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Abstract
Creativity is one of the most powerful skills humans can rely on to overcome daily challenges. While
most of the research has focused on the positive facet of creativity, like problem-solving and art, a
few contributions explored its dark side: lying and deception. Virtual and embodied intelligent agents
approaching the real world will soon face humans’ deception with poor means to understand and unmask
it. In a previous study, we asked participants to describe a set of gaming cards to the humanoid robot
iCub, either describing what they saw or producing a creative and deceiving description; The robot
autonomously classified players’ behavior with a pupillometry-based heuristic method. After collecting
an in-laboratory dataset, we trained a Random Forest classifier enabling the humanoid robot iCub to
detect lie-related creativity autonomously during informal human-robot interactions. In this manuscript,
aiming at real-world applications, we challenged our classifier on a diametrically opposite environment:
the Maker Faire Rome 2022. Moreover, we compared its performance with respect to an Adaptive
Random Forest twin, able to learn online after each interaction. The performance of the two models and
the detection of concept and data drift give relevant insight into how adaptivity would be the key to
developing more effective intelligent agents.
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1. Introduction

Humans’ creativity is highly subjective; from problem-solving to art production, humans rely
on creativity to survive and develop nowadays’ society. Traditionally, creativity has been related
to the originality and appropriateness of people’s creative products and the ability to generate
novel and effective ideas [1]. While literature mainly focuses on the more intuitive, art-related
understanding of creativity, recent studies started exploring the creative process embedded in
lying and deception [2, 3, 4, 5]. Indeed, creativity could also be used for negative purposes, with
different degrees of malice [2]. Focusing on everyday social interaction, the "white lies" - lies
not meant to harm others - are the most diffused negative creative attempts. Everybody lies [6],
with an average of two lies per day [7] or even higher frequencies - 60% of the participants in
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[8] lied at least once in a 10-minutes dialogue. For instance, we lie to present ourselves better
than we are [7], to persuade others [9], or to avoid undesired conversations [10].

Despite the high impact of lying on social interactions, humans perform poorly on
recognizing liars - the average accuracy is 47% on lie detection and 65% on recognizing true
statements [11]. Several technical attempts have been developed to compensate for our poor
performance and grasp the lying creative process. State-of-the-art solutions usually monitor
the physiological proxies (e.g., skin conductance, respiration rate, heartbeat, blood pressure, or
pupil diameter) known to reflect cognitive load and emotional arousal variations. Indeed, it
has been proved how the fabrication and maintenance of a creative and coherent lie produce
an increased cognitive effort [7, 12] and emotional arousal [13] with respect to truth-telling.
Traditional lie detection methods rely on fMRI images [14], skin temperature variation [15],
micro-expressions [16], photoplethysmography [17] or acoustic prosody [18]. Finally, the
polygraph - the most famous "truth machine", debunked in [12] - merges a multi-modal set
of physiological measures [19]. However, most of these methods are invasive, expensive, not
autonomous, or dependent on expert figures, making them poorly applicable in everyday social
interactions.

The problem becomes even more crucial when considering the novel artificial agents that will
soon be part of our society. Artificially intelligent agents, either virtual or embodied in robots,
will sooner or later clash with humans’ deceptive behaviors, with scarce means to comprehend
them or to understand when others are trustworthy [20, 21, 22]. Robots could hardly equip
most of the mentioned technical solutions without requiring an expert operator or affecting
the (in)formality of the social Human-Robot Interaction (HRI) (e.g., by touching the human
partners to assess their skin conductance). Also, intelligent agents are usually trained in closed
laboratory environments under strict and controlled context assumptions; hence, they would
lack humans’ ability to adapt and learn from daily experiences.

1.1. Detecting Lies in Human-Robot Interaction

This study is part of a four-year research project to enable the humanoid robot iCub [23] to
detect lies in social human-robot interactions (HRI).

We identified pupillometry [24, 25, 26, 27], in particular the Task Evoked Pupillary Responses
(TEPRs) [28], as a minimally invasive proxy to detect deceptive behaviors. Such measures have
proved to reflect cognitive load increases relative to deception and lie creation with respect
to truth-telling [29]. We opted for this metric because it is hardly intentionally controllable
and is measurable with unobtrusive devices usually embedded in everyday objects (i.e., glasses)
[30, 31]. Furthermore, recent findings prove it would soon be feasible to measure TEPRs from
standard RGB cameras [32, 33, 34] (e.g., the ones equipped on robots). Such systems still require
users to stay uncomfortably close to the camera; however, they make pupillometry-based lie
detection a good candidate for human-robot interaction (HRI). Based on these assumptions,
we first proved that the same TEPRs studied in human-human interaction also happen in HRI
during a formal interrogatory-like scenario [35, 36]. However, as other attempts in literature
[37, 38], our findings were limited to formal interrogatory contexts. Hence, we explored whether
the same effects would happen in informal interactions. For this purpose, we generalized the



concept of lying with its core component: creativity. To be precise, it is wrong to consider any
creative attempt as a lie; however, lying implicitly embeds a creative effort [3]. Hence, modeling
humans’ creative process could help intelligent systems to better grasp lying and deception
during everyday social interaction.

For this purpose, we asked 39 participants to play a game with the humanoid robot iCub.
Players described a set of gaming cards from the Dixit Journey card game1 to the robot either
in a descriptive - i.e., by narrating what they saw in the card -, or in a creative way - i.e., by
inventing a fake card description. ICub detected players’ creative attempts, autonomously
and in real-time, only based on their pupil dilation, streamed from a Tobii Pro Glasses 2
eye-tracker. More precisely, the game was composed of two phases. In the first phase, the
players described six cards, creating a fake description only for one of them they knew in
advance; the iCub achieved an accuracy of 83% on detecting the single creative description by
selecting the one relative to the highest mean pupil dilation among the six [39]. Moreover, the
robot leveraged this brief interaction to learn an internal model of how the specific human
partner was descriptive and creative: it stored the mean pupil dilation for the creative card
description (creative reference score), and the average of the mean pupil dilation for the other
descriptions (descriptive reference score). In the second phase, the iCub used this model to
classify further card descriptions as creative or descriptive. Players were asked to describe
six new cards, deciding for each one whether to narrate what they saw or fabricate a fake
description. The robot computed the absolute distance of the mean pupil dilation for each new
card description with respect to the two reference scores and assigned the label relative to the
closest one. Such a simple heuristic allowed iCub to achieve an accuracy of 73% [20]. Posthoc,
we used the second-phase data - 409 datapoints re-balanced through the SMOTE algorithm [40]
- to train a Random Forest classifier to detect creativity with an F1-score of 71%. This model is
supposed to be more generic and robust than the subjective heuristic employed during the
game. Aiming at applying our system in everyday life one important question remains open:

How would our creative detection system perform "in the wild"?

1.2. Online Interactive Adaptation

Moving in-lab trained machine learning systems to a real context is non-trivial. Some potential
issues that could arise are relative to the specific solution adopted: in our case, the Tobii eye-
tracker is sensitive to environmental illumination; also, players’ cognitive load and arousal
depend on a multitude of factors (e.g., emotion, stress, presence of distractions, . . . ), other than
the act of being descriptive or creative. Other issues are known to affect all machine learning
models ported in realistic environments: Data Drift, the distribution of data in the real world
might be different from the ones on which the model is trained; and Concept Drift, the relation
between the dependent and independent variables (i.e., the pattern learned by the model) can
be different [41]. In both cases, the result is a decreasing performance over time. Training the
models on a more extensive and representative dataset should help, but it could not be enough
or even possible, like in our lie detection scenario.

1https://boardgamegeek.com/boardgame/121288/dixit-journey



A more feasible solution to face data and concept drift is online learning. As students need to
adapt what they learned once they start their first job after university, also machine learning
models should be able to learn and adapt to the real environment wherein they are employed.
This is particularly true for models for social human-robot interaction (HRI). Through experience
and interactive feedback from human pals, it would be possible to improve and adapt in-lab
machine-learning models to everyday life.

Figure 1: (Left) The Maker Faire game setup with the real-time plot of visitors’ pupil dilation on the
screen, the Tobii Pro Glasses 2 eye-tracker, and Dixit Journey cards; (Right) and example of the described
card.

For this purpose, we challenged our Random Forest creativity classifier and explored the
effect of online interactive adaptation on a diametrically opposite context: the 10th Maker Faire
Rome 20222 (see Figure 1). Visitors played a simplified version of our interactive card game,
adapted as a Human-Computer Interaction demonstration. As in the laboratory, the game tried
to classify players’ descriptive and creative card descriptions based on pupil dilation, real-time
streamed from the Tobii eye-tracker. Two classifiers processed visitors’ pupillometry in parallel:

Random Forest (RF) The model is a simplified version of the one presented in [20]. It
is pre-trained on 409 card descriptions (225 truthful and 184 deceptive) collected in our in-
lab experiment; for each card, the following features are computed: duration of the descrip-
tion; average, minimum, maximum, skewness, absolute energy and slope of the pupil dilation.
We randomly selected 75% as training set, re-balanced it with the SMOTE algorithm, and
performed a 4-fold grid-search cross-validation to identify the following best parameters:
n_estimators=5, split_criterion=entropy, max_depth=2, max_features=log2, bootstrap=True. The
best model achieved an accuracy of 71.8% and an F1-score of 70.7% on the test set. Finally, we
trained a comprehensive model on the full dataset, achieving a training accuracy of 70.7% and
an F1-score of 68.8%.

2https://makerfairerome.eu/en/



Adaptive Random Forest (ARF) As a comparison, we trained an Adaptive Random Forest3

[42] able to both start from a pre-trained knowledge and to adapt online based on visitors’
interactive feedback. We used the same dataset and features of the RF classifier; however, we
selected the following parameters: n_estimators=5, max_features=log2, split_criterion=nba, and
max_depth=2 - please notice the entropy-based split criterion is not implemented in the python
library we used to implement the ARF. The model, learning from one datapoint after the other
of the in-laboratory dataset, achieved an accuracy of 68.5% and an F1-score of 62.8%. Even if the
performance is worse than the other model, the Adaptive Random Forest can improve online.

2. Methods

The Maker Faire took place in Rome from Friday the 7th to Sunday the 9th of October 2022. At
the expo, we presented the game as one of the possible scientific demonstration visitors could
interact with at our stand. The game was meant to collect data in the wild and disseminate our
research, teaching visitors about pupillometry, its relation to cognitive load, and its potential
application in robotics and other fields. 146 visitors played the game (58 on Friday, 45 on
Saturday, and 43 on Sunday).

2.1. Setup

Players played the game while standing. A graphical user interface was presented in front of
them on a 15" laptop. Next to the computer lied the Tobii Pro Glasses 2 eye-tracker and the deck
of 80 Dixit Journey gaming cards (see Figure 1).

2.2. Procedure

The experimenter explained to the visitors that, through the Tobii Pro Glasses 2 eye-tracker,
the game would read their right-eye pupil dilation, stream it in real-time, and store it in an
anonymized format. If the visitors agreed to collect such data, the experimenter asked them to
wear the eye-tracker and started a new match - we did not perform the eye-tracker calibration
as not necessary to measure pupil dilation [43].

The game showed a real-time plot of visitors’ right-eye pupil diameter. For dissemination
purposes, the experimenter explained how pupils change due to environmental illumination
(i.e., asking them to look at a lamp and then watch the pupil decrease) and cognitive effort (i.e.,
asking them to perform math calculations) - the procedure was also meant to verify the correct
measurement of the device. Then, the match started.

For each match, players were asked to describe at least three cards: for the first one, they had
to describe what they saw (i.e., be descriptive); for the second one, they had to be creative and
to deceive; from the third card onward they could decide whether to be descriptive or creative.
For each card, the game tried to classify it as descriptive or creative, provided a classification to
the visitor, and asked for honest feedback. Please notice that classifications were also produced
for the first two cards; however, showing them to the visitors was meaningless since they

3https://riverml.xyz/dev/api/ensemble/AdaptiveRandomForestClassifier/



were instructed on how to behave. The controlled procedure was meant to collect a dataset as
balanced as possible while letting players challenge the system as they wanted.

Visitors were not limited in the descriptions’ duration nor the number of described cards.
The experimenter manually clicked a GUI button to start and stop the data collection during the
card description and validated or rejected the classification based on visitors’ feedback. Once
visitors decided to end the match, the experimenter removed the eye-tracker and explained how
the data were processed and the classification performed (see next section).

2.3. Data Processing

Visitors’ right-eye pupil dilation was streamed from the Tobii eye-tracker at a frequency of 20
Hz. The game continuously accumulates data in a 1-second baseline queue (i.e., 20 datapoints).
During the descriptions (i.e., between the start and stop GUI button clicks), the pupil data were
instead stored in a separate buffer specific to that card. At the end of the description, both
the baseline and the timeseries relative to the card were cleaned with a median outlier filter
and smoothing sliding window; the timeseries was baseline-normalized, subtracting the mean
pupil dilation during the baseline [27], and the features (see section 1.2) were computed. Both
models classified the card description in parallel; however, only the Adaptive Random Forest
classification was presented to the visitor. We opted for this solution to disseminate another
piece of science: an incremental interactive model able to progressively improve thanks to
visitors’ interactions. Finally, the data - both raw and cleaned timeseries and baseline, along
with the extracted features - and the real label for each description were stored for posthoc
analysis.

3. Results

The 146 visitors described 532 cards - an average of 3.75 (SD=0.90) cards each. They were free to
decide whether to be creative or descriptive from the third card onward; hence, the card dataset
is slightly unbalanced with 274 creative and 258 descriptive attempts.

Starting from the stored features, we applied a standardized outlier detection procedure: we
discarded (i) all the descriptions associated with average pupil dilation, slope and duration far
more than three times the subjective mean for each feature; and (ii) all the descriptions shorter
than 1 second. Also, we excluded 4 visitors since they decided to leave after performing only
one or two descriptions. The resulting dataset comprises 515 descriptions (269 creative and 246
descriptive).

3.1. In-Game Performance

The Random Forest (RF) classifier achieved an accuracy of 59.1%, while the Adaptive Random
Forest (ARF) only achieved a 54.4% of accuracy. However, a Chi-square Pearson’s test showed
that the latter performance was not statistically lower (z=1.51, p=0.065). On the F1-score instead,
the RF classifier achieved a performance of 55.2%, significantly lower than the 66.3% achieved by
the ARF (z=-2.70, p=0.003). With respect to their in-lab performances, both models worsened:
the Chi-square test showed significantly lower accuracy for both RF (z=3.66, p<0.001) and



ARF (z=4.40, p<0.001); however, while the Random Forest F1-score was significantly lower
in-the-wild (z=2.86, p=0.002), the difference was higher - but not significantly - for the Adaptive
counterpart (z=-0.79, p=0.22).

To better understand such performance differences, we explored the presence of data and
concept drift on the fair with respect to the lab dataset. We composed a comprehensive dataset,
including data from both environments. A Shapiro-Wilk normality test showed that the data
were not normally distributed, so we opted for a non-parametric analysis.

3.1.1. Data Drift Analysis

In our context, a data drift would represent a different distribution of the behavioral and pupil-
lometry features between the two environments. We fitted a set of mixed effect models, one for
each feature (duration of the description; average, minimum, maximum, skewness, absolute energy
and slope of the pupil dilation), as dependent variable; we entered a fixed effect "environment"
(two levels: lab, faire; with reference on the lab), and participants’ ID as random effect. Mixed
effect models can represent the differences in distribution given by an independent fixed factor
(i.e., the environments), while taking into account and grouping datapoints characterized by
the same subjective random difference (i.e., the set of cards described by the same participant).
Furthermore, they allow using the entire dataset, even if the distributions are unbalanced (e.g.,
the different number of described cards and participants in the two environments)

Participants took slightly more time to describe the cards at the faire (B=4.54, t=2.55, p-0.012);
we speculate this could be due to the more informal context and the lack of the turn-taking
mechanic of the original game. Regarding the pupillometry features, participants’ average
(B=-0.151, t=-3.68, p<0.001), minimum (B=-0.317, t=-6.75, p<0.001) and absolute energy (B=-81.9,
t=-9.24, p<0.001) of the pupil dilation were lower at the faire. Finally, the maximum (B=-0.018,
t=-0.358, p=0.721), skewness (B=0.014, t=0.315, p=0.753) and slope (B=-2.11, t=-1.51, p=0.134) of
the pupil dilation were not statistically different. We speculate this difference could have been
caused by the higher illumination of the fair, inducing, and averagely lower pupil dilation.

3.1.2. Concept Drift Analysis

Then, we looked for concept drifts, i.e., differences in the relationship between descriptive and
creative attempts in the two environments. We fitted another set of mixed effects models on the
same features; we entered two fixed effects "environment" (two levels: lab, faire; with reference
on the lab) and "behavior" (two levels: descriptive, creative; with reference on descriptive), along
with a random effect on participants’ ID.

Interestingly, only the maximum - lab:(B=0.194, t=6.32, p<0.001); faire:(B=0.92, t=3.61, p<0.001)
- and the slope - lab:(B=12.0, t=10.9, p<0.001); faire:(B=3.6, t=3.42, p<0.001) - of the pupil dilation
preserved the same pattern among the two environments: they were higher when being creative,
even if the effect was stronger in the lab. On the duration, the difference between creative and
descriptive, not significant in the lab (B=-0.134, t=0.121, p=0.904), was highly significant at the
faire (B=5.542, t=5.7, p<0.001), with longer descriptions for creative attempts. On the contrary,
the average - lab:(B=0.243, t=9.2, p<0.001); faire:(B=0.01, t=0.521, p=0.603) -, absolute energy -
lab:(B=34.84, t=4.99, p<0.001); faire:(B=0.03, t=0.01, p=0.996) -, and skewness - lab:(B=-0.289,



t=-9.73, p<0.001); faire:(B=0.02, t=0.69, p=0.493) - of the pupil dilation were higher when being
creative in the lab, but not at the faire. Finally, the minimum pupil dilation showed a significant
effect in both environments, but with opposite valence: it was higher when being creative in the
lab (B=0.262, t=8.86, p<0.001), and the other way round at the faire (B=-0.06, t=-2.47, p=0.014).

3.2. Temporal Evolution and Learning

Given such different distributions and patterns, it is not surprising that the two models performed
worst at the faire. The crucial factor is whether the classifiers can learn and adapt to the novel
environment. To better understand the learning process of the Adaptive Random Forest, we
observed the temporal evolution of the accuracy and F1-score curves.

Figure 2: (A and B) Cumulative Accuracy (A) and F1-score (B) at the Maker Faire Rome 2022 for the
Random Forest (blue) and Adaptive Random Forest (ARF) models. (C and D) Simulated Accuracy and
F1-score over 30 randomized permutations of the visitors

Figure 2 (A-B) shows the cumulative accuracy, and F1-score of the two models as visitors
played the game. Please remember that the accuracy metric balances the performances on
detecting both creative and descriptive attempts; the F1-score instead focuses on how good the
models are on detecting the creative class only. Both metrics of the Random Forest classifier
converge to a plateau; for the Adaptive Random Forest instead, the two metrics are increasing,
particularly visible for the F1-score. To verify whether the adaptability of the latter model
produces the progressive increase it is first necessary to mitigate the order effect of how visitors
interacted with the game. Indeed the order by which examples are provided could impact the
learning rate and the convergence time of an online model [44].

Hence, using the faire dataset only, we simulated 30 random permutations of the visitors
interacting with the game (i.e., keeping the order of the described card unaffected). For each
permutation, we generated and evaluated two new models. Figure 2 (C-D) shows the simulation’s
cumulative accuracy and F1-score. As it is possible to see, the ARF model’s final accuracy
(M=52.9%, SD=0.02%) and F1-score (M=61%, SD=0.07%) are poorly affected by the order - the
final RF metrics are unaffected, as expected. Also, the increasing and converging patterns of the
RF and ARF curves are preserved for accuracy and F1-score. To better quantify this increasing
trend, we analyzed the average slope of the two metric curves, for both models, among the 30
simulated permutations. Given the normal distribution of the slope averages, we opted for a
parametric test. A paired t-test showed that the slopes of both accuracy (t=3.91, p<0.001) and
F1-score (t=13.22, p<0.001) of the ARF were higher than the RF ones - please notice the same



statistically significant difference was present also for the precision (t=8.25, p<0.001), recall
(t=15.51, p<0.001) and ROCAUC (t=3.8, p<0.001). Hence, with more interacting players, the ARF
model’s learning and adaptation ability would make it surpass and overcome the other static
classifier.

4. Discussion & Conclusion

In this manuscript, we tested the performance of our trained lying (i.e., creativity) classifier in
the chaotic environment of the Maker Faire Rome 2022. Grasping humans’ creative process is a
highly complex problem in a closed and controlled laboratory, even more when approaching
realistic environments. As proved by humans, the key to "surviving" in the wild is learning
and adaptation. Hence, we compared the performance of our static model with respect to an
adaptive counterpart trained on the same data and features.

As expected, the Maker Faire dataset was both data and concept drifted with respect to
the in-laboratory collected data. As a result, even if the two models discriminated descriptive
and creative card descriptions better than chance, their performance decreased with respect
to the testing ones. However, by analyzing the average slope of the accuracy and F1-score
metrics, we showed how the Adaptive Random Forest was learning and adapting to the novel
environment. It already surpassed the static counterpart on the F1-score metrics (i.e., the
goodness on recognizing the creative attempts only); moreover, the positive slopes of the curves
suggest it would also improve the accuracy and other metrics.

In the manuscript, we omitted the case where the static Random Forest is retrained with the
novel examples (e.g., at the end of each day). Even if such a solution is reasonable from a pure
computer science point of view, it could not be the best option thinking about an intelligent agent
(e.g., a humanoid robot) embedding the lie detection system in an actual application. Indeed, the
speed by which a model adapts and improves is crucial in human-robot and human-computer
interaction. Aiming to maximize the quality of each interactive session, a daily-retrained
Random Forest would not compete with a per-interaction adaptive model.

Both models are still limited in the timing they provide classifications: before classifying
players’ behavior, they have to observe the full card description. It could be more effective - and
interesting - to recognize creativity and deception from sub-segments of the interactions, i.e., by
incrementally gaining confidence until one of the classes is grounded. Focusing on the adaptive
interactive classifier, the model still depends on players’ explicit feedback (i.e., validating or
rejecting the classification). In a realistic environment, it would not always be possible to access
an explicit ground truth, especially in the lie detection field. For this purpose, we speculate
that subjective adaptation and reliance on past experiences could effectively recognize implicit
signals to validate the classifications.

Generally speaking, our system is still limited by relying on pupillometry only. Even if
literature proves pupillometry is affected by lying [29] and creativity [13], pupil fluctuations
are not one-to-one bound to such behaviors. They rather reflect variations in cognitive
effort and emotional arousal. To be reliable in evaluating humans’ creativity, they must be
considered with respect to a specific context or task (i.e., Task Evoked Pupillary Responses
[28]). Hence, intelligent systems aiming to grasp humans’ reactions based on pupillometry,



or other physiological effects, must be able to model the context in which the interaction
takes place, reporting humans’ reactions to it. The second general limitation is the usage of
gaming cards as a creative medium. We opted for Dixit gaming cards because they are designed
to stimulate creativity and divergent thinking. However, aiming for realistic interactions,
the medium should be generalized (e.g., using generic pictures of photographs) or even removed.

To improve our system, we are pursuing this research in four parallel directions: (i) classifying
humans’ behavior as nearly real-time by processing sequential chunks of the card descriptions;
(ii) developing subjective models able to learn how a specific human partner lies and reacts
when a classification is provided, using such knowledge to both improve the classification and
recognize implicit feedback; (iii) including multiple modalities in the classification (i.e., posture
and verbal prosody) to understand better the context in which the interaction happens and to
improve the robustness of the model; and (iv) looking for innovative solutions[32, 33, 34] to
measure pupillometry from standard RGB cameras. Besides the applications in the lie detection
and creativity understanding fields, our research is based on evaluating humans’ cognitive effort
when facing diverging and stressful tasks. We speculate that our findings would help in diverse
fields like security, teaching, and caregiving by endowing intelligent virtual and robotic agents
to understand humans’ behavior and better support us.
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