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Abstract
Evaluating the similarity of RDF resources is nowadays a thoroughly investigated research problem, with
reference to a variety of contexts. In fact, several tools are available for the comparison of pairs and/or
groups of resources in a knowledge graph, mostly based on machine learning techniques. Unfortunately
such tools, though extensively tested and fully scalable, return non-explainable (often numerical) similar-
ity results also when comparing RDF resources, treating them according to their vector embeddings.
and making no use of the semantic information carried by RDF triples. In this work, we propose a tool
able to compute the commonalities of compared resource and explain them through a text in English,
produced by a Natural Language Generation approach. The proposed approach is logic-based and is
grounded on the computation of the Least Common Subsumer (re)defined in RDF. The feasibility of the
tool is demonstrated with reference to the similarity of Twitter accounts.
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1. Introduction

Learning techniques based on Neural Networks or other forms of numerical vectors comparison
have recently shown their effectiveness in producing tools for assessing similarity between
complex objects and for clustering them according to (possibly unsupervised) criteria. These
tools are nowadays also applied to data coming from RDF repositories [1], with the advantage
of using widely tested, off-the-shelf tools, but with the disadvantage of obtaining a result whose
explanation, if any, cannot be presented to end users without deep mathematical knowledge.

Yet RDF, as part of the Semantic Web effort, was equipped from its birth with a logical
semantics [2] based on mappings from IRIs and literals into a set of resources. Such semantics
allows us to describe the symbolic commonalities between resources as a logical formula in the
form of an RDF graph, named Least Common Subsumer (LCS) [3] for its similarity to LCS in
Description Logics [4].
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We present a Natural Language Generation (NLG) tool, based on LCS for RDF data, that
describes in English sentences the commonalities of RDF resources previously clustered,
or declared similar, by any other non-transparent tool. The connectivity of RDF-graphs—
objects/predicates of a triple being subjects of other triples—leads to non-trivial relative sen-
tences in English, rendered with relative pronouns. Blank nodes are fundamental in our common
subsumers to represent partial commonalities in RDF paths from clustered resources. We use
relative pronouns in relative sentences to represent them. To our knowledge, there are no
other tools that also accept blank nodes in the verbalization of RDF graphs. This tool has been
already implemented for the comparison of drugs and of contracting processes [5]. We here
present the NLG approach and the full set of algorithms at the basis of the tool, together with
an application to the evaluation of similarity of Twitter accounts.

The paper is organized as follows: in the next section, we discuss related works and how
different our approach is from them. In Section 3 we briefly summarize the necessary notions
regarding LCS in RDF. Then in Section 4 we explain in detail how we construct (possibly
relative) sentences from Common Subsumers. In Section 5 we show examples of the results of
our tool when applied to similar Twitter accounts. The final section concludes the paper.

2. Related Work

The explanation of clustering results has been addressed since 1980 in the conceptual clustering
research field [6]. Conceptual clustering is the problem of returning, together with clustering
results, a concept explaining the criterion for resources aggregation.

So far, this problem has attracted several researchers, whose most influential proposals have
been recently reviewed, for the interested reader, by Pérez-Suárez et al. [7]. Notably, this review
does not include any approach dealing with RDF resources. To the best of our knowledge, the
only approach dealing with the conceptual clustering of RDF resources is the one by Colucci et
al. [8], based on LCS computation.

In this paper, similarly to conceptual clustering, we aim at explaining clustering results, but
we do not cope with the problem of grouping resources. In fact, we propose a logic-based
methodology to explain the commonalities of RDF resources grouped by any aggregation
criterion. In other words, our methodology is agnostic w.r.t. the aggregation criterion.

A similar attitude is shared by Dedalo [9], an approach based on Inductive Logic Programming
(ILP) that automatically produces explanations for given clusters using Linked Data as back-
ground knowledge. Dedalo evaluates possible explanation hypothesis according to specifically
investigated measures and heuristics.

Differently from Dedalo, we take a deductive approach to the identification of cluster com-
monalities. In particular, given a group of resources returned in the same cluster, the approach
computes their LCS,i.e., a set ot triples that abstracts their commonalities. The RDF triples in
the LCS are then parsed to produce a human-readable explanation of their content.

Thus, our approach falls in the widely populated field of Natural Language Generation
(NLG) from the Semantic Web. Since 2014, Bouayad-Agha et al. [10] classified at least 11
NLG approaches working on RDF graphs. Bouayad-Agha et al. adopt several features for
classification, including the part of the input graph to verbalize (verbalization request) and the



information to return (communicative goal).
None of the reviewed approaches is able to manage anonymous resources or to generate text

from derived triples (not explicitly stated in RDF).
In recent years, NLG has mainly focused on the improvement of the readability of generated

language, measured through the setting of common baselines. The WebNLG challenge [11],
for example, provides a benchmark corpus of English (and also Russian in its second edition
[12]) sentences verbalizing RDF triples. The challenge classifies competitors according to the
performance in the generation of baseline sentences; no competition is set around the proposal
of forms of verbalization lending to richer explanation.

The traditional trend of NLG approaches has been the usage of rules and templates, which
represent solutions highly domain-dependent and demanding manual intervention.

A recent shift to this trend has been made possible by deep learning, thanks to neural network-
based NLG models. As an example, Neural Wikipedian [13] employs the Sequence to Sequence
(SEQ2SEQ) framework [14] (a neural network-based NLG model) to generate summaries of RDF
triples. Similarly, Li et al.[15] propose the Neural Entity Summarization approach.

Both summarization approaches collect only triples that are already present in the RDF
descriptions, without handling blank nodes.

Our template-based method for explaining RDF similarity has several distinguishing features
w.r.t. the approaches above. To the best of our knowledge, it is the only one able to manage
blank nodes, that are crucial for the purpose of abstracting several triples with common pred-
icate/object. Even more importantly, our method uses blank nodes to chain triples reaching
the same known object (see the example about Twitter accounts in Sect.5). Lastly, our method
does not explain just trivial sets of triples, but RDF graphs logically computed to summarize
the commonalities shared by groups of resources. This makes really significant the informa-
tive potential of the returned explanation, which is double-tied to the logic-based nature of
computation.

3. LCS in RDF

We assume that the reader is familiar with RDF triples and graphs, but to make this paper
self-contained, we briefly recall here the definition of [Least] Common Subsumers (LCS) in the
context of RDF [16, 3], along with the necessary preliminaries.

First, given an RDF-graph 𝑇𝑟 containing Resource 𝑟 as a node, we denote a rooted RDF-graph
(in brief r-graph) by the pair ⟨𝑟, 𝑇𝑟⟩. This allows us to compare Resources 𝑟, 𝑠 by referring to
their respective r-graphs ⟨𝑟, 𝑇𝑟⟩, ⟨𝑠, 𝑇𝑠⟩.

Second, let 𝐺[𝑠 → 𝑡] be the graph obtained by substituting each occurrence of 𝑠 with 𝑡 in 𝐺;
now the definition of Simple Entailment 𝑇𝑟 |= 𝑇𝑠 [2] between two RDF-graphs 𝑇𝑟, 𝑇𝑠, can be
restricted to r-graphs as below (rephrased from a previous publication [3, Def.6]):

Definition 1. [Rooted Entailment] Let ⟨𝑟, 𝑇𝑟⟩, ⟨𝑠, 𝑇𝑠⟩ be two r-graphs. We say that ⟨𝑟, 𝑇𝑟⟩ entails
⟨𝑠, 𝑇𝑠⟩—denoted by ⟨𝑟, 𝑇𝑟⟩ |= ⟨𝑠, 𝑇𝑠⟩—in exactly the cases summarized below:



Conditions 𝑠 is a blank node 𝑠 is not a blank node

𝑟 is a blank node 𝑇𝑟[𝑟 ↦→ 𝑢] |= 𝑇𝑠[𝑠 ↦→ 𝑢] for a new URI 𝑢
occurring neither in 𝑇𝑟 nor in 𝑇𝑠

No entailment

𝑟 is not a blank node 𝑇𝑟 |= 𝑇𝑠[𝑠 ↦→ 𝑟] 𝑠 = 𝑟, and 𝑇𝑟 |= 𝑇𝑠

Intuitively, Rooted Entailment restricts Simple Entailment by requiring that the root of one
graph be mapped to the root of the other. When both resources 𝑟, 𝑠 are URI, this is possible only
when 𝑠 = 𝑟 (2nd row, 2nd column), while when either 𝑟 or 𝑠 is a blank node (all other entries),
a suitable substitution is necessary to obtain the mapping before checking Simple Entailment.

Rooted Entailment is needed to define the notion of Common Subsumer (CS) of two r-graphs
⟨𝑎, 𝑇𝑎⟩, ⟨𝑏, 𝑇𝑏⟩:

Definition 2 (Common Subsumer, [3, Def.7]). Let ⟨𝑎, 𝑇𝑎⟩, ⟨𝑏, 𝑇𝑏⟩ be two r-graphs. An r-
graph ⟨𝑥, 𝑇𝑥⟩ is a Common Subsumer (CS) of ⟨𝑎, 𝑇𝑎⟩, ⟨𝑏, 𝑇𝑏⟩ iff both ⟨𝑎, 𝑇𝑎⟩ |= ⟨𝑥, 𝑇𝑥⟩ and
⟨𝑏, 𝑇𝑏⟩ |= ⟨𝑥, 𝑇𝑥⟩.

Finally, a Least Common Subsumer (LCS) of two RDF resources can be defined as follows:

Definition 3 (Least Common Subsumer [3, Def.8]). Let ⟨𝑎, 𝑇𝑎⟩, ⟨𝑏, 𝑇𝑏⟩ be two r-graphs. An
r-graph ⟨𝑥, 𝑇𝑥⟩ is a Least Common Subsumer (LCS) of ⟨𝑎, 𝑇𝑎⟩, ⟨𝑏, 𝑇𝑏⟩ iff both conditions below
hold:

1. ⟨𝑥, 𝑇𝑥⟩ is a CS of ⟨𝑎, 𝑇𝑎⟩, ⟨𝑏, 𝑇𝑏⟩;
2. for every other CS ⟨𝑦, 𝑇𝑦⟩ of ⟨𝑎, 𝑇𝑎⟩, ⟨𝑏, 𝑇𝑏⟩:

if ⟨𝑦, 𝑇𝑦⟩|=⟨𝑥, 𝑇𝑥⟩ then ⟨𝑥, 𝑇𝑥⟩ |= ⟨𝑦, 𝑇𝑦⟩, ( i.e., ⟨𝑥, 𝑇𝑥⟩ and ⟨𝑦, 𝑇𝑦⟩ are equivalent under
Rooted Entailment).

Colucci et al.[3] proved that an LCS of two r-graphs is unique—up to blank renaming—so we can
talk about “the” LCS. Moreover, the LCS enjoys the properties of Idempotency, Commutativity,
and Associativity. The latter written in formulas is
𝐿𝐶𝑆(⟨𝑎, 𝑇𝑎⟩, 𝐿𝐶𝑆(⟨𝑏, 𝑇𝑏⟩, ⟨𝑐, 𝑇𝑐⟩)) =
𝐿𝐶𝑆(𝐿𝐶𝑆(⟨𝑎, 𝑇𝑎⟩, ⟨𝑏, 𝑇𝑏⟩), ⟨𝑐, 𝑇𝑐⟩).
Associativity relies on a fundamental property of LCSs as proposed by Colucci et al., namely,
the LCS of two r-graphs is itself an r-graph, so it can be used as an argument of another LCS
operation with a third r-graph, etc. Associativity ensures that the order in which resources are
taken—when computing the LCS of all of them—does not matter.

We also recall some definitions adapting the basic notions of Graph Theory to RDF-graphs
[3], used in the rest of the paper. First, an RDF-path from 𝑟 to 𝑠 is a sequence of triples 𝑡1, . . . , 𝑡𝑛
in which the subject of 𝑡1 is 𝑟, either the predicate or the object of 𝑡𝑛 is 𝑠, and for 𝑖 = 1, ..., 𝑛−1,
either the predicate or the object of 𝑡𝑖 is the subject of 𝑡𝑖+1. Basically, an RDF-path differs from
usual graph paths in that it can pass through the resource 𝑝 in the predicate (the arc in Graph
Theory) to another path starting from 𝑝 as a node (see Colucci et al.[3] for more details). A
resource 𝑟 is RDF-connected to a resource 𝑠 if there exists an RDF-path from 𝑟 to 𝑠. The length
of this RDF path is 𝑛, and the RDF-distance between two resources is the length of the shortest
RDF-path between them. Furthermore, the RDF distance between a resource 𝑟 and a triple 𝑡 is



the shortest RDF-distance between 𝑟 and the subject of 𝑡—in particular, triples whose subject is
𝑟 have zero-RDF-distance from 𝑟 itself, as expected.

We propose to use the LCS of a cluster of RDF resources—obtained in any way—to explain
their commonalities. The LCS could be useful both in a tuning phase of a clustering tool, and
in an explanation of the result to an unacquainted final user. To this end, we attached to the
construction of an LCS its explanation in English common language, as described in the next
section.

4. Explanation of RDF r-graphs

The main contribution of this paper is the proposal of an approach grounded on LCS computation
to the explanation of similarities among grouped RDF resources. The approach has been also
implemented in a tool demonstrating its feasibility. The whole explanation process is performed
in three steps: i) Problem settings; ii) (L)CS computation; iii) Natural Language Generation from
the (L)CS computed at Step 2. We detail each step in the next subsections.

4.1. Problem Settings

The first step aims at specifying some preliminary settings, both for ensuring feasibility in
the management of RDF resources and for tailoring the approach to the specific application
scenario.

In particular, RDF-based applications need to select which triples qualify a resource 𝑟, among
the ones available in the Web of Data. This filtering is necessary because the management of all
triples linked to a resource would make unfeasible any application, given the huge and ever
increasing dimensions of this information source.

Our approach adopts the explicit criteria proposed by Colucci et al. [3] for the selection
of triples to include in the r-graph of a resource 𝑟. Such criteria ask for three settings: (1a)
the datasets to analyse, (1b) the RDF-distance for exploration, and (1c) the list of so-called
stop-patterns (triple patterns to be discarded).

The fourth additional setting (1d) is required to increase the significance of returned com-
monalities, by recursively eliminating from the LCS triples that provide little information, called
uninformative triples. Thus, a—no more Least—Common Subsumer is obtained, containing only
the most informative triples deducible from all r-graphs.

The set of stop-patterns and uninformative triples include both general patterns/triples (to be
discarded in every application domain), and some domain-dependent patterns/triples, defined
through the analysis of our results.

The last required settings (1e) are aimed at tailoring the explanation to the specific application
domain to cope with. In particular, it is required a dictionary for the English language translation
of URIs included in the reference dataset, to improve the readability of returned explanation.
The full automation of this mapping (URI to common language term) is not always feasible,
depending on the quality of used datasets. Notably, when a dataset allows for the retrieval
of significant URI labels, the above mentioned dictionary may be automatically built. We
summarize below all problem settings of Step 1:



1. a) data sources: which datasets (one or more) to explore for the comparison;
b) RDF-distance: the maximum RDF-distance from 𝑟 of triples to involve1;
c) stop-patterns: triples patterns to be excluded in the selection;
d) LCS uninformative triples: triples which, although logically implied by the r-graphs

of all analyzed resources, are recursively eliminated from the results;
e) dictionary of resources involved in triples: English language form to be employed in

the verbalization of URIs.

Such settings allow for flexibly tailoring the approach to different application scenarios, as
demonstrated by its implementation for the comparison of drugs and contracting processes [5].

4.2. (L)CS Computation

The second step is implemented by Algorithm 1, that computes a CS of a 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 of RDF
resources, given as first input. Since previous publications [3, 17] focused on the comparison of
pairs, Algorithm 1 is an original contribution of this paper. Parameters 𝑛,𝐷, 𝜑 are just passed
as input to the call in Row 6 to the algorithm for computing the LCS of a pair of resources (one
of which is the “running” LCS) [3]. The last input is the set of uninformative triples.

Algorithm 1: find a CS of a set of resources incrementally, by Associativity
1 𝐹𝑖𝑛𝑑_𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝐶𝑆(𝐶𝑙𝑢𝑠𝑡𝑒𝑟, 𝑛,𝐷, 𝜑, uninf _triples);

Input :
• 𝐶𝑙𝑢𝑠𝑡𝑒𝑟: an array containing the URIs of all resources to analyze;
• 𝑛: the RDF-distance for graphs exploration;
• 𝐷: the union of datasets to be explored;
• 𝜑: a boolean predicate to be satisfied by selected triples;
• uninf _triples : triples to be recursively eliminated from the results.

Output : r-graph ⟨𝑐𝑠, 𝑇𝑐𝑠⟩ such that ⟨𝑟𝑖, 𝑇𝑟𝑖 ⟩ |= ⟨𝑐𝑠, 𝑇𝑐𝑠⟩ for every 𝑟𝑖 ∈ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟
Subroutine :𝐹𝑖𝑛𝑑𝐿𝐶𝑆(𝑎, 𝑛𝑎, 𝑏, 𝑛𝑏, 𝐷, 𝜑) [3] returns the LCS (an r-graph) between 𝑎 and 𝑏. Triples characterizing 𝑎 and

𝑏 are extracted by exploring 𝐷 at RDF-distance 𝑛𝑎 (resp. 𝑛𝑏) from 𝑎 (resp. 𝑏). Only triples 𝑇 satisfying
𝜑(𝑇 ) = 𝑡𝑟𝑢𝑒 are extracted.

2 𝑟𝑖 ← 𝐶𝑙𝑢𝑠𝑡𝑒𝑟[0];
3 𝑠𝑒𝑒𝑑← 𝑟𝑖;
4 for 𝑗 from 1 to |𝐶𝑙𝑢𝑠𝑡𝑒𝑟| do
5 𝑟𝑗 ← 𝐶𝑙𝑢𝑠𝑡𝑒𝑟[𝑗] ;
6 ⟨𝑠𝑒𝑒𝑑, 𝑇𝑠𝑒𝑒𝑑⟩ ← 𝐹𝑖𝑛𝑑𝐿𝐶𝑆(𝑠𝑒𝑒𝑑, 𝑛, 𝑟𝑗 , 𝑛,𝐷, 𝜑);
7 remove uninf _triples from 𝑇𝑠𝑒𝑒𝑑;
8 if |𝑇𝑠𝑒𝑒𝑑| > 0 then
9 ⟨𝑐𝑠, 𝑇𝑐𝑠⟩ ← ⟨𝑠𝑒𝑒𝑑, 𝑇𝑠𝑒𝑒𝑑⟩;

10 else
11 break;
12 end
13 end
14 return ⟨𝑐𝑠, 𝑇𝑐𝑠⟩;

Before entering the main loop (Rows 4–13), Algorithm 1 extracts the first resource from the
list (Row 2). Then, the resource representing the root of the running CS, 𝑠𝑒𝑒𝑑, is initialized to
the first resource (Row 3). The CS ⟨𝑐𝑠, 𝑇𝑐𝑠⟩ is incrementally built by looping over the remaining

1We recall that r-graph definition ensures connectedness: there must be an RDF-path from 𝑟 to the subject of each
chosen triple



resources (Rows 4–13). At each iteration stage, another resource 𝑟𝑗 is extracted from the cluster
(Row 5). In Row 6, we compute the LCS between this 𝑟𝑗 and the running CS, 𝑠𝑒𝑒𝑑, resulting
from the previous iteration. At Row 7, uninformative triples are recursively removed from the
CS computed so far. The loop continues until either 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 is empty or until the dimension of
the last computed seed, 𝑇𝑠𝑒𝑒𝑑, equals to zero (Row 11). In this second case, Algorithm 1 returns
the last significant CS, whose 𝑇𝑐𝑠 is not empty and that is stored in ⟨𝑐𝑠, 𝑇𝑐𝑠⟩ at each iteration
(Row 9).

We notice that, in place of the exit criterion in Row 8, thresholds greater than 0 could
be adopted to improve the significance of the returned set of commonalities, by giving up
to the largest sharing of such commonalities among resources in the cluster and retrieving
more significant CSs of specific cluster subsets. At implementation level, such more stringent
requirements (that will be part of our future work) are possible because the running CSs,
together with the subsets of resources it represents, is saved and available for further usage. In
particular, at each iteration stage, the running CS is serialized2 and saved in both Turtle and
N-triples formats.

4.3. Natural Language Generation from triples in the (L)CS

The output of Algorithm 1 is passed to the third step, which implements the NLG approach for
the explanation of (L)CS that we propose as our main contribution.

We recall that r-graphs modeling (L)CSs include blank nodes by construction (see Definition 1)
and that blank nodes may occur in positions other than the root. For instance, while describing
a cluster of Twitter accounts (see Sect. 5), we may find in the CS the following path (simplified
here with prefix ex: for readability):

_:x ex:mention _:y .
_:y ex:involved-in ex:videogames .

which says that the accounts in the cluster (all represented by one blank node _:x) mention
some resource (_:y) which is involved in the topic of videogames. We stress that the blank node
_:y representing a generic resource does not occur by itself in the input r-graphs; it represents
the fact that different accounts mention different IRIs, yet all such different IRIs are involved in
videogames.

To the best of our knowledge, no available NLG tool3 is able to verbalize RDF triples involving
blank nodes in any position, and this makes our proposal (and tool) original.

In what follows, we describe our NLG approach, w.r.t. the six main building tasks synthesized
by Gatt and Krahmer [18]:

1. Content Determination We determine the content to explain through the (L)CS construc-
tion detailed in Section 4.2, that discards from the (L)CS all information we consider
uninformative; nevertheless the (L)CS r-graph may include paths which differ only in
the involved blank nodes (see Figure 1) and would generate identical sentences in the
explanation. Thus, we include only once such a content in the text under construction.

2Serialization uses the 𝑅𝐷𝐹𝑙𝑖𝑏 𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 method (https://rdflib.readthedocs.io/en/stable/plugin_serializers.html).
3https://aclweb.org/aclwiki/Downloadable_NLG_systems

https://rdflib.readthedocs.io/en/stable/plugin_serializers.html
https://aclweb.org/aclwiki/Downloadable_NLG_systems


2. Text Structuring Our (L)CS is an r-graph whose root is a blank node and that includes triple
paths always RDF-connected to the root, involving triples with variable RDF-distance
from the root (see the example at the beginning of this section). Such paths are considered
equally informative and then presented in the order they appear in the (L)CS.

3. Sentence Aggregation We present each RDF path to the root in a single sentence.

4. Lexicalisation The lexicalization of triples depends on the RDF-distance form the root. We
always generate a pronoun (depending on the RDF-distance) for the subject, a verb in
past tense for the predicate and a noun for the object. When the object (respectively the
predicate) is a blank node, we generate a phrase ("some generic resource"), that can be
further explained through a relative sentence when the object (respectively the predicate)
has successors in the r-graph (i.e., when the path to verbalize has length greater than 1).

5. Referring Expression Generation The entities to describe in our text correspond to the
RDF resources which stand as triple subject at any level of the RDF path to consider. We
collect all such information around the root, generating sentences whose main subject is
the phrase corresponding to the root ("They all").

6. Linguistic Realisation The final text is generated by following a human-crafted grammar-
based approach. The main rules of the grammar are given below, with the conventions
that terminal symbols are quoted, and that vertical bar represents a choice between two
forms of a rule.

CS → "They all" Predicate (Noun | Noun RC )
RC → "which" Predicate (Noun | Noun RC )

where 𝑅𝑃 is a nonterminal representing a relative clause. The nonterminals Predicate
and Noun describe the (finitely many) predicates and nouns that linguistically realize
terms in predicate- and subject/object-positions of a triple, respectively. Blank nodes are
linguistically realized as "some generic resource" (see next section). As an aside, note
that since Predicate and Noun produce a finite number of terminals, substituting all
such terminals in the above rules yields a (very lengthy) right-recursive Type-3 Grammar.
Jumping over some details about linguistic realisation, the reader can verify that one of
the phrases such grammar can generate is indeed "They all mention some resource which
is involved in videogames", that explains the example of the RDF path shown above.

We use such a grammar as a guidance in the implementation of the linguistic realisation,
with a breadth-first strategy: that is, taking all (say, 𝑛) RDF-paths contained in the CS,
we follow the first triple of each one of them, generating 𝑛 phrases that are complete if
the path has length 0 (just one triple), or they contain a nonterminal RC when the path
has length ≥ 1. Then we follow each path one triple further, and add their verbalization
substituting all non terminals RC once. We proceed, until no path extends further.
This breadth-first generation of phrases make it easier to perform subsequent verbal
improvements, e.g., subject sharing, sentence coordination, etc.

In the rest of this section, we delve into some implementation details. The uninterested reader
can jump to the next section to see the results we obtained.

In brief, Algorithm 2 takes an r-graph in input and describes its root by generating a verbose
human-readable explanation of its triples set.



If the input r-graph is the CS of a group of different resources (like the one returned by
Algorithm 1), the root is a blank node and the generated text summarizes common features
among analyzed resources.

Algorithm 2: The algorithm returns a dictionary storing for each explored RDF-distance
(dictionary key), the text generated for explanation (dictionary value)

1 𝑔𝑒𝑡_𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 (⟨𝑔, 𝑇𝑔⟩, 𝑑, 𝑈𝑅𝐼𝑠_𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦);
Input :

• ⟨𝑔, 𝑇𝑔⟩: the r-graph to explain;
• 𝑑: the RDF-distance for r-graph exploration;
• 𝑈𝑅𝐼𝑠_𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦: a dictionary with keys indexing all URIs defined in the name-space and values storing the English

terms corresponding to them;

Output :

• 𝑜𝑢𝑡𝑝𝑢𝑡: a dictionary storing for each explored RDF-distance 𝑛 (dictionary key), the corresponding generated text
(dictionary value);

Subroutine :𝑔𝑒𝑡_𝑛𝑜𝑑𝑒_𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛(⟨𝑛𝑜𝑑𝑒, 𝑇𝑛𝑜𝑑𝑒⟩, 𝑈𝑅𝐼𝑠_𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦) (Algorithm 3) returns, for each 𝑛𝑜𝑑𝑒: the text
generated for linguistically realizing the triples rooted in it; the list of node neighbours yet to be explored; a
dictionary storing indexes and descriptive triples of nodes to be explained through relative sentences.

2 𝑜𝑢𝑡𝑝𝑢𝑡← empty dictionary;
3 𝑡𝑜_𝑒𝑥𝑝𝑙𝑜𝑟𝑒← [𝑔];
4 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑← ∅;
5 for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 from 0 to 𝑑 do
6 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑜𝑢𝑡𝑝𝑢𝑡← empty dictionary ;
7 for (𝑛𝑜𝑑𝑒 ∈ 𝑡𝑜_𝑒𝑥𝑝𝑙𝑜𝑟𝑒) and (𝑛𝑜𝑑𝑒 ̸∈ 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑) do
8 𝑇𝑛𝑜𝑑𝑒← all triples in 𝑇𝑔 with 𝑛𝑜𝑑𝑒 as subject;
9 add 𝑛𝑜𝑑𝑒 to 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑;

10 if 𝑇𝑛𝑜𝑑𝑒 ̸= ∅ then
11 𝑛𝑜𝑑𝑒_𝑜𝑢𝑡𝑝𝑢𝑡, 𝑛𝑜𝑑𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠, 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡 =

𝑔𝑒𝑡_𝑛𝑜𝑑𝑒_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(⟨𝑛𝑜𝑑𝑒, 𝑇𝑛𝑜𝑑𝑒⟩,𝑈𝑅𝐼𝑠_𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦);
12 end
13 add 𝑛𝑜𝑑𝑒_𝑜𝑢𝑡𝑝𝑢𝑡 to 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑜𝑢𝑡𝑝𝑢𝑡;
14 𝑡𝑜_𝑒𝑥𝑝𝑙𝑜𝑟𝑒← resources in 𝑛𝑜𝑑𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 and not in 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑;
15 end
16 add 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑜𝑢𝑡𝑝𝑢𝑡 to 𝑜𝑢𝑡𝑝𝑢𝑡;
17 end
18 for each 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡[𝑛] indexed with 𝑘 in 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡 do
19 add to 𝑜𝑢𝑡𝑝𝑢𝑡[𝑛] one relative sentence for each sentence in 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡[𝑘] ;
20 end
21 return 𝑜𝑢𝑡𝑝𝑢𝑡;

Algorithm 2 starts the exploration of ⟨𝑔, 𝑇𝑔⟩ from its root node 𝑔 and returns a dictionary,
𝑜𝑢𝑡𝑝𝑢𝑡, storing, for each explored RDF-distance, the text generated for its explanation; 𝑜𝑢𝑡𝑝𝑢𝑡
is initialized to an empty dictionary at Row 2.

The main loop of Algorithm 2 (Rows 5–17) is responsible for iteration over different RDF-
distance values (up to the input 𝑑): for each RDF-distance, it computes an 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑜𝑢𝑡𝑝𝑢𝑡
which is initialized as empty at every iteration (Row 6) and added to the final 𝑜𝑢𝑡𝑝𝑢𝑡 in Row 16.

The loop in Rows 7–15 analyzes all resources present in 𝑡𝑜_𝑒𝑥𝑝𝑙𝑜𝑟𝑒 (but not in 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑) and,
for each 𝑛𝑜𝑑𝑒 of them, finds all the triples, 𝑇𝑛𝑜𝑑𝑒, in 𝑇𝑔 rooted in 𝑛𝑜𝑑𝑒 (Row 8). Then, 𝑛𝑜𝑑𝑒 is put
in the array of already explored resources (Row 9). For each 𝑛𝑜𝑑𝑒 such that 𝑇𝑛𝑜𝑑𝑒 is not empty,
the subroutine 𝑔𝑒𝑡_𝑛𝑜𝑑𝑒_𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 (see Algorithm 3) is called in Row 11 to perform the
linguistic realization of triples rooted in 𝑛𝑜𝑑𝑒. In particular, Algorithm 3 returns, for each node:



Algorithm 3: The algorithm returns, for a single node, the output text to generate, the list
of nodes yet to be explored and a data structure supporting the writing of relative sentences
at every RDF-distance.

1 𝑔𝑒𝑡_𝑛𝑜𝑑𝑒_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(⟨𝑛𝑜𝑑𝑒, 𝑇𝑛𝑜𝑑𝑒⟩, 𝑈𝑅𝐼𝑠_𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦);
Input :

• ⟨𝑛𝑜𝑑𝑒, 𝑇𝑛𝑜𝑑𝑒⟩: the r-graph of the node to explain;
• 𝑈𝑅𝐼𝑠_𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦: the dictionary of URIs defined in the dataset;

Output :

• 𝑛𝑜𝑑𝑒_𝑜𝑢𝑡𝑝𝑢𝑡: a dictionary storing, for each node identifier, the linguistic realization of the triples rooted in the node;
• 𝑛𝑜𝑑𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠: a list of nodes to be explored in next stages of iteration by Algorithm 2 ;
• 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡: a dictionary storing indexes and descriptive triples of nodes to be explained through relative sentences.

2 𝑛𝑜𝑑𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠← ∅;
3 𝑛𝑜𝑑𝑒_𝑜𝑢𝑡𝑝𝑢𝑡← empty dictionary ;
4 for each triple≪ 𝑛𝑜𝑑𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 𝑜𝑏𝑗𝑒𝑐𝑡≫∈ 𝑇𝑛𝑜𝑑𝑒 do
5 if 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 ∈ 𝑈𝑅𝐼𝑠_𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 then
6 𝑝𝑟𝑒𝑑_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛← 𝑈𝑅𝐼𝑠_𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦[𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒]
7 else
8 if 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 is a blank node then
9 𝑝𝑟𝑒𝑑_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛← "some generic resource"

10 else
11 𝑝𝑟𝑒𝑑_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛← "not identified dataset resource"
12 end
13 add an 𝑖𝑛𝑑𝑒𝑥 for accessing 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 in 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡;
14 end
15 add 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 to 𝑛𝑜𝑑𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠;
16 if 𝑜𝑏𝑗𝑒𝑐𝑡 ∈ 𝑈𝑅𝐼𝑠_𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 then
17 𝑜𝑏𝑗𝑒𝑐𝑡_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛← 𝑈𝑅𝐼𝑠_𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦[𝑜𝑏𝑗𝑒𝑐𝑡]
18 else
19 if 𝑜𝑏𝑗𝑒𝑐𝑡 is a blank node then
20 𝑜𝑏𝑗𝑒𝑐𝑡_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛← "some generic resource"
21 else
22 𝑜𝑏𝑗𝑒𝑐𝑡_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛← "not identified dataset resource";
23 end
24 add an 𝑖𝑛𝑑𝑒𝑥 for accessing 𝑜𝑏𝑗𝑒𝑐𝑡 in 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡;
25 end
26 add 𝑜𝑏𝑗𝑒𝑐𝑡 to 𝑛𝑜𝑑𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠;
27 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑑𝑒= 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑡𝑒𝑥𝑡(𝑝𝑟𝑒𝑑_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑜𝑏𝑗𝑒𝑐𝑡_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛);
28 if 𝑛𝑜𝑑𝑒 is indexed in 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡 then
29 add 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑑𝑒 to 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡
30 else
31 add 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑑𝑒 to 𝑛𝑜𝑑𝑒_𝑜𝑢𝑡𝑝𝑢𝑡;
32 end
33 end
34 return 𝑛𝑜𝑑𝑒_𝑜𝑢𝑡𝑝𝑢𝑡, 𝑛𝑜𝑑𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠, 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡;

the generated text (𝑛𝑜𝑑𝑒_𝑜𝑢𝑡𝑝𝑢𝑡), the list of nodes yet to be explored (𝑛𝑜𝑑𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠) and a
data structure supporting the writing of relative sentences at every RDF-distance (𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡).

Algorithm 2 uses the variable 𝑛𝑜𝑑𝑒_𝑜𝑢𝑡𝑝𝑢𝑡 to update the running 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑜𝑢𝑡𝑝𝑢𝑡 (Row 13)
and 𝑛𝑜𝑑𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 to set the array 𝑡𝑜_𝑒𝑥𝑝𝑙𝑜𝑟𝑒 (Row 14).

After the execution of the main loop (Rows 5–17), 𝑜𝑢𝑡𝑝𝑢𝑡 stores, for each analyzed RDF-
distance 𝑛, the related text generated from ⟨𝑔, 𝑇𝑔⟩. The text to generate, at any distance 𝑛, may
refer to nodes that are indexed in 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡 with key 𝑘, and whose linguistic realization is



stored in 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡[𝑘]. In this case, one sentence relative to 𝑘 is added for each text item in
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡[𝑘] (Rows 18–20).

Algorithm 3 starts by initializing 𝑛𝑜𝑑𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 to an empty set and 𝑛𝑜𝑑𝑒_𝑜𝑢𝑡𝑝𝑢𝑡 to
an empty dictionary (Rows 2–3). For each triple in 𝑇𝑛𝑜𝑑𝑒, both the predicate and the object
are explored to determine a verbal form for them (𝑝𝑟𝑒𝑑_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 and 𝑜𝑏𝑗_𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛). In
particular, Algorithm 3 discriminates among 3 different kinds of resources:

1. The resource is in the input 𝑈𝑅𝐼𝑠_𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦, that includes its linguistic realization
(see Row 5 and 17);

2. The resource is a blank node, and is explained by the phrase "some generic resource" (see
Row 9 and 20);

3. The resource is neither in the dictionary of defined URIs (Case 1) nor a blank node (Case
2): it is a generic (but not anonymous) resource, which has been given a URI, but which
is not further defined in the reference namespace. Thus, a generic phrase—"not identified
dataset resource"—is used for its explanation (see Row 11 and 22).

In Cases 2 and 3, Algorithm 3 updates the 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡 dictionary (Rows 13 and 24) supporting
the building of relative sentences in the final output of Algorithm 2. In all cases, the triple
predicate and object are added to 𝑛𝑜𝑑𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (Row 15 and 26), to be explored in next
iterations by Algorithm 2. Also (Row 27), the grammar above (see Linguistic Realization
description) is used to generate a text on the basis of predicate and object realizations, through
the subroutine 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑡𝑒𝑥𝑡. Such a generated text is assigned to the variable 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑑𝑒.

Algorithm 3 proceeds (conditional block in Rows 28–32) by adding the triple 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑑𝑒

either to the dictionary 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑠𝑡 for nodes indexed in it (and thus to be explained through
relative sentences) or directly to 𝑛𝑜𝑑𝑒_𝑜𝑢𝑡𝑝𝑢𝑡 for other nodes.

5. Use case: Explaining Twitter Accounts Similarity

The exponential growth in popularity of online social networking systems led to an increas-
ing importance of social media analytic tools for a variety of applications, such as customer
segmentation, market analysis and recommendation systems based on collaborative filtering.

By exploiting the information available in Linked Data, our method is able to highlight the
semantic properties shared by two or more users on a given platform, producing an easy-to-read,
understandable description. In particular, we use two combined datasets as information source:
Influence Tracker4 and DBPedia5.

The Influence Tracker (IT) ontology [19] collects activities and interactions over the so-called
"Twittersphere" of several users modelled as RDF-graphs and grouped together according to
the content they publish. In our examples, we refer to the prefixes in Turtle notation shown
below:

@prefix it: <http://www.influencetracker.com/resource> .
@prefix it0: <http://www.influencetracker.com/ontology#> .
@prefix dct: <http://purl.org/dc/terms/>
@prefix dbp: <http://dbpedia.org/property/>
@prefix Category: <http://dbpedia.org/resource/Category>

4https://old.datahub.io/dataset/influence-tracker-dataset
5https://www.dbpedia.org/



The class it:User models owners of Twitter accounts, either a physical person or a company,
in terms of mentions, replies, hashtags, photos, URLs, and so on. The activity of Twitter user
accounts is traced through several predicates, useful for catching semantic similarity among
different users. In our examples, we refer to the predicate it0:hasMentioned, that connects
a resource (belonging to class it:User) to users mentioned in its tweets. Notably, the IT
service provides an RDF graph, called twitterSimilarity, which traces the connection (through
the property it0:hasSimilarity) of Twitter accounts considered similar based on their
published content. We use the knowledge modeled in twitterSimilarity to extract the groups of
similar accounts to be analyzed in our use case.

In order to enrich the informative content of our explanation, we combined the information
in IT with selected knowledge from DBPedia. Such an integration is possible thanks to the
high quality of IT dataset, which includes links to URIs in DBPedia, and is then classifiable
as 5-stars Linked Open Data [20]. The IT service provides, in fact, the dbpediaGraph, that
maps—through the property it0:dbpediaUri—the correspondence between Twitter users in
the IT namespace and the related resource in DBpedia, if any.

Following such correspondences, we extract from DBpedia further information about account
owners. In our example, we only extract triples including the predicates dct:subject and
dbp:industry6.

In the following, we analyze the commonalities of three accounts grouped by similarity in
IT: it:instagram, it:dannysullivan and it:jimmykimmel. We first compute a significant CS of
the three resources, by flexibly providing an RDF-distance, a set of stop-patterns and a set of
uninformative triples. Then, we generate a text linguistically realizing such a CS.

In Figure 1, we focus only on the portion of CS computed at RDF-distance 1 from the root
and show the related graph representation. The reader may notice that two different paths exist
from the LCS root to the two resources "social media" and "videogames streaming services",
passing through different blank nodes. In the generation of the verbal explanation to return, we
notify only one of these paths7, that would be indistinguishable for users unacquainted in RDF.

Figure 2 reports the verbal explanation generated from the LCS at RDF-distance 1 of the
three Twitter accounts cited above8.

Again, the explanation coming from the analysis at RDF-distance 1 (Row 96 in Fig. 2)
benefits from the verbalization of paths passing through blank nodes, and collecting important
commonalities.

6. Conclusion

Based on a theory on (Least) Common Subsumers in RDF, we built a tool that verbalizes in
the English common language the commonalities between two or more resources in RDF. We
piped our tool to a standard clustering tool applied to the domain of Twitter accounts, in order

6The portion of the DBPedia graph to include in the analysis may be easily adapted to the explanation need.
7It corresponds to a “lean” version [2] of the LCS.
8Recall that triples whose subject is 𝑟 have RDF-distance 0 from 𝑟 itself; hence, the mentioned triples at RDF-distance
1 from 𝑟 have a subject which is either an object or a predicate of a triple at RDF-distance 0.



Figure 1: A CS graph obtained between the three twitter users: it:instagram, it:dannysullivan and
it:jimmykimmel (whose r-graphs include only triples at RDF-distance 1 from the resources). The upper-
right-most blank node (Callout A) represents the three resources; the two blank nodes to its left (Callout
C) represent resources (different from each other, verbalized as “some generic resource” in Figure 2)
which link (through predicates in Callout B and D) it:instagram, it:dannysullivan and it:jimmykimmel to
"social media" on one side, and "videogames streaming services" on the other side (Callout E).

to explain the results to an end user. Blank nodes are fundamental in our Common Subsumers
to represent partial commonalities in the RDF-paths starting from the clustered resources; we
verbalized them using relative pronouns in relative sentences. To our knowledge, there is no
tool that verbalizes also blank nodes in RDF-graphs.

According to the classification of Samek et al. [21], our tool fulfills at least three objectives of
Explanations in AI: 1) verification of the system: it allows users to check for meaningful/clueless
clusterizations; 2) improvement of the system: looking at the verbalization, a user can tune
the clusterization tool in order to weigh some features more than others; 3) learning from the
system: the verbalization makes explicit commonalities that might not be immediately visible
by looking at the resources in the cluster.

Future work may include extension both to the LCS construction and to the natural language
generation approach. In particular, LCS computation may be extended to consider also paths
traversing triples backwards (from the object to the subject). The extension of RDF-LCS to
backward RDF-paths is straightforward; yet their verbalization may need a chain of passive
relative English sentences, which are less readable than the forward ones. Another future direc-
tion is verbalizing a subset of the cluster [22], since when the explanation for the commonalities
of a set of resources is too shallow, focusing on the commonalities of a subset of the resources
may yield more interesting explanations.

Regarding NLG, the analysis of results suggests some improvements to our approach, at least
in the sentence aggregation and in the text structuring tasks. In particular, by looking at Figure 2,
the first 95 sentences in the text generated from the CS appear like a list of mentioned accounts
and included hashtags, that may be not interesting for all readers. In most cases, a text like
"They all mentioned the same 59 Twitter users. They all included the same 36 hashtags." would



The resources in analysis present the following properties in common:

1) They all mentioned the Twitter user: veephbo 2) They all mentioned the Twitter user: gma
3) They all mentioned the Twitter user: mindykaling 4) They all mentioned the Twitter user: huffingtonpost
5) They all included the hashtag #vpdebate 6) They all mentioned the Twitter user: katyperry
7) They all included the hashtag #lgbtq 8) They all mentioned the Twitter user: taylorswift13
9) They all included the hashtag #thanksgiving 10) They all included the hashtag #theforceawakens
11) They all mentioned the Twitter user: kingjames 12) They all included the hashtag #harrypotter
13) They all included the hashtag #sxsw 14) They all included the hashtag #sb51
15) They all included the hashtag #debate 16) They all mentioned the Twitter user: hbo
17) They all mentioned the Twitter user: time 18) They all included the hashtag #veteransday
19) They all mentioned the Twitter user: stranger_things 20) They all mentioned the Twitter user: glaad
21) They all mentioned the Twitter user: cnnpolitics 22) They all mentioned the Twitter user: ew
23) They all included the hashtag #emmys 24) They all mentioned the Twitter user: ringer
25) They all mentioned the Twitter user: kanyewest 26) They all mentioned the Twitter user: chrissyteigen
27) They all mentioned the Twitter user: kimkardashian 28) They all mentioned the Twitter user: variety
29) They all mentioned the Twitter user: starbucks 30) They all included the hashtag #rogueone
31) They all included the hashtag #veep 32) They all mentioned the Twitter user: whitehouse
33) They all included the hashtag #olympics 34) They all mentioned the Twitter user: oliviawilde
35) They all mentioned the Twitter user: latimes 36) They all included the hashtag #goldenglobes
37) They all mentioned the Twitter user: applemusic 38) They all included the hashtag #nationalselfieday
39) They all mentioned the Twitter user: deadline 40) They all included the hashtag #gopdebate
41) They all included the hashtag #f8 42) They all included the hashtag #backtoschool
43) They all mentioned the Twitter user: sesamestreet 44) They all mentioned the Twitter user: bretbaier
45) They all mentioned the Twitter user: facebook 46) They all mentioned the Twitter user: sethmeyers
47) They all mentioned the Twitter user: nerdist 48) They all included the hashtag #starwars
49) They all included the hashtag #gameofthrones 50) They all mentioned the Twitter user: michelleobama
51) They all mentioned the Twitter user: lesdoggg 52) They all mentioned the Twitter user: netflix
53) They all mentioned the Twitter user: tsa 54) They all mentioned the Twitter user: thewrap
55) They all mentioned the Twitter user: therock 56) They all included the hashtag #superbowl
57) They all included the hashtag #nbafinals 58) They all mentioned the Twitter user: newyorker
59) They all included the hashtag #demdebate 60) They all mentioned the Twitter user: abc7
61) They all included the hashtag #rncincle 62) They all mentioned the Twitter user: jimmyfallon
63) They all mentioned the Twitter user: nytimes 64) They all included the hashtag #westworld
65) They all mentioned the Twitter user: beyonce 66) They all mentioned the Twitter user: kobebryant
67) They all included the hashtag #aprilfools 68) They all included the hashtag #tbt
69) They all mentioned the Twitter user: ladygaga 70) They all mentioned the Twitter user: markruffalo
71) They all mentioned the Twitter user: justintrudeau 72) They all mentioned the Twitter user: traceeellisross
73) They all mentioned the Twitter user: thr 74) They all mentioned the Twitter user: foxnews
75) They all mentioned the Twitter user: nasa 76) They all included the hashtag #sb50
77) They all mentioned the Twitter user: pontifex 78) They all included the hashtag #vmas
79) They all included the hashtag #electionday 80) They all mentioned the Twitter user: cnn
81) They all mentioned the Twitter user: billboard 82) They all mentioned the Twitter user: imkristenbell
83) They all included the hashtag #grammys 84) They all mentioned the Twitter user: rickygervais
85) They all mentioned the Twitter user: shondarhimes 86) They all mentioned the Twitter user: johncena
87) They all mentioned the Twitter user: usatoday 88) They all included the hashtag #strangerthings
89) They all included the hashtag #memorialday 90) They all included the hashtag #worldseries
91) They all included the hashtag #got 92) They all mentioned the Twitter user: colbertlateshow
93) They all included the hashtag #worldcup 94) They all mentioned the Twitter user: forbes
95) They all mentioned the Twitter user: johnlegend

96) They all share the property "mentioned"
each one of them referencing some generic resource
which is involved in the field of social media
and is involved in the field of videogames streaming services

Figure 2: Verbal explanation of a CS (at RDF-distance 1) of the three twitter users: it:instagram,
it:dannysullivan and it:jimmykimmel. Phrases 1–95 explains short RDF-paths of length 0; Phrase 96
verbalizes an RDF-path of length 1.

be enough informative. Thus, as first improvement, we are investigating a different sentence
aggregation strategy, aimed at returning a more compact explanation when the generated text
is too verbose and highly repetitive. This strategy needs to be information-conservative and
able to return on demand the full text generated from the CS.

Also, we are designing a different approach to text structuring; in this work we structured the
text by presenting the sentences generated from the paths in the (L)CS in the order they appear
in the r-graph. This causes a random alternation of predicates involved in sentences, as shown
in the example in Figure 2 (w.r.t. to predicates "mentioned" and "included the hashtag"). Such a
result suggests to present close to each other all sentences related to the same predicate. The



new design would significantly benefit also from the introduction of a weighting mechanism
for the importance of predicates, to be used for setting the order of presentation of generated
sentences.
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