanations at the same time. As a future work we aim at expanding

this analysis considering other data, such as text and time series, as well as other metrics.

Another possibility is to measure the comprehensibility of explanations by doing experiments

directly on humans.
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