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Abstract
Structure perception is a fundamental aspect of music cognition in humans. Historically, the hierarchical
organization of music into structures served as a narrative device for conveying meaning, creating
expectancy, and evoking emotions in the listener. Thereby, musical structures play an essential role
in music composition, as they shape the musical discourse through which the composer organises his
ideas. In this paper, we present a novel music segmentation method, pitchclass2vec, based on symbolic
chord annotations, which are embedded into continuous vector representations using both natural
language processing techniques and custom-made encodings. Our algorithm is based on long-short term
memory (LSTM) neural network and outperforms the state-of-the-art techniques based on symbolic
chord annotations in the field.
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1. Introduction

One of the main factors that influence music perception is the hierarchical structure of music
compositions. Regardless of their level of musical knowledge and harmonic sensitivity [1]
or their cultural origins [2], listeners are able to use intuitive knowledge to organize their
perception of musical structures [3]. Indeed, there is empirical evidence that neural activity
correlates with musical structure in listeners’ perception [4]. The structuring and predictability
of musical compositions is also recognised as a viable therapy in the treatment and assessment
of children and adolescents with autistic spectrum disorder [5].
Music structuring is one of the tools used by composers to tell a story. According to [6]

“Music-making is, to a large degree, the manipulation of structural elements through the use
of repetition and change.”. The repetition of harmonic progressions (sequences of chords), in
particular in the context of western tonal music, gives to artists the ability to guide listeners
through a journey that creates dramatic narratives, conveying a sense of conflict that demands
a solution [7].
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Figure 1: Structure of Helter Skelter by The Beatles. Chords are presented in Harte format [8].

Figure 1 shows the structure of Helter Skelter by The Beatles, highlighting the musical chords
of the song. In the example, by means of the alternation between verse and refrain the artist
establishes a common repetitive pattern. The addition of an instrumental section after the
second refrain and the repetition of the intro reinforces the repetitive aspect of the composition.
The upcoming outro section denies the expectation of a new verse, right before the song ends.
Expectation and the way it is fulfilled or denied is an essential part in musical enjoyment [7]. In
fact, it has been shown empirically that the emotional response to a musical composition varies
as the degree of repetition changes [9]. Understanding musical structures is hence fundamental
in music analysis and composition. Artists can benefit from the feedback provided by a system
able to highlight possible hierarchical structures in their compositions.
Music structure segmentation is a broad term related to the study of musical form, which

describes how musical pieces are structured. In particular it can be divided in two main
categories: phrase-structure segmentation and global segmentation [10]. Phrase-structure
consists in detecting sections from the melodic information of a piece. While the aim of
phrase-structure is not to obtain a global segmentation, the detected sections provide valuable
insights in the task of global segmentation. In the following, we will refer to music structure
segmentation as the task of global segmentation. Music structure segmentation is a music
information retrieval (MIR) task that consists in identifying and labelling key music segments
(e.g. chorus, verse, bridge) of a music piece [11]. Given a musical composition, its musical
segmentation consists in the identification of non-overlapping segments, which we will refer to
as sections. Each section is characterized by a label that classifies its function such as intro or
verse in figure 1. A correct segmentation does not necessarily assign the correct labels to each
section of the composition, but rather focuses on the correct estimation of the boundaries of
each section. Once boundaries has been accurately predicted, a labeling process is performed to
obtain the final annotation [12].

Most of the recent methods and research approaches are based on audio analysis techniques
[12], nonetheless harmonic information, isolated from tempo and rhythm, have been successfully
used in several tasks in the field of music information retrieval (MIR) (e.g. [13, 14]).

In this paper, we focus on the music structure segmentation task by only taking into account
harmonic information extracted from symbolic notations (music chord annotations). The
assumption behind this approach is that the identification of harmonic sub-sequences (harmonic
patterns) can be influential in defining the structure of a song and the sections of which it is
composed. For instance, by taking a closer look at Figure 1 it is easy to notice how harmonic
information can provide valuable information in the structure segmentation task: all verses
are roughly based on the same harmonic progression (E, G, A, E) while refrains are based on a
different harmonic progression (A, E, A, E, E). A segmentation strongly based on those recurrent
patterns is likely to be coherent with the way the composer shaped the progression in the first
place.



The objective of this paper is threefold: (i) we propose pitchclass2vec, a novel chord embedding
method; (ii) we use this encoding with a recurrent neural network on a corpus of musical chords;
and (iii) we compare the performance of the encoding with the state-of-the art methods in the
field.
The chord embedding method proposed, pitchclass2vec, encodes a chord using a one-hot

encoding of the notes that compose it by making use of word embedding techniques. Each
embedded chord is defined to be similar to the embedding of its neighbouring chords in an
harmonic progression. This formalization is supposed to approximate the semantic meaning of
a chord [15] and has been widely used in the natural language processing field [16, 17]. We use
pitchclass2vec embeddings to train an LSTM neural network that predicts the section of each
chord. Through its recurrent layers the neural network is able to learn relationships between
the elements of a sequence. This allows the model to detect repetitive patterns of the harmonic
progression and predict the a segmentation of the whole composition. The model provides a
baseline to test the efficacy of the proposed chord embedding method. State-of-the-art results
are achieved in the task of music structure segmentation on symbolic harmonic data, providing
evidences that pitchclass2vec is able to provide accurate chord representations. However, the
embedding method employed here for the music segmentation task, can be used in a variety of
applications in the field of Music Information Retrieval, such as retrieving harmonically related
pieces [13], automatic chord recognition [18] and music genre classification [19].

The paper is organised as follows: Section 2 introduces the related works, Section 3 describes
the novel chord embedding method and the recurrent neural network used for the segmentation
task. Section 4 presents the experiments performed and Section 5 gives an overview of the
obtained results. Finally in Section 6 we discuss the results and new research directions to be
explored.

2. Music segmentation: state of the art

Automatic segmentation on audio signal is a prolific research field in which many different
solutions have been presented, ranging from self-similarity matrices [20, 21] to neural network
based methods [22, 23, 24]. Harmonic content has been used to improve those methods both
using probabilistic models [25] and transformer based models [26]. Significant research has
been performed on phrase-level structural segmentation based on melodic [27, 28, 29] as well as
polyphonic content [30]. However, to the best of our knowledge, the only approach proposed
in literature for global music segmentation on symbolic harmonic content is FORM [14].
FORM performs structural segmentation by exploiting repeated patterns extracted from

harmonic progressions encoded as sequences of strings. Each string represent a chord. In the
original work chord labels are transformed into 24 class of chords, 12major chords and 12minor
chords, while every other chord feature is removed. In this paper, FORM is re-implemented
in order to compare the results of the proposed method with the current state of the art (see
Section 5). FORM pattern detection algorithm is based on suffix trees. Each node on a suffix
tree represents a (possibly recurrent) sub-sequence of a string. FORM extracts sub-sequences
appearing in at least two position in the analyzed harmonic progression. A partial segmentation
is obtained by labeling each sub-sequence as a new section. The final segmentation is obtained



by labeling remaining sub-sequences as their preceding neighbouring section. The results are
compared with a random baseline that generates arbitrarily long structures and to a heuristic
that assigns to each composition the typical pop song structure ABBBBCCBBBBCCDCCE [14],
in which each different label represent a structure in the chord progression and is stretched to
fit the whole sequence. The main issue with FORM is in way chord labels are compared. The
string representation does not take into account semantic similarity between chords nor the
algorithm is able to detect near-similar patterns, i.e. patterns whose difference can be ignored
in the context of music structure segmentation.

Our structure segmentation method is based on our novel chord representation method,
pitchclass2vec, based on continuous word representation. The core idea of continuous word
representation is based on the Distributional Hyphotesis [15]: the semantic meaning of a word
𝑤 can be approximated from the distribution of words that appear within the context of 𝑤. The
objective of continuous word representation is the maximization of the following log-likelihood:

𝑇
∑
𝑡=1

∑
𝑐∈𝒞𝑡

log 𝑝(𝑤𝑐|𝑤𝑡),

where 𝒞𝑡 represents the indices of the words that appears as context of the word 𝑤𝑡 and the
function 𝑝(𝑤𝑐|𝑤𝑡) is parameterized using 𝑑-dimensional vectors in ℝ𝑑, respectively u𝑤𝑡 and v𝑤𝑐 .
The problem can be framed as a binary classification task in which words are predicted to be
present (or absent) from the context of 𝑤𝑡. A similarity function 𝑠(𝑤𝑐, 𝑤𝑡) between two words 𝑤𝑐
and 𝑤𝑡, can be computed as the scalar product u𝑇𝑤𝑡v𝑤𝑐 . The representations obtained by training
the described method on a large corpus correctly approximates the semantic meaning of words.
In the last few years, continuous word representation has been applied in a growing number
of application areas, achieving state-of-the-art results in the natural language processing field
[31] in tasks such as part of speech tagging[32], named entity recognition[33] and document
classification[34].

The described approach has been first proposed by the word2vec skipgram model [16].
Word2vec, however, is limited by the lack of morphological knowledge of a word. When
computing the representation of a word, none of its morphological components are taken into
account. Let’s take for instance two morphologically similar words, house and housing. Their
computation does not share any common element and the final representation of the words will
not be influenced by their similarities. Fasttext [17] was presented as a solution to this issue and
has proven to be more effective in the representation of a word using continuous representations.
The novel aspect is in the way representations are computed. At first the n-grams that compose
a word are extracted. For each n-gram a continuous vector representation is computed, using
the same methodology as word2vec. The representation of the original words is finally obtained
as the sum of its n-gram components. Using this technique, the final representation of a word
is conditioned by its morphological structure. When two words share one or more n-grams
their vectors will be the sum of at least one common element, which will bias both vectors
in being more similar to each other. An additionally advantage of the fasttext approach is
the way out-of-vocabulary words (words that never appear in the training corpus, and whose
representation is hence unknown) are handled. When using fixed approach such as word2vec,



(a) word2vec (b) fasttext

Figure 2: Word2vec (a) and fasttext (b) embeddingmethods. Withword2vec each embedding is computed
independently of its morphological structure. Fasttext instead compute the representation as the sum of
the n-grams that compose a word. Words that share one or more n-grams have a similar representation
as they are computed in a similar way. In the example 2-grams are represented but in general n-grams
up to the length of the term are commonly used.

out of vocabulary words are represented as a static vector, usually randomly sampled from a
normal distribution. Fasttext instead is able to compute the representation in a meaningful
way, given that at least one of the n-grams in the out-of-vocabulary term has been computed
previously in the training corpus. Figure 2 shows a visual comparison between word2vec (Figure
2a) and fasttext (Figure 2b).

Continuous word representations have already been applied to chord symbols with promising
results. In chord2vec [35] the authors obtain state-of-the-art results on the log-likelihood
estimation task. Log-likelihood estimation is the task of correctly estimating, given one element
in a sequence, the probabilities of another element being the upcoming element in the sequence.
Chord2vec is inspired by the word2vec method, in which chords are represented by the notes
that they are composed of. The representation model proposed by chord2vec is similar to
pitchclass2vec. Instead of computing chord representations with the notes that compose a chord,
the representations of pitchclass2vec takes into account the relationship between the notes that
compose each chord. An in depth discussion is presented in section 3.
More recently, word2vec-based approach on symbolic chord annotations has been analyzed

by [36]. Chord representations are based on the chord label without taking into account the
notes that compose it. The encoding is then used on two different tasks: chord clustering and
log-likelihood estimation. The log-likelihood estimation task is used to investigate the historical
harmonic style of different composers. The log-likelihood results strongly correlates with
current musicological knowledge. For instance the model finds difficult to predict chords from
artists that make a sporadic use of common harmonic progressions [36]. The chord clustering
task highlights how it’s possible to observe similarities between functionally equivalent chords
(chords that shares notes between each other) and a well defined difference between functionally
different chords. Continuous word representations are hence adequate to encode chords in the
first place, and more importantly they are able to autonomously internalize relations between



chords that have been previously observed by domain experts.

3. Pitchclass2vec model

Embedding approaches used in natural language processing have obvious limitations when
it comes to dealing with musical content, such as musical chords. While relying on purely
syntactical representations has been show to correctly encapsulate some forms of domain
knowledge [36], more advanced representations are needed to obtain accurate results when
dealing with harmonic progressions [35].
There are, however, some ambiguous cases in which both vector representations might

introduce wrong similarities between chords. Let us take for instance the chords C:maj and
C:maj131, whose notes are respectively 𝒞C:maj = {𝐶, 𝐸, 𝐺} and 𝒞C:maj13 = {𝐶, 𝐸, 𝐺, 𝐵, 𝐷, 𝐴}. Both
chords’ labels only differ by two characters, however the difference between the notes that they
are composed of can’t be neglected. A method exclusively based on syntactical information
would wrongly represent the vectors as similar between each other. Conversely, only relying
on the notes that compose a chord results in ambiguous representations of some particular
classes of chords, called enharmonic chords. For instance, the enharmonic chords C:dim and
Eb:dim share the exact same set of notes, 𝒞C:dim = 𝒞Eb:dim = {𝐶, 𝐸𝑏, 𝐺𝑏, 𝐴} but need to be
represented as different chords as they serve different harmonic purposes. Chord2vec would
wrongly represents both chords as the same exact vector.

In order to overcome the aforementioned limitations, we propose an encoding which require-
ments can be summarised as follows: 1. it has to be based on the constituent notes of a chord,
rather than its label; and 2. it must take into account the relation between those notes instead
of the notes themselves.
The proposed encoding is grounded on tonal music theory: each chord 𝑐 is composed of a

set of notes 𝒞 ⊂ 𝒩, where 𝒩 is the set of all notes and 𝐶 is called the pitch class of a chord.
An important distinction is represented by the root note, which names the chord and plays an
important role in its harmonic function.

We encode each chord as the Cartesian product ℐ𝑐 = root𝑐 × 𝒞𝑐 between the root note and
the pitch class of the chord. The vector representation u𝑐 of a chord 𝑐 is computed as

u𝑐 = ∑
𝑖∈ℐ𝑐

u𝑖

where u𝑖 is the vector representation of the tuple 𝑥𝑖 ∈ ℐ𝑐. See Figure 3b for a visual reference
on how pitchclass2vec handles enharmonic chords and Figure 3a on how chords with common
components are handled. This formalization can be seen as an extension of the chord2vec [35]
method, in which the chord inner structure is taken into consideration as well.

Nevertheless, the label of a chord has a well-defined semantic. Chords composed of the same
set of notes may have different harmonic functions. For example, the chords G:min7 and Bb:6,
despite different labels contain the exact same notes: 𝒞G:min7 = 𝒞Bb:6 = {𝐺, 𝐵𝑏, 𝐷, 𝐹 }. This
problem is particularly evident in datasets containing annotations made by experts, where the

1In Harte[8] notation



(a) C:maj and C:maj9 chord embeddings. The final
representation is computed from common ele-
ments and will hence share some aspects.

(b) C:dim and Eb:dim chord embeddings. Both
chords are composed of the same notes but
using mostly different components.

Figure 3: Visual reference on pitchclass2vec embedding method.

choice of label is the result of a meticulous analysis. For this reason, we have implemented two
different variants of pitchclass2vec: (i) a variant combining the approach proposed by word2vec
with pitchclass2vec; and (ii) a variant combining fasttext with pitchclass2vec.

In order to obtain mixed embeddings we test different hybrid combinations before passing
the new representation to the LSTM model:

(i) concatenating the embeddings;

(ii) concatenating the embeddings and projecting the result in a 𝑁-dimensional vector, using
a fully connected layer;

(iii) projecting the embeddings in the same 𝑁-dimensional space by using two different fully
connected layer and summing the 𝑁-dimensional vectors;

(iv) computing a new representation of each embedding by using two separate LSTM layers
and summing the resulting vectors;

(v) computing a new representation of each embedding by using two separate LSTM layers
and concatenating the resulting vectors.

None of the combination used proved to be able to outperform the others and we decided to
stick to the first simpler and faster approach.

3.1. Implementation details

The model is implemented using pytorch. We train the model on a set of ≈ 16000 chord
progressions (with a total number of over 1𝑀 chord instances), taken from the Chord Corpus
(ChoCo) dataset [37]. ChoCo is a chord dataset consistsing of more than 20000 tracks taken
from 18 different professionally curated datasets. All datasets have been parsed in JAMS [38]



Figure 4: Visual depiction of the implemented LSTM model.

format and converted in Harte Notation [8]. We train the model for at most 10 epochs on an
NVIDIA RTX 3090 with batch sizes of 512 harmonic progressions. We manually tune the batch
size to efficiently train the model on our available resources. For each chord we take a window
of 4 context chords as positive examples, 2 preceding and 2 succeeding, as it has been done
in the original fasttext implementation [17]. Then, we sample 20 random chords as negative
examples. Even though it has been shown that windows of different sizes yields different results
depending on the task they are applied to [39] here we will rely on a fixed size window to
better compare it to the related works. We subsample our corpus to obtain a more balanced
one by removing some of the most frequent chords instances. We use a factor of 𝑡 = 10−5 as
suggested by [16] to allow a faster and more accurate training phase. The model is trained
using a standard training procedure where a binary cross entropy loss between a chord and its
positive and negative examples is minimized using Adam optimizer, with fixed learning rate of
0.025. We set the embedding dimension to 10 as the result of manual trials.

4. Experimental setup

This section shows how the proposed model compares to FORM [14], the state-of-the-art
approach in the field of music segmentation. We develop a baseline model using a stacked
LSTM-based neural network, depicted in figure 4. The model objective is to predict in which
section each chord belongs to. We train our model on the Billboard dataset[40] provided by
mirdata[41]. The dataset is composed of 889 expert annotated tracks. Each track is composed of
a sequence of chords in Harte format[8], and a sequence of structure labels. Labels are provided
in a similar format to the one presented by SALAMI[42]. 80 unique section labels are present in
the whole dataset. We preprocess each label and reduce the number of unique labels to 11 by
combining all those labels that fall under the same definition given by[42]. A complete reference
of the label conversion step is given in table 1.
Although in literature there are neural network architectures that have proven to perform

better in similar task [43, 44, 45], we deliberately decided to use a very straightforward architec-
ture. This is due to the fact that the aim of this study is to compare different types of embedding,



Table 1
Label conversion reference. Each label is stripped out of numbers and symbols before the conversion.

Source labels Converted label

[verse] verse
[prechorus, pre chorus] prechorus
[chorus] chorus
[fadein, fade in, intro] intro
[outro, coda, fadeout, fade-out, ending] outro
[applause, bass, choir, clarinet, drums, flute, harmonica,
harpsichord, instrumental, instrumental break, noise, oboe, organ,
piano, rap, saxophone, solo, spoken, strings, synth, synthesizer,
talking, trumpet, vocal, voice, guitar, saxophone, trumpet]

instrumental

[main theme, theme, secondary theme] theme
[transition, tran] transition
[modulation, key change] other

rather than to achieve the best performance.
We split our dataset in the usual training, validation and test split (respectively 800, 178 and

89 elements) and fine-tune each model hyper-parameters (number of LSTM stacked layers,
LSTM hidden size, dropout probability) to obtain the best results on the validation set. The final
configuration of each model is summarised in Table 2. Training is performed using an NVIDIA
RTX 3090 with a batch size of 128. Each model takes at most few minutes to train and average
less than 2 milion parameters.

We compare the proposed embedding model to fasttext and word2vec as well, in which both
methods are trained on the string labels of chords in Harte format. Both the models are trained
using the highly optimized gensim [46] implementation. The hyperparameters used are the
same as the one described in section 3.1 except for the embedding dimension, which is set to
300.

5. Results

The results of the experiments are summarised in Table 3. We evaluate the segmentation results
by computing pairwise precision, recall and F1-score (𝑃, 𝑅 and 𝐹1 in Table 3) [47] along with

Table 2
Best hyper-parameters obtained on the validation set for each model.

Model Hidden size Number of stacked layers Dropout probability

word2vec 100 5 0.3
fasttext 100 5 0.5
pitchclass2vec 100 10 0
pitchclass2vec + word2vec 200 5 0.3
pitchclass2vec + fasttext 200 5 0



under-segmentation, over-segmentation and normalized cross entropy F1 (𝑆𝑈, 𝑆𝑂 and 𝑆𝐹1 in
table 3) [48]. Every metric is computed using the standard MIR evaluation library mir_eval
[49]. Under-segmentation and over-segmentation are two peculiar metrics for the evaluation
of automatic music segmentation methods. When a method has an high over-segmentation
measure, the final prediction accuracy is influenced mostly by false fragmentation. Conversely
an high under-segmentation measure means that the prediction’s segments are the result of
ground-truth segments being merged together [48].

Pairwise metrics are computed as the usual precision, recall and F1 scores on the set of
identically labeled pairs in the sequence. Precision and recall can be interpreted as the amount
of accuracy that is influenced respectively by under-segmentation and over-segmentation. On
the other hand under and over-segmentation scores are computed by taking into account the
normalized conditional entropy of the segmentation. In short, 𝑆𝑂 gives a measure of how much
information is missing in the predicted segmentation, given the ground truth segmentation while
𝑆𝑈 gives a measure of how much noisy information are the result of the predicted segmentation
[48]. A graphical explanation of these concepts is provided in Figure 5 (all the examples are
taken from [48]).

We evaluate our models based on the 𝐹1 and 𝑆𝐹1 scores of Table 3 since both metrics gives a
balanced measure of over and under segmentation.
FORMsimple detect repetitive patterns from simplified chord labels, as shown in [14]. The

chord simplification process extracts the root note from the chord and classifies it either as
major or minor. FORMraw uses the same labels used by the neural approaches. The former
performs better better than the latter. This is not surprising as more patterns between strings
can be uncovered by only taking into account 24 labels (12 root notes, each of which can be
either minor or major ). 𝑆𝑂 and 𝑆𝑈 however suggests that the over-segmentation based approach
of FORM ends up correctly segmenting only some particular portions of the whole composition,
while the other ones are wrongly classified. This is an expected behaviour since FORM only
relies on label-based repeated patterns. The presence of subtle differences in an harmonic
progressions that belongs to the same section, such as the first and second verse in Figure 1, are
not detected.

Table 3
Evaluation metrics on the test set. FORMraw is computed on the same chord labels that are used for
all the neural approaches. FORMsimple is computed on simplified chord representation as done in [14]:
only the chord root and its quality (major or minor ) are kept.

Method 𝑃 𝑅 𝐹1 𝑆𝑈 𝑆𝑂 𝑆𝐹1
FORMraw 0.667640 0.338019 0.425610 0.667640 0.338019 0.425610
FORMsimple 0.681281 0.325479 0.416651 0.681281 0.325479 0.416651
word2vec 0.410190 0.823330 0.523692 0.605202 0.257582 0.360186
fasttext 0.373044 0.993201 0.526918 0.947381 0.154424 0.264553
pitchclass2vec 0.402290 0.953399 0.547694 0.719733 0.431959 0.537879
pitchclass2vec + word2vec 0.467940 0.664824 0.532202 0.544820 0.415806 0.471398
pitchclass2vec + fasttext 0.433019 0.835007 0.553045 0.539774 0.425738 0.473986



(a) High over-segmentation example. 𝑅 = 1 since if we take each chord in the sequence pairwise then
each chord that should be in the same section is indeed in the same section. 𝑆𝑂 = 1 since the accuracy
of the prediction can be easily explained by the over-segmentation phenomena. Conversely, 𝑃 = 0.53
and 𝑆𝑈 = 0.53 clearly show how the prediction is not able to capture all the needed segments but
rather merges ground truth segments together.

(b) High under-segmentation example. The exact opposite of Figure (a) is displayed. The prediction is
not able to capture segments and rather place each chord on its own segment.

(c) 𝑃, 𝑅 and 𝑆𝑂, 𝑆𝑈 compared. In this edge case the main difference between the two measures is high-
lighted. While 𝑃 and 𝑅 suggests a decent segmentation 𝑆𝑂 and 𝑆𝑈 clearly states a completely wrong
segmentation. Pairwise metrics can be misguiding in absence of 𝑆𝑂 and 𝑆𝑈.

Figure 5: Examples of metric computation on relevant instances.

All the neural models in table 3 outperforms FORM. Even though each neural model shows
some differences in term of metrics, the clear trend is that syntactical-based models (fasttext
and word2vec) yield overly segmented results, as the low 𝑆𝑂 score suggests, while the approach
taken by pitchclass2vec produces a more balanced segmentation, as suggested by the 𝐹1 score.
Surprisingly, fasttext and word2vec under-performs when compared to the FORM baseline on
𝑆𝐹1 metric. The model is not able to generalize enough over the representation and cannot
detect patterns that are detected by FORM. Finally, the combination of pitchclass2vec with either
fasttext or word2vec doesn’t bring any remarkable benefit to our novel representation. Even
though an higher 𝐹1 score is obtained by using an hybrid approach, the lower 𝑆𝐹1 score suggests
that it has an underlying less accurate segmentation, similar to example (c) in Figure 5.

6. Conclusion and Future Work

In this article, we presented a new embedding method for musical chords, pitchclass2vec,
that considers the component notes of the chord (also called pitchclass), instead of the chord
label, as used in embedding methods in the natural language processing field. In addition, we
proposed hybrid embedding forms, which combine embedding on the chord label and the novel
pitchclass2vec. We compared different embedding models, including pitchclass2vec with the



state-of-the-art approach in the field of music structural segmentation. We used ChoCo, a
dataset of chord annotations, for training the embeddings and Billboard, a dataset of structurally
annotated tracks, for the music segmentation task. We used the different types of embeddings on
a recurrent neural network (LSTM). The results obtained by using our embeddings outperform
the state of the art in every case, with the best result obtained by pitchclass2vec, achieving a
pairwise F1 score of 0.548 and an over-under-segmentation F1 score of 0.538.

Pitchclass2vec is effectively able to learn the harmonic relationships that ties different chords
together. Even though the experiments based on fasttext and word2vec proves to be effective as
well, the musical theoretical approach upon which we base pitchclass2vec is an essential factor
that needs to be taken into account. The presented embedding model proves to be a promising
method to improve results in MIR tasks that can be complemented with harmonic information.
Moreover, it provides a valuable tool to better understand and analyse harmonic progressions,
since it allows a richer comparison between chords and chord sequences when compared to
string labels.
There are additional information that we plan to integrate on pitchclass2vec to obtain a

richer and more accurate representation. For instance, one of the main limitations of our
approach stems from the fact that we do not take temporal information into account. We plan
to test this possibility by using the temporal information directly in the embedding process
and further modify the LSTM model to condition the classification of the section of a chord
based on its duration. As discussed in Section 3, chord labels have their own semantic as
well. Since the hybrid models proposed did not directly result in more accurate results, we
plan on expanding the pitchclass2vec method to take into account the label of a chords as well
directly in its embedding model. To obtain a semantically richer representations we plan on
enhancing pitchclass2vec by using deep contextual word embeddings [50] along with knowledge
enhancement techniques [51] that combines domain-specific ontologies, such as [52], with deep
contextual word embeddings.
Moreover, we plan an in-depth analysis of pitchclass2vec training parameters, described in

section 3.1, since in [39] the authors showed that, on a product recommendation task, carefully
optimized hyper-parameters nearly double the final accuracy on all the experiments.

It is worth mentioning that the LSTM model that we implemented for the structure segmenta-
tion task does not take advantage of two fundamental aspect of the task itself: the segmentation
of a musical piece should be conditioned by its musical genre. In fact, the annotation guidelines
provided in [42] defines some genre-specific labels and encourage their use whenever applicable.
Even though a relabeling process can partially solve this issue, the need of genre-specific labels
proves that the use-cases of specific structure labels, for instance theme, might be different in
different musical genres. Finally, as already discussed in section 4, many recent techniques has
shown to be effective in increasing the accuracy of different tasks in the NLP field [43, 44, 45]
when using continuous word representations. We plan to address these issues in future works.
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