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Abstract
In the last decades, Artificial Intelligence (AI) approaches have been fruitfully employed in many tasks; for
instance, Deep Learning (DL)-based methods have shown great ability in extracting meaningful features
from images, providing valuable support to computer-aided diagnosis and medicine. Including prior
knowledge in DL-based approaches could help in making their decisions more powerful, understandable,
and explainable. However, even if this combination has raised a lot of interest in the scientific community,
still remains an open problem due to several difficulties, for example, in modeling complex domains,
handling missing specifications, and identifying the most suitable architecture able to properly combine
the two AI worlds.

In this work, we rely on an existing framework defined for combining deductive and inductive
approaches; in particular, explicit knowledge is encoded using Answer Set Programming (ASP), included
in the training, and used to improve the quality of the images via a post-processing phase.

We propose a parallelization of this approach that drastically reduces the execution time. The
proposed approach has been tested using different neural networks for semantic segmentation tasks
over Laryngeal Endoscopic Images.
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1. Introduction

Semantic image segmentation refers to the task of segmenting an image into regions corre-
sponding to meaningful objects and then assigning them an object category label [1]. In medical
contexts, semantic segmentation of images can be extremely useful to support clinicians in
providing proper diagnosis, identifying pathological conditions, and highlighting image regions
related to a specific disease. In this context, Deep Learning (DL)-based approaches represent
a huge breakthrough, showing a great deal of potential in extracting meaningful information
from different types of images (e.g., computed tomography (CT), magnetic resonance imaging
(MRI), endoscopic imaging). These approaches show to be particularly suitable for semantic
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segmentation and, in general, for supporting automated diagnosis, surgical scene understanding,
and computer-assisted interventions.

Furthermore, including methods explicitly conceived for modeling prior knowledge in the DL-
based process can improve the quality of the results, paving the way for better interpretability
and explainability of neural networks. Indeed, such approaches have been widely studied and
used in different areas of AI, such as planning, probabilistic reasoning, bioinformatics, etc. (see,
e.g., [2, 3, 4]). Also, very recently, ways of combining deductive and inductive approaches have
raised a lot of interest in the scientific community.
However, AI-based approaches, and, in particular, DL-based, require huge computational

time and even better processors to perform specific operations, especially in computer vision in
which images and videos of high quality are analyzed.

For this reason, many scientists decided to rely on data parallelism (DP), by partitioning (and
distributing) the workload among the cluster processes across the batch size [5]. In this way,
neural networks can be trained in parallel and, at each batch size, all processes collaborate
to modify local weights that, globally, concur to the ”best” global parameters, so defining the
DL-based model [6].
Among different existing methods, we made use of Message Passing Interface (MPI) [7]

which is a standardized communication protocol designed to function on parallel computing
architectures and distributed applications. MPI can be very useful to speed up the learning
phase which could be very slow according, for example, to the number of images received as
input or to the complex network structure [5].
We propose a parallelization approach to perform semantic segmentation of Laryngeal

endoscopic images [8]. Wemake use of a hybrid-AI-based model proposed in [9] and [10]. In this
work, the authors combined different neural network architectures (i.e., DeepLab-v3, SegNet,
U-Net) and the potential coming from the declarative nature of Answer Set Programming
(ASP) to improve the overall performance via (𝑖) an ad-hoc loss function and (𝑖𝑖) a proper
post-processing phase. Our approach exploits parallel computing to drastically reduce the
execution time of the baseline work [9], keeping a comparable performance.

The remainder of the paper is structured as follows. In Section 2 we provide a detailed
description of our approach, which has been assessed via a careful experimental activity, which
is in turn discussed in Section 3; we analyze and discuss results in Section 4, eventually drawing
our conclusions in Section 5.

2. Methods

This approach relies on the seminal work that appeared in [9] which is used as the basis of our
parallelization. The authors in [9] proposed a framework to combine DL and ASP-based models
in performing semantic segmentation. Specifically, they used ASP to:

• drive the network’s learning and penalize the misclassification during the training phase:
the ASP-based model is used to quantify a penalty value by comparing the network’s
prediction tomedical knowledge and ground truth segmentation. In this way, the approach



Figure 1: Workflow of the proposed framework. Images are used to train three different neural networks.
The training phase is supported by an ASP-based model through loss function. The whole process is
computed in parallel. The predicted output is refined by rule-based post-processing

is able to express “how wrong” the classification is; this value takes part in defining the
loss function [9].

• improve the quality of the results via ASP-based post-processing. The approach is able
to remove noise (i.e., small “islands” of misclassified pixels) and wrong predicted classes
(i.e., classes which do not respect medical requirements). Specifically, after converting the
network’s prediction into logical rules, the ASP-based model identifies pixels that need to
be removed and, eventually, re-assigns misclassified pixels/elements to the more frequent
class in the neighborhood.

In this paper, we rely on data decomposition to parallelize the above-described approach and,
in particular, the training process. The workflow of the approach is shown in Fig. 1.

2.1. Parallelization

MPI offers two kinds of communication functions: point-to-point and collective. In particu-
lar, collective communications execute an exchange of data with all interested nodes; these
communications can be: (𝑖) one-to-many where data are sent from the root process to all
others; (𝑖𝑖) many-to-one where the root node receives data from all communicator process; (𝑖𝑖𝑖)
many-to-many where no root node exists and all processes send and receive from all the other
ones.
In order to allow the parallelization of the approach, the input was split into various pro-

cesses through the scatter function to resolve the group of images. To better explain how it
works, we provide the following example. Given three processes (𝑃0, 𝑃1, 𝑃2), a tensor-shaped
300𝑥224𝑥224𝑥3, and 300 images with dimensions 224𝑥224 at 3 channels, the scatter method
divides the 300 images into groups of 100 and send them to each process. The resulting processes
𝑃0, 𝑃1, 𝑃2 have a tensor 100𝑥224𝑥224𝑥3 each. This is allowed thanks to the Single ProgramMulti-
ple Data (SPMD) paradigm by which each process performs the same program [11]. Then, using



Figure 2: Knowledge exchange between neural networks on each processor for each batch size.

this paradigm, if we had three processes, we would be able to execute three neural networks
contemporarily and each of them would take as input three different batches of images.
After the data decomposition and during the learning phase, each neural network is able to

communicate and adjourn the learned information to the other networks.
The communication occurs through the function Allreduce which is a many-to-many com-

munication and operates similarly to the reduce standard method. Specifically, it executes
mathematical operations on weights calculated from each network and adjourns the status of
the other ones. More in detail, when a process completes its own batch or a specific epoch, it
waits until all the other processes finish and, only after, an average of all weights is computed.

The average is computed via a personalized operation in which a reducer sums all tensors
with the same key and, after, it averages them and sends the result to each process. In this way,
it is possible to use different neural networks in parallel. Each network operates on different
data (then, the quantity of images is reduced) and exchanges the information just obtained.
Particularly, at each iteration, many models are obtained with equal information; these

models correspond to the number of processes started. Afterward, in the next batch, each neural
network is ready to independently update its weights based on its own batch of images, and,
then, the information is exchanged with the other models. An example of this process is shown
in Fig. 2.

2.1.1. ASP

Our approach also provides the possibility to parallelize the ASP model which can be executed
by each process at the same time. Then, ASP works on a sub-group of images in each process,
generating several loss functions for each batch of images and for each process. These ASP-
based loss functions are then added to the loss function obtained by the neural network to define
the final loss, according to [9]. To handle parallel computing with ASP, the outputs produced by



neural networks are separately and simultaneously stored. Therefore, each process can access
its own ASP-based output according to the specific batch of images received. This makes the
entire computing process much faster and more efficient.
Similarly, our approach could allow us to parallelize ASP-based post-processing such that

each process can simultaneously access the rule-based model and the knowledge base describing
the specific batch of images. In this way, each process is able to accurately identify the wrong
classes or noise and re-assign the right locations in the image.

3. Experimental Activities

For the experimental analysis, we used the same dataset proposed in [9]: the Laryngeal En-
doscopic Images dataset [8]. It consists of 536 manually segmented in vivo color images of
the larynx captured during two different resection surgeries. In particular, the images are
categorized in 7 classes: void, vocal folds, other tissue, glottal space, pathology, surgical tool, and
intubation, corresponding to index 0, 1, 2, 3, 4, 5, 6, respectively.
In order to ensure a proper comparison w.r.t. the results obtained in [9], we kept the same

configuration. The dataset was split into training (80%) and testing (20%) sets, each network
was implemented in Pytorch using the SGD optimizer and cross-entropy (CE) as a loss function.
In order to complete the experiments, due to time constraints, we reduced the number of epochs
from 1000 to 300; future experiments are planned, with increased limits.
Also, to assess the effectiveness of our approach we used Intersection-over-Union (IoU )

evaluation metric, which is as IoU = TP
TP+FP+FN , where TP is the number of true positive, FP

false positive and FN false negative pixels, respectively.
We point out that, at present, the results refer to parallel training without the inclusion of

ASP in the learning phase. Furthermore, even if we designed the parallel workflow, currently
the presented post-processing results are obtained without parallelization. Full experiments are
carried out at the time of writing, and the updated results will be released in the near future.

3.1. Parallelization metrics

Speed-up is an important factor to consider when evaluating a parallel approach. It is computed
as follows:

𝑠𝑝𝑒𝑒𝑑 − 𝑢𝑝 =
𝑇𝑠
𝑇𝑝

Where 𝑇𝑠 is the execution time of the sequential algorithm, while 𝑇𝑝 is the parallel time. Two
kinds of speed-up are existing, absolute and relative: relative indicates the speed-up where 𝑇𝑠 is
the time of the algorithm with one process; absolute indicates the speed-up where 𝑇𝑠 is the time
of the best sequential algorithm. For example, if a sequential algorithm needs 10 minutes of
calculation time and a correspondent parallel algorithm needs 2 minutes, we can say that the
speed increases by 5 times.
Since speed-up measures how fast a parallel algorithm goes, the ideal speed-up is equal to

the number of processes in use. In this case, we talk about linear speed-up. It could happen that
the speed-up stops or drastically reduces the growth when the number of processes increases.



This behavior can be explained by Amdahl’s law [12] which evaluates the maximum value that
the speed-up can reach on a determined algorithm as follows:

𝑠𝑝𝑒𝑒𝑑 − 𝑢𝑝(𝑛) = 1

(1 − 𝑓 ) + ( 𝑓𝑛)

where 𝑓 indicates the portion of parallel code, 1 − 𝑓 indicates the sequential part remaining, and
𝑛 is the number of processes. In other words, the speed-up exclusively depends on the number of
sequential portions, independently of the number of processes utilized. In addition, maintaining
constant the number of processes, the parallel part 𝑓 < 1, whatever big it is, has as an upper
bound the number of processes; then, linear speed-up occurs when the 𝑠𝑝𝑒𝑒𝑑 − 𝑢𝑝(𝑛) = 𝑛.

Another reason why acceleration does not grow linearly is due to overhead. The overhead is
the overload of work due to different factors:

• Time to start activity
• Synchronization between processes
• Communication of data
• Libraries and operating, system overload, etc.
• Time to conclude the activity.

The overhead can be calculated via the following formula:

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑(𝑛) = 𝑛 ⋅ 𝑇𝑝 − 𝑇𝑠

At last, another parameter to be considered is efficiency. The efficiency is a value between 0
and 1 and it is computed as:

𝐸𝑛 =
𝑆𝑛
𝑛

Where 𝑛 is the number of processes and 𝑆𝑛 is the speed-up with 𝑛 processes. This relation
indicates the fraction of time in which each element is really utilized. In particular:

• If 𝐸𝑛 = 1, then we have a linear speed-up (very difficult)
• If 𝐸𝑛 <

1
𝑛 , then the algorithm has a slackening

The efficiency metric is useful to quantify the scaling down. Specifically, if the efficiency remains
constant to the variation of the number of processes, we obtain a linear scaling down. Actually,
by increasing the number of processes 𝑝 and fixing the problem dimension 𝑊 the efficiency
decreases (see Fig. 3 (a)), on the contrary, fixing the number of processes and increasing the
problem dimension, the efficiency increases (see Fig. 3 (b)). The object is therefore to maintain,
as previously described, a constant efficiency. Consequently, we need to increase the number of
processes, increasing the problem dimension, bringing us to the iso-efficiency concept [13].



Figure 3: Efficiency trend by fixing the problem size (a) and the number of processes (b).

Figure 4: Per-class and mean IoU for the 3 tested neural networks that are trained in parallel. The
first column reports the results obtained without post-processing (no p.p.) and the second refers to the
results after ASP-based post-processing (p.p.). The most significant results are highlighted.

4. Results and Discussion

Table 4 shows the results achieved using parallel training. We can see that the IoU of neural
networks follows the same trend as the sequential approach used in [9]. However, the class
pathology (i.e., 4), which is considered the most difficult since the lower occurrence in the
dataset [8], achieved a very low IoU value. This is most likely caused by the decrease of
epochs that negatively affects the performance of the network in recognizing this class and,
consequently, in the overall averaged IoU value.
In general, SegNet and Deeplabv3 show better performance than U-Net and the post-

processing is able to slightly but systematically improve the image quality in almost all classes.
A visual example of the results is shown in Fig. 5. These results, which are graphically

compared with raw images and ground truth (GT) segmentation, show the capability of our
approach in assigning the right class to each pixel and removing misclassification errors via



Figure 5: Example results obtained using 3 different patients. From left to right: raw image, ground
truth (GT) segmentation, semantic segmentation obtained using parallel model, and results obtained
using post-processing.

ASP-based post-processing.

4.1. Parallelization performance

Figure 6 shows the execution time for each epoch required to train each network according to
the number of processes used. We can notice that SegNet results in the heaviest network, taking
about 21 minutes to conclude an epoch. However, thanks to parallel processing the execution
time is reduced up to ∼ 7 minutes using 4 processes.

Figure 7 shows the relative speed-up achieved using the three neural networks. We can notice
that speed-up for two processes reaches a value close to two, similarly using three processes,
meaning that the network’s learning is going two or almost three times faster. Instead, when
using four processes (on the same machine), there are no huge improvements; this could be
explained via Amdahl’s law described in Sec. 3.1.
We also computed the efficiency trend on the different models achieved using the neural

networks, as shown in Fig. 8. SegNet network shows an efficiency value of 92% using two



Figure 6: Average execution time trend per epoch with different numbers of processes.

Figure 7: Trend of the average speed-up per epoch with the different number of processes.



Figure 8: Average efficiency trend per epoch with a different number of processes.

processes but, when the number of processes increases, at the same problem dimension, the
efficiency starts to decrease. However, the performance of the approach still remains comparable,
showing good results.

5. Conclusion

In this work, we proposed a parallel AI-based approach to perform semantic segmentation of
medical images. We used an existing framework as a baseline for our approach. This framework
combines Neural Networks and ASP to define a novel loss function and a post-processing phase.
We performed a thorough experimental analysis; our proposal reduced the execution time and
achieved comparable results w.r.t. baseline approach.
Actually, the reported results achieved via the parallel approach refer to an experimental

activity performed without the inclusion of the ASP-based model in the training phase. As future
work is concerned, we aim to refine experimental analysis including ASP-based knowledge in the
parallel training phase and investigate misclassification errors and improve the generalization
capability of the model, as well as the overall performance.
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