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Abstract

The current era is characterized by an increasing pervasiveness of applications and services based on
data processing and often built on Artificial Intelligence (AI) and, in particular, Machine Learning (ML)
algorithms. In fact, extracting insights from data is so common in daily life of individuals, companies,
and public entities and so relevant for the market players, to become an important matter of interest
for institutional organizations. The theme is so relevant that ad hoc regulations have been proposed.
One important aspect is given by the capability of the applications to tackle the data privacy issue.
Additionally, depending on the specific application field, paramount importance is given to the possibility
for the humans to understand why a certain AI/ML-based application is providing that specific output.
In this paper, we discuss the concept of Federated Learning of eXplainable AI (XAI) models, in short
FED-XAI, purposely designed to address these two requirements simultaneously. AI/ML models are
trained with the simultaneous goals of preserving the data privacy (Federated Learning (FL) side) and
ensuring a certain level of explainability of the system (XAI side). We first introduce the motivations at
the foundation of FL and XAlI, along with their basic concepts; then, we discuss the current status of this
field of study, providing a brief survey regarding approaches, models, and results. Finally, we highlight
the main future challenges.
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1. Introduction

Artificial Intelligence (AI) and, in particular, Machine Learning (ML) algorithms are becoming
de-facto standard pillars for creating innovative services and applications. Nowadays, they
are commonly found in many aspects of daily processes, both in public and in private sectors.
Actually, their pervasiveness is so deep that institutions have been prompted to address the
necessity of specific regulations, also taking ethical principles into account.

In 2017, the G7 partners issued a Declaration, highlighting the importance of the “vision of
human-centric Al which drives innovation and growth in the digital economy” [1]. One year
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later, in 2018, the European Commission tasked a group of independent experts to produce a
document called the “Ethic Guidelines for Trustworthy AI” [2], followed in 2021 by a proposal
for a “Regulation of the European parliament and of the council laying down harmonized rules
on artificial intelligence” [3]. In [2], authors describe a number of requirements that an Al
system should meet in order to be considered “trustworthy”: among others, “privacy and data
governance” and model “transparency” are often regarded by all the stakeholders, from service
provider to end-users, as pivotal steps towards trustworthiness.

The privacy aspect is often considered of utmost importance by data-owning organizations,
which are often reluctant to share their data with other parties. This can be due to different
internal practices between organizations, or even between different parts of the same organiza-
tion; also, data are perceived as a precious asset by companies and often exploited as an “unfair
advantage” over competitors. Finally, user data often involve sensitive information that needs
to be treated carefully to avoid privacy issues.

In these scenarios, with private raw data spread over multiple physical locations, traditional
ML approaches are not always feasible, as they require the availability of the overall dataset
stored in one centralized server. On the other hand, when data are naturally and necessarily
distributed in isolated silos, every single data owner may not have sufficient data to properly
train an Al model. These considerations lead to the necessity to adopt novel paradigms and
propose alternative methodologies. Federated Learning (FL), proposed in the literature a few
years ago [4], can be a valid solution to cope with the data privacy issue: the key idea of FL is
to learn local Al models from local data, and then aggregate the (locally-computed) models or
updates to generate a global aggregated model. Thus, data-privacy is preserved, since raw data
are not exchanged between the different clients responsible for the local models, but the overall
information is collaboratively used to learn the aggregated model.

The aspect of explainability is at the heart of so-called trustworthy Al: for example, as
mentioned in [2] “[...] Al systems and their decisions should be explained in a manner adapted
to the stakeholder concerned”. Likewise, GDPR recital 71 [5] states that: “[...] In any case, such
processing should be subject to suitable safeguards, which should include specific information to
the data subject and the right to obtain human intervention, to express his or her point of view, to
obtain an explanation of the decision reached after such assessment and to challenge the decision”.
As a consequence, industry and academia are placing increasing attention on eXplainable Al
(XAI).

The acronym FED-XAI stands for Federated learning of XAI models and is conceived to
provide a leap forward toward trustworthy Al The objective of Fed-XAlI consists in devising
methodological and technological solutions as follows: on one hand, to leverage the FL approach
for privacy preservation during collaboratively training of ML/AI models. On the other hand, to
ensure an adequate degree of explainability of the Al-based systems themselves. Actually, since
early works in the FL literature [6],[7], most solutions revolve around the original proposal of
Federated Averaging (FedAvg), as a protocol for executing Stochastic Gradient Descent (SGD)
in a federated manner. In particular, in [6] the authors showed that deep neural network (DNN)
models can be collaboratively trained for tackling image classification and language modeling
tasks. While DNNs have achieved unprecedented levels of performance in various application
domains, they are generally considered opaque models due to their huge number of parameters
and non-linear modeling: as such, they do not feature inherent interpretability. Although much



less attention has been devoted to FL of XAl models, the interest in this area is steeply increasing.
The main goal of this paper is to discuss the current status, the main open challenges and future
directions of Fed-XAIL

In the rest of the paper, we first describe some preliminaries about FL and XAI (Section 2).
Then, in Section 3, we review the state of the art of Fed-XAI approaches. Section 4 describes the
main open challenges towards Fed-XAI and highlights some possible future directions. Finally,
in Section 5 we draw some conclusions.

2. Preliminaries

In this section we briefly introduce and discuss some basic concepts of the FL paradigm and
XAI models, useful to understand the main characteristics, advantages and disadvantages of the
different works compared in the subsequent sections.

2.1. Federated Learning: basic concepts

Several surveys are available on FL [8, 9]. In this section, we present some of the relevant basic
concepts. In FL multiple parties (or clients) collaboratively train an ML model. In mainstream
FL, the learning procedure is orchestrated by a central server and FL algorithms mainly aim
to collaboratively optimize a global differentiable objective function, e.g., through adequate
variants of stochastic gradient descent (SGD) such as FedAvg and Federated SGD (FedSGD).
FedAvg iterates, in a round-based procedure, over the following steps: (i) the server sends out
the global model to a random subset of the data owners; (ii) each data owner updates the model
using its local data through one or multiple steps of SGD, and sends it back to the server; (iii) the
server takes the average of the locally updated models, weighted according to the number of
examples, to obtain a new global model. FedAvg has been used for federated learning of models
such as DNN [6] and SVM [10] in many real world applications. A popular case study is the
query suggestion improvement on Google Keyboard!. FedSGD differs from FedAVG mainly in
that clients transmit gradients (rather than model parameters) to the central server, which is
then responsible for aggregating them and updating model parameters.

Based on how the data are partitioned in the different local devices, FL schemes are typically
categorized in horizontal, vertical, and hybrid learning schemes. In horizontal FL the datasets
of different parties share the same feature space but may have different sample dimension.
Since clients share the same feature space, the local models are usually trained using the same
model architecture. In vertical FL the datasets of different parties differ in the feature space,
as commonly observed in cooperation scenarios between different entities (e.g., taxation and
census). In hybrid FL the local datasets of the different parties may share or not the same feature
space.

Another categorization of FL scenarios is based on the number of involved participants.
Cross-silo FL refers to a settings with a low number of participants (e.g., from two to few tens)
with relatively large amount of data and computational power. In cross-device FL, the number
of parties is typically much higher, compared to the cross-silo setting, but they feature low
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computational capability and are generally poorly reliable from a connectivity perspective. This
scenario is also more prone to one of the greatest challenges of FL: not only the number of
participants can grow fast, but their data may also have different distributions, i.e. non-i.i.d.
(independent and identically distributed) setting , and volumes.

2.1.1. Federated Learning Frameworks

In the following, we show a list of commonly used frameworks in which some FL schemes
have been implemented. The website reference of each framework, along with the respective
developing organization, is reported in Table 1.

TensorFlow Federated Framework (TFF) is an open-source framework for Deep Learning
(DL) on decentralized data. It implements a limited number of aggregation strategies and
currently supports only a simulation version on a single node [11] (as such, it cannot be deployed
on realistic federated setting with multiple nodes). Finally, TFF supports only horizontal
partitioning of data and is not ML-framework agnostic.

Federated AI Technology Enabler Framework (FATE) is an open-source project. It was
initiated by Webank’s Al Department to provide a secure framework supporting a federated
Artificial Intelligence system. It is based on the TensorFlow library and the following ML
models can be selected for being involved in an FL scheme: DNN, logistic regression and a
gradient-boosting decision tree. It supports various implementations of Secure Multi Party
Computation protocols and encryption methods and exploits gRPC (recursive acronym for
“gRPC Remote Procedure Calls”) for interactions. Last versions of the framework allow also to
deploy the FL process in a real distributed architecture and also support virtualization based on
containers. Similar to TFF, FATE is not ML-framework agnostic.

Open Federated Learning (OpenFL) is an open-source software platform for Federated
Learning developed by Intel Labs in the framework of a collaboration with the University of
Pennsylvania [12]. It executes a federated training process following a centralized approach: a
server component (Aggregator) receives the model’s parameters from clients (Collaborators),
and aggregates them to compute the global model. The interactions between entities is possible
through gRPC over TLS connection. OpenFL natively supports Deep Learning libraries (eg:
Pytorch or TensorFlow), allowing the customization of several modules to adapt them for
dealing also with user-defined needs. Indeed, OpenFL can be considered ready for being a model
agnostic framework. Similar to FATE, OpenFL supports the actual deploy of the FL scheme on a
distributed architecture and support virtualization based on containers.

PySift is an open-source Python project for secure and private DL. Since this framework
has the largest community of contributors (over 250), rapid development is expected. At the
moment, PySyft is not ML-framework agnostic and only works in simulation mode.

IBM Federated Learning (IBM FL) is a production-oriented FL framework: it has been
developed to be easy to use and to have a short deployment time in a real distributed environment
[13]. It is a modular Python library. The framework support FL of both DL models and
“traditional” ML models, such as Linear classifiers (via SGD), Decision Trees and Naive Bayes.
An interface is provided to define a standard API to train, save, evaluate, and update a model,
as well as generate model updates. IBM Federated Learning can support multiple connection
types, including the Flask web framework, gRPC, and WebSockets.



Flower has been presented in [14] as an open-source framework for FL. It allows for the
definition of custom FL aggregation strategies and adopts a communication layer based on
gRPC. Similar to OpenFL, Flower can be considered as ML-framework agnostic. As a drawback,
it lacks security mechanisms to protect data exchanged between FL entities.

Federated Learning Simulator (FLSim) is a recent project by Facebook Research (first
released on late 2021) [15]. It is based on PyTorch and currently it supports standard FedAvg
and other federated learning methods such as FedAdam, FedProx, FedAvgM, FedBuff, FedLARS,
and FedLAMB.

Table 1

Overview of the most popular FL frameworks.
Framework Developers URL
TFF Google Inc https://www.tensorflow.org/federated
FATE Webank https://fate.fedai.org
OpenFL Intel Labs - University of Pennsylvania https://github.com/intel/openfl
PysSift Openmined https://github.com/OpenMined/PySyft
IBM FL IBM https://github.com/IBM/federated-learning-lib
Flower Adap GmbH - several universities https://flower.dev
FLSim Facebook Research https://github.com/facebookresearch/FLSim

2.2. XAl Properties and Models

In the context of XAlI, several terms are used interchangeably with the word explainability,
but they can have different specific nuances of meaning. Recently, [16] and [17] have tried
to summarize the most commonly used terminology: understandability or intelligibility:
the two terms are associated with a functional understanding of the model in ML, without the
need for explaining its inner procedure and representation. Comprehensibility is associated
with the ability of a learning algorithm to represent its learned knowledge such that the model
may be inspected and understood by humans. Thus, it is tightly related to the complexity of a
model. Interpretability definition is the ability to explain how decisions have been taken or
to provide the meaning in a way that is understandable by a human. Explainability is defined
in [16] as follows: given a certain audience, explainability refers to the details and reasons a
model gives to make its functioning clear or easy to understand. Finally, transparency refers
to the characteristic of a model to be inherently understandable for a human.

Although the distinction between the various terms is quite fuzzy, it is possible to identify
two major approaches for XAIL: models that are interpretable by design (transparent models)
and those that can be explained using external XAI techniques (post-hoc explainability).

The post-hoc explainability techniques are related to the ways human commonly explain
systems and processes by themselves. Existing approaches consist in text explanations, visual-
izations, local explanations, explanations by example, explanations by simplification and feature
relevance. Machine learning models that do not meet any of the requirements imposed to be
defined as “transparent” require the use of these post-hoc techniques to explain their decisions.
Both some shallow models, e.g. tree ensembles, random forests, support vector machines,
and deep models, e.g. Deep Neural Networks, Convolutional Neural Networks, Recurrent
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Neural Networks, belong to this category. The taxonomy of the post-hoc explainability tech-
niques presented in [16] encompasses a coarse distinction between model-agnostic techniques,
namely those that can be plugged to any model to implement explainability, and model-specific
techniques, namely those tailored to explain specific ML models.

The transparency property is generally accorded to models such as Rule Based Systems
(RBSs), Decision Trees (DTs), Linear/Logistic Regression, k-Nearest Neighbors, Generalized
Additive Models and Bayesian Models [16].

It should be underlined that the performance of a model and its transparency are typically
conflicting objectives; thus, as shown in Fig. 1, accuracy-oriented solutions are often considered
as hard to interpret, while interpretable models may be lacking in performance.

Hybrid Modelling Approaches
Explainability-preserving Modelling Approaches
Interpretable Feature Engineering

.
) 4
Explaining "black-box" techniques
Transparent box" design

Accuracy

Interpretability

Figure 1: Trade-off between model interpretability and performance for various classes of models

RBSs and DTs adopt an inference process akin to human reasoning and are intuitively
interpretable [18]; in fact, a list of if-then rules can be extracted from an induced DT following
the paths from the root to each leaf. However, the actual level of interpretability of such models
may vary according to different factors. From this perspective, authors in [18] highlighted the
distinction between global and local explanations: the former relates to model transparency
and refers to structural properties of the classifiers, such as tree size, number of nodes/leaves
in DTs and number of rules in RBSs. The latter is associated with the inference process and
analyzes the decision-making process related to the individual instances. Focusing, for the sake
of brevity, on the interpretability of DTs, it is possible to identify two factors that impact the
interpretability of a model: (i) depending on the problem at hand, pursuing highly accurate
models by increasing their complexity may lead to induced trees that are hard to interpret
because of their large number of nodes/leaves [17]. This factor relates to global interpretability.
(i) The second factor relates to the semantic interpretability of the rules extracted from the DTs,
which should be expressed using linguistic terms whose meaning is easily comprehensible [19].
It relates to both global and local interpretability.

Fuzzy Decision Trees (FDTs) and Fuzzy Rule-Based Systems (FRBSs) leverage fuzzy logic as a



tool to derive more readily interpretable rules (formulated verbally over imprecise domains) [20].
In this context, linguistic fuzzy models provide a natural linguistic representation of numeric
variables and typically outperform their crisp counterparts in scenarios with some degree of
noise and/or uncertainty. However, in the context of FDTs and FRBSs, an input instance may
generally activate multiple branches with different activation degrees (strenght of activation):
the local interpretability is thus lower if the inference strategy evaluates an output based on all
activated paths (typically referred to as the ‘weighted average’ strategy), whereas it is higher
if only the path with the highest activation degree is considered (typically referred to as the
‘maximum matching’ strategy).

3. Current Status: a review of Fed-XAl approaches

Combining FL paradigm and XAI approaches is attracting increasing attention recently.

Concerning post-hoc explainability, we mention the works presented in [21], [22] and [23].
These three contributions consider the feature importance analysis as the key point for the
explainability of their models. Indeed, in [21], authors investigate the feature importance
issue in a vertical FL scenario. Since the feature importance of each participant in the FL
process may reveal some aspect of the private local data, Shapley values [24] have exploited
in the analysis. These values are calculated as the average marginal contribution of a feature
value across all possible participants in the FL process. Preliminary experiments have been
carried out on simple benchmark datasets and using a KNN algorithm. In [22] and [23] the
author adopts a Federated DL model to predict a taxi trip duration within Brunswick region
under a horizontal FL setting. The general principle consists in training local models on local
data samples and exchanging parameters (i.e., the weights of a DNN) to build a global model
according to the FedAvg algorithm. The author shows that the model generated using her FL
approach achieves an accuracy level comparable to the one obtained by a centralized model
trained on the overall dataset. Feature relevance, based on Integrated Gradients (IGs) [25], has
been adopted as post-hoc explainability technique. IGs allow a user to understand if a specific
value of a feature has a positive or a negative impact in taking a specific decision. Chen et al.
[26] have recently proposed an explainable vertical FL framework, endowing DL models (three
layers neural networks) with post-hoc interpretation via a credible federated counterfactual
explanation method. In a nutshell, counterfactual explanation is a local explainability technique
which aims to explain a prediction by evaluating a minimal change in an instance that would
cause the model to classify it in a predefined class.

In the framework of FL of interpretable-by-design models, Takagi-Sugeno-Kang Fuzzy Rule-
Based Models (TSK-FRBS) [27] have been mostly considered as XAI models to be learnt in
a federated fashion [28, 29, 30]. We recall that TSK-FRBS adopts linguistic if-then rules; an
example of the generic k™ rule is reported in the following:

Re:IF XjisAy;,, AND .. AND XpisApj

F (1)
THEN yj =yjeo + D, Vi * %
i=1

where Fis the total number of attributes, 4; ; identifies the jt fuzzy set of the fuzzy partition

ki



over the i'" attribute considered in the k" rule, and y;; are the coefficient of the linear model,
withi=0,...,F.

Given an input pattern x = [x, xy, ..., xF]T, first the strength of activation of each rule is
computed as follows:

F
we(x) = H,uf,jk’f(x]f) for k=1,..,K ()
f=1

where ¢, f(xf) is the membership degree of xy to the fuzzy set Ay, . Then, the inference
process generates an output as the weighted average of the outputs obtalned from the K activated
rules. Formally:

R X wi(x)
=) (K—) - Ye(x) (3)
k=1

h=1Wh(X)

In [28] and [29], two main stages are considered in the FL scheme, namely (i) learning
the fuzzy partitions of each input feature and the antecedent of the rules, and (ii) learning
the rule consequent of each rule. As for the first stage, the authors of [28] consider a local
clustering procedure followed by an aggregation stage carried out on the centralized server.
The aggregation is based on merging similar clusters. As regards the work discussed in [29], a
federated version of the Fuzzy C-Means algorithms has been adopted for the identification of
the global clusters. Once the clusters have been identified, a typical approach for evaluating
the antecedent parameters, and specifically the membership functions, consists in evaluating
a Gaussian fitting of the convex envelop of the projected membership values for each cluster.
Finally, for the generation of the consequent of each rule, both works consider the application
of a federated version of the gradient-based learning schemes. It is worth noting that in [29] a
more intensive experimental analysis has been carried out, in which several benchmark datasets
have been considered and several FL scheme configurations have been experimented. Results
have shown that in most of the cases the FL-based approach achieves results comparable to
centralized one.

In our recent work presented in [30], we have proposed an FL scheme for learning more
explainable TSK-FRBSs than the classical ones considered in [28] and [29]. An overview of the
approach is shown in Fig. 2.

First, we have adopted fuzzy uniform partitions with a limited number of fuzzy sets (up to 5)
rather than partitions generated by using the classical clustering-based, data-driven, approach.
Indeed, the latter can lead to the generation of fuzzy partitions composed of several, possibly
highly overlapping, fuzzy sets, whereas the proposed approach guarantees the highest semantic
interpretability. Then, we have suggested the adoption of an inference strategy based on
the maximum voting rather than the classical weighted averaging method. The proposed FL
approach is not iterative but it generates the global model in one-shot: first the local TSK fuzzy
rules are generated by each client and sent to the central server. Then, the server aggregates
the received rules. The aggregation procedure consists in juxtaposing rules collected from
clients, and resolving possible conflicts, which emerge when rules from different models, having
antecedents referring to identical or overlapping regions of the attribute space, have different
consequents. New consequents of the aggregated rules are calculated as the weighted average
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Figure 2: Overview of our approach for Federated Learning of TSK-FRBSs. Inspired by [31].

of the coefficients of the original rules, where the weight of each rule depends on its support
and confidence values. We have experimented the proposed approach on several benchmark
datasets and we have demonstrated that the FL scheme achieves better results than models
generated locally. Moreover, we have shown that the results obtained by the FL scheme are
comparable to those achieved by three different versions of centralized approaches for learning
TSK-FRBSs. In the comparison, we have also included the classical version of the learning
algorithm, which adopts the clustering-based approach for the generation of rule antecedents,
and the weighted average strategy for making inference.

As regards decision trees, two recent FL approaches have been recently proposed in the
literature[13, 32].

The IBM Federated Learning framework [13] supports, as previously described, also a Feder-
ated Decision Tree based on the ID3 algorithm. In the proposed approach, a single decision
tree is generated at centralized server while the clients just provide some counting information
based on their local data. At each round, the server composes the list of candidate values of the
input features to be split and the list of class labels to query the count information received
by the client. Then the server computes the information gain and split accordingly. Classical
stopping conditions used for decision trees are adopted, such as reaching the maximum depth
of the tree or the absence in all nodes of values for splitting.

In [32] authors discuss a vertical federated learning for Tree-based models, where a privacy
preserving approach, based on a Partially Homomorphic Encryption, is adopted. Specifically,
all clients contribute to build the structure of the decision tree by providing iterative encrypted
statistics to a super client which is in charge of selecting the splitting points of the most relevant
attribute. Throughout the whole process, no intermediate information is disclosed to any
client. Authors compared the results achieved by their privacy-based FL approaches with their
non-private counterparts. Slight losses in accuracy have been highlighted when considering
privacy-based FL approaches.

In addition, a recent work described in [33] proposes the application of a federated version of



the AdaBoost algorithm. Interestingly, the approach poses minimal constraints on the learning
settings of the clients, thus enabling a federation of models such as DTs and SVM, without
relying on gradient-based methods.

Recently, in [31] we have envisioned that FED-XAI may represent a relevant enabling tech-
nology in advanced 5G towards 6G systems and have discussed its applicability to an automated
vehicle networking use case. Specifically, we have presented a framework to evaluate the
FED-XAI approach involving online training based on real data from live cellular networks. In
our vision, FED-XAI deployed on next generation wireless networks, such as 6G, is expected to
bring benefits as a methodology for achieving seamless availability of decentralized, lightweight
and communication efficient intelligence. It is worth noticing that the work in [31] summarizes
the results achieved during the first year of activities of the HEXA-X Flagship EU project on
6G?. Moreover, under the framework of HEXA-X, FED-XAI has been recently awarded as key
innovation® by the EU Innovation Radar.

4. Open Challenges

With the goal of applying FED-XALI in different contexts, thus ensuring high-levels of per-
formance and interpretability, several challenges are open and need further attention. In our
understanding, the major challenges of FED-XAI are related to: (i) how to ensure strong privacy
constraints (e.g., to avoid data leakage possibilities), (ii) how to merge XAI local models (e.g.,
manage conflicts between different rules created in different clients in rule-based systems or
aggregating DNN weights limiting data transmission), (iii) how to cope with massive data
streaming scenarios in which concept drift issues are often experienced (as an example, in
[34] this problem was addressed, in a classical centralized learning scheme, using a Hoeftding
decision tree, able to adapt its structure as new streams of data arrive).

Additionally, there are challenges related to datasets to be used as benchmarks in the context
of FED-XALI. Indeed, most of the experimental analyses carried out using FL schemes consider
datasets composed by images or text from different domains [35, 36]. These datasets are suitable
for being analyzed adopting DL methods and, thus, have been also adapted for being used in
FL schemes of DL models. However, when dealing with XAI models such as decision trees
or rule-based models, image and text datasets cannot be directly used without a preliminary
feature extraction stage (in the case of DL models, this stage is usually embedded in the models
themselves). In addition, the extracted features must be “interpretable,” that is, they must be
metrics understandable by the user of an XAl model-based system. Otherwise, the construction
of XAI models would be useless. Moreover, a standardization of the experimental setup for
analyzing both i.i.d. and non-i.i.d. data distribution among the clients should be defined for
ensuring the repeatability of the experiments for fair comparisons.

From an architectural point of view, following the suggestions in [37], FED-XAI applications
should be designed for being deployed on edge-computing platforms. Indeed, despite cloud
computing paradigm, in which data are transmitted from the source to a centralized data
center in the network core, edge-computing brings computation and data storage close to the
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sources of data, thus ensuring low latency and reducing network congestion. In the context of
edge computing, Multi-Access Edge Computing (MEC), that is a type of network architecture
that brings to the edge of the network server platforms with high computational and storage
capabilities, is the perfect candidate for supporting the deploy of FED-XAI schemes [38]. Indeed,
MEC architecture strongly supports virtualization, thus ensuring data privacy and isolation.
Moreover, MEC architecture can be the perfect venue for the deploy of FED-XAI schemes and
applications implemented using FL frameworks which (i) are agnostic from the tool used for
generating local models, (ii) allow the usage of user-defined models and aggregation strategies
and (iii) have a native support for virtualization. Finally, it is worth noting that a standardization
of FL learning on MEC architecture would be beneficial for all the stakeholders involved.

5. Conclusions

With the increasing pervasiveness of daily-life applications based on big data, governmental
entities have started to discuss and define regulations to boost the effectiveness of the new
methodologies, especially using AI/ML based approaches, while ensuring the population funda-
mental rights. In this context, data privacy and the capability to understand the model outputs
are two of the fundamental aspects to be ensured. Among other approaches to tackle the
data privacy, Federated Learning is considered as an effective methodology because it is based
on the concept of creating AI/ML models without sharing raw data between different data
owners, but still combining knowledge extracted from all of them. In a nutshell, this is achieved
training the models on the local data and then updating a global model without sharing data,
but model characteristics. The additional need for the stakeholders to understand the model
outputs suggested the genesis of FED-XAI approaches, that is Federated Learning approaches of
eXplainable Artificial Intelligence models. In this paper, we have introduced the basic concepts
of FL, XAI and FED-XAI, and have reported a brief survey of interesting works using those
concepts. The main problems are related to: i) achieve results comparable to a centralized
approach where all data are available, ii) to find an optimal trade-off between explainability and
accuracy of the results, and iii) to explain the models. Our understanding is that this research
field is at its early stages, but with increasing interest. We think that the interest is given by the
fact that the methodology is both capable of ensuring data privacy and explainability, while
also enabling good level of performance. At the present, some work has to be done for the
FED-XAI concept to reach its maturity: between others, standardizing the terminology, defining
experimental datasets to make easier the comparison between studies, making the current
frameworks flexible and robust, and finally taking the architectural point of view into account.
We believe that, given its key elements, the FED-XAI approach will be a common presence in
the future Al-based application ecosystem.
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