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Abstract
This short paper reports on a line of research exploiting a conditional logic of commonsense reasoning
to provide a semantic interpretation to neural network models. A “concept-wise" multi-preferential
semantics for conditionals is exploited to build a preferential interpretation of a trained neural network
starting from its input-output behavior. The approach is a general one; it has first been proposed for
Self-Organising Maps (SOMs), and exploited for MultiLayer Perceptrons (MLPs) in the verification of
properties of a network by model-checking. An MLPs can be regarded as a (fuzzy) conditional knowledge
base (KB), in which the synaptic connections correspond to weighted conditionals. Reasoners for many-
valued weighted conditional KBs are under development based on Answer Set solving to deal with
entailment and model-checking.
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1. Introduction

In this short paper we report on an approach to exploit the logic of commonsense reasoning for
the explainability of some neural network models. We also report on preliminary experiments
in the verification of properties of feedforward neural networks by model checking.

Preferential approaches to commonsense reasoning (e.g., [1]) have their roots in conditional
logics [2, 3], and have been more recently extended to Description Logics (DLs), to deal with
defeasible reasoning in ontologies, by allowing non-strict form of inclusions, called defeasible
or typicality inclusions. Different preferential semantics [4, 5, 6, 7] and closure constructions
(e.g., [8, 9, 10]) have been proposed for defeasible DLs. Among these, the concept-wise multi-
preferential semantics [11], which allows to account for preferences with respect to different
concepts. It has been introduced first as a semantics of ranked knowledge bases in a lightweight
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description logic (DL) and then for weighted conditional DL knowledge bases, and proposed as
a semantics for some neural network models [12, 13, 14].

We have considered both an unsupervised model, Self-organising maps (SOMs) [15], which are
considered a psychologically and biologically plausible neural network model, and a supervised
one, MultiLayer Perceptrons (MLPs) [16]. Learning algorithms in the two cases are quite
different, but our aim was to capture in a semantic interpretation the behavior of the network
after training. Considering a domain of input stimuli presented to a network e.g., during training
or generalization, a semantic interpretation describing the input-output behavior of the network
can be provided as a multi-preferential interpretation, where preferences are associated to
concepts. For SOMs, the learned categories C1, . . . , Cn are regarded as concepts so that a
preference relation over the domain of input stimuli is associated with each category [12, 14].
For MLPs, each unit of interest in the deep network (including hidden units) can be associated
with a concept and with a preference relation on the domain [13].

For MLPs, the relationship between the logic of commonsense reasoning and deep neural
networks is even stronger, as the network can itself be regarded as a conditional knowledge
base, i.e., as a set weighted conditionals. This has been achieved by developing a concept-
wise fuzzy multi-preferential semantics for DLs with weighted defeasible inclusions. Some
different preferential closure constructions have been considered for weighted knowledge bases
(the coherent [13], faithful [17] and φ-coherent [18] multi-preferential semantics), and their
relationships with MLPs have been investigated (see [13, 18]). Undecidability results for fuzzy
DLs with general inclusion axioms [19, 20] have motivated the investigation of the (finitely)
many-valued case. An ASP-based approach has been proposed for reasoning with weighted
conditional KBs under φ-coherent entailment [21], and Datalog with weakly stratified negation
has been used for developing a model-checking approach for MLPs in the many-valued case
[22, 23]. Both the entailment and the model-checking approaches have been experimented in
the verification of properties of some trained multilayer feedforward networks. The preliminary
results can be the basis for further solutions for the multi-valued φ-coherent entailment, which
exploit state of the art ASP solving, including custom propagation based on the clingo API [24]
and fuzzy ASP solving [25], in the verification of properties of neural networks.

The strong relationships between neural networks and conditional logics of commonsense
reasoning suggest that conditional logics can be used for the verification of properties of
neural networks to explain their behavior, in the direction of a trustworthy and explainable AI
[26, 27, 28]. The possibility of combining learned knowledge with elicited knowledge in the
same formalism is also a step towards neuro-symbolic integration.

2. The concept-wise multi-preferential semantics

The idea underlying the multi-preferential semantics is that, for two domain elements x and y
and two concepts, e.g., Horse and Zebra , x can be regarded as being more typical than y as a
horse (x <Horse y), while x could be less typical than y as a zebra (y <Zebra x ).

This idea has been exploited in the definition of concept-wise multi-preferential interpretations
[11] for a description logic with typicality concepts (e.g., T(Horse), representing the class
of typical horses), and defeasible inclusions (e.g., T(Horse) ⊑ Tall, meaning that “normally



horses are tall"). Typicality inclusions T(C) ⊑ D correspond to Kraus-Lehmann-Magidor
(KLM) conditionals C |∼ D [1].

Concept-wise multi-preferential interpretations are defined by adding to standard DL in-
terpretations (pairs I = ⟨∆, ·I⟩, where ∆ is a domain, and ·I an interpretation function) the
preference relations <C1 , . . . , <Cn associated with a set of distinguished concepts C1, . . . , Cn,
representing the typicality of individuals in ∆ with respect to such concepts. Each <Ci is a
modular and well-founded strict partial order on ∆, like preferences in KLM rational models.

The preference relations are used to define the meaning of typicality concepts. In the two-
valued case, a global preference relation < can be defined from the <Ci ’s, and concept T(C)
is interpreted as the set of all <-minimal C elements. In the fuzzy case [13], the preference
relation <C of a concept C is induced by the fuzzy interpretation CI of the concept, a function
mapping each domain element in ∆ to a value in [0, 1], that is x <C y iff CI(x) > CI(y).

3. A preferential interpretation of Self-Organising Maps

Once a SOM has learned to categorize, the result of the categorization can be seen as a concept-
wise multi-preferential interpretation over a domain of input stimuli, in which a preference
relation is associated with each concept (learned category). Once the SOM has learned to catego-
rize, to assess category generalization, Gliozzi and Plunkett [29] define the map’s disposition to
consider a new stimulus y as a member of a known category C as a function of the distance of y
from the map’s representation of C . The distance d(x,Ci) of stimulus x from category Ci can be
used to build a binary preference relation <Ci among the stimuli in ∆ with respect to category
Ci [14, 12], by letting x <Ci y if and only if d(x,Ci) > d(y, Ci). Based on the assumption that
the abstraction process in the SOM identifies the most typical exemplars for a given category,
in the semantic representation of a category, some specific stimuli (corresponding to the best
matching units) are identified as the typical exemplars of the category.

The notion of generalization degree introduced by Gliozzi and Plunkett [29] can be used
to define a fuzzy multi-preferential interpretation of SOMs. This is done by interpreting each
category (concept) as a function mapping each input stimulus to a value in [0, 1], based on the
map’s generalization degree of category membership to the stimulus [29].

In both the two-valued and fuzzy case, the preferential model can be exploited to learn or
validate conditional knowledge from empirical data, by verifying conditional formulas over the
preferential interpretation constructed from the SOM. In both cases, model checking can be
used for the verification of inclusions (either defeasible inclusions or fuzzy inclusion axioms)
over the respective models of the SOM (for instance, do the most typical penguins belong to the
category Bird with at least a degree of membership 0.8?). Starting from the fuzzy interpretation
of the SOM, a probabilistic interpretation of this neural network model is also provided [14],
based on Zadeh’s probability of fuzzy events [30].

4. A preferential interpretation of MultiLayer Perceptrons

The input-output behaviour of MLPs can be captured in a similar way as for SOMs by construct-
ing a preferential interpretation over a domain ∆ of input stimuli, e.g., those stimuli considered



during training or generalization [13]. Each neuron k of interest for property verification can
be associated to a distinguished concept Ck. For each concept Ck, a preference relation <Ck

is defined over the domain ∆ based on the activity values, yk(v), of neuron k for each input
v ∈ ∆. In this way, a fuzzy multi-preferential interpretation of the network can be constructed
over the domain ∆.

In a fuzzy multi-preferential interpretation, the activation value yk(x) of neuron k for a
stimulus x in the network (assumed to be in the interval [0, 1]) is taken to be the degree of
membership of x in concept Ck. The interpretation of boolean concepts is defined by fuzzy
combination functions, as usual in fuzzy DLs [31, 32]. This also allows a preference relation
<C to be associated to any concept C , and the typical C-elements to be identified, provided
the interpretation is well-founded (an assumption which clearly holds when the domain ∆ is
finite, as in this case). Let us call Mf,∆

N the fuzzy multi-preferential interpretation built from
network N over a domain ∆. Logical properties of the network (including fuzzy typicality
inclusions) can then be verified by model checking over such an interpretation. Evaluating
properties involving hidden units might as well be of interest.

A Datalog-based approach has been developed [22], which builds a multi-valued preferential
interpretation Mf,∆

N ,n of a trained feedforward network N and, then, verifies the properties of
the network for post-hoc explanation. A multi-valued truth space Cn = {0, 1

n , . . . ,
n−1
n , nn} is

considered, for some n ≥ 1.
The model checking approach has been experimented in the verification of properties of

neural networks for the recognition of basic emotions using the Facial Action Coding System
(FACS) [33], which involves Action Units (AUs), i.e., facial muscle contractions. From the
RAF-DB [34] data set, we selected the subset of the images that were labelled using only one
emotion in the set {suprise, fear, happiness, anger}. A processed dataset containing 5 975
images was input to OpenFace 2.0; the output intensities of AUs were rescaled in order to make
their distribution conformant to the expected one in case AUs were recognized by humans [33].
The resulting AUs were used as input to a neural network trained to classify its input as an
instance of the four emotions. The neural network model we used is a fully connected feed
forward neural network with three hidden layers having 1 800, 1 200, and 600 nodes (all hidden
layers use ReLU activation functions, while the softmax function is used in the output layer).

The relations between such AUs and emotions, studied by psychologists [35], have been used
as a reference for formulae to be verified on neural networks trained to learn such relations. The
model checking approach was applied, using the Clingo ASP solver as Datalog engine, taking as
set of input stimuli ∆ the test set, containing 1194 images, and n = 5 (given that AU intensities,
when assigned by humans, are on a scale of five values). Table 1 reports some results for the
verification of typicality inclusions T(E) ⊑ F ≥ k/n, with the number of typical individuals
for the emotion E, the number of counterexamples for different values of k (form 1 to n), as
well as the value of the conditional probabilities p(F |T(E)) of concept F given concept T(E),
based on Zadeh’s probability of fuzzy events [30].

The typicality inclusions relate instances with a high degree of membership in the output
class (the one for the output node) with combinations of AU values. In this case, the results
can be compared with expectations from domain experts [35]; in general, they can be used to
point out knowledge the network has learned, where the attention on typical instances of the



Table 1
Results for checking formulae on the test set

output class may be useful to concentrate on cases that are far from borderline. The probability
measure provides complementary information. Fuzzy DL inclusions may also include fuzzy
modifiers (very, slightly, etc.), which have been considered in fuzzy DLs [36] (e.g., are slightly
happy people instances of au6 ⊔ au12 with a degree ≥ 2/5?).

Concerning Table 1, for example, the formulaT(happiness) ⊑ au1 ⊔ au6 ⊔ au12 ⊔ au14 ≥
3/5 holds for all individuals, while T(happiness) ⊑ au12 ≥ 3/5 (where au12 is the activation
of the lip corner puller muscle, that is, smiling) has 1 counterexample out of 255 instances of
T(happiness). The value of P (au12/T(happiness)) is larger than 4/5, even though there
are 35 counterexamples for T(happiness) ⊑ au12 ≥ 4/5.

5. MultiLayer Perceptrons as Weighted conditional knowledge bases

The fuzzy multi-preferential interpretation Mf,∆
N , built from a network N for a given set of

input stimuli (a domain ∆) as described above, can be proven to be a model of the neural
network N in a logical sense, by mapping the multilayer network into a weighted conditional
knowledge base KN [13].

The weighted conditional knowledge base KN contains, for each neuron k, a set of weighted
defeasible inclusions. If Ck is the concept name associated to unit k and Cj1 , . . . , Cjm are
the concept names associated to units j1, . . . , jm, whose output signals are the input signals
for unit k, with synaptic weights wk,j1 , . . . , wk,jm , then unit k can be associated a set TCk

of
weighted typicality inclusions: T(Ck) ⊑ Cj1 with wk,j1 , . . . , T(Ck) ⊑ Cjm with wk,jm . The
fuzzy multipreference interpretation built from a network N over a domain ∆ can be proven
to be a model of the knowledge base KN based on a fuzzy multipreferential semantics, and
specifically based on the notions of coherent [13], faithful [17] and φ-coherent [18, 37] (fuzzy)
multi-preferential semantics.

In general a weighted conditional KB KN [13], besides a set of weighted conditional in-
clusions, also contains a TBox and an ABox as in standard (and in fuzzy) description logics.
Multipreferential semantics for weighted conditional KBs have been defined through a semantic
closure construction in the spirit of Lehmann’s lexicographic closure [38] and Kern-Isberner’s
c-representations [39], but adopting a concept-wise approach, so that different preference
relations are defined.

Specifically, a coherent multi-preferential model of a weighted KB is defined as a fuzzy inter-
pretation I = ⟨∆, ·I⟩, which satisfies all DL axioms in TBox and ABox, as well as a coherence



condition which requires that each preference relation <Ci , induced from the fuzzy interpreta-
tion over the domain ∆, is coherent with the the weights Wi(x) of all domain individuals x with
respect to concept Ci. For each distinguished concept Ci, and domain element x ∈ ∆, the weight
Wi(x) of x wrt Ci in a fuzzy interpretation I = ⟨∆, ·I⟩ is the sum: Wi(x) =

∑︁
hw

i
h DI

i,h(x).
For instance, in the φ-coherence semantics a function φi : R → [0, 1] is associated to each

distinguished concepts Ci. An interpretation I = ⟨∆, ·I⟩ is φ-coherent if, for all concepts Ci ∈ C
and x ∈ ∆,

CI
i (x) = φi(

∑︂
h

wi
h DI

i,h(x))

where TCi = {(T(Ci) ⊑ Di,h, w
i
h)} is the set of weighted conditionals for Ci.

Once a trained neural network can be seen as a weighted defeasible KB KN , φ-entailment
can then be used to prove properties of the network for post-hoc explanation. Some preliminary
experiments have been done based on finitely many-valued Gödel description logic with typi-
cality GnLCT [21], by defining an ASP encoding of entailment. As a proof of concept, in [21]
the entailment approach has been experimented for the weighted GnLCT KBs corresponding
to two of the trained multilayer feedforward network for the MONK’s problems ([40]).

The model-checking approach does not require to consider the activity of all units, but only
of the units involved in the property to be verified. In the entailment-based approach, on the
other hand, all units are considered. This requires advanced solving techniques for reasoning
about large networks, which may include state of the art ASP solving, and fuzzy ASP solving
[25], as well as other techniques.

6. Conclusions

Conditional logics of commonsense reasoning can be used for interpreting and verifying the
knowledge learned by a neural network for post-hoc explanation and, for MLPs, a trained
network can itself be seen as a conditional knowledge base.

Much work has been devoted to the combination of neural networks and symbolic reasoning
(e.g., the work by d’Avila Garcez et al. [41, 42, 43] and Setzu et al. [44]), as well as to the definition
of new computational models [45, 46, 47, 48]. The work summarized in this paper opens up
the possibility of adopting conditional logics as a basis for neuro-symbolic integration, e.g.,
learning the weights of a conditional knowledge base from empirical data, and combining the
defeasible inclusions extracted from a neural network with other defeasible or strict inclusions
for inference.

Using a multi-preferential logic for the verification of typicality properties of a neural network
by model-checking is a general (model agnostic) approach. It can be used for SOMs, as in [12, 14],
by exploiting a notion of distance of a stimulus from a category to define a preferential structure,
as well as for MLPs, by exploiting units activity to build a fuzzy preferential interpretation.
Given the simplicity of the approach, a similar construction can be adapted to other network
models and learning approaches, and used in applications combining different network models
(as in the mentioned experiment to the recognition of basic emotions [22]).

Both the model-checking approach and the entailment-based approach are global approaches
(see, e.g., [44] for the notions of local and global approaches), as they consider the behavior



of the network over a set ∆ of input stimuli. Indeed, the evaluation of typicality inclusions
considers all the individuals in the domain to establish preference relations among them, with
respect to different aspects. For MLPs, given the associated weighted KB, properties of single
individuals can as well be verified through entailment (by instance checking, in DL terminology),
and an interesting direction of investigation is the study of counterfactual explanation [49].

The entailment-based approach is based on the idea of regarding a multilayer network as
weighted conditional knowledge base, and is specific for this network model. For MLPs, it has
been proven that, in the fuzzy case, the interpretation built for model-checking is indeed a
model of the weighted conditional KB corresponding to the network [13]. Whether it is possible
to extend the logical encoding of MLPs as weighted KBs to other neural network models is a
subject for future investigation. The development of a temporal extension of this formalism to
capture the transient behavior of MLPs is also an interesting direction to extend this work.
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