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Abstract
Domain-specific heuristics are a crucial technique for the efficient solving of problems that are large or
computationally hard. Answer Set Programming (ASP) systems support declarative specifications of
domain-specific heuristics to improve solving performance. However, such heuristics must be invented
manually so far. Inventing domain-specific heuristics for answer-set programs requires expertise with
the domain under consideration and familiarity with ASP syntax, semantics, and solving technology. The
process of inventing useful heuristics would highly profit from automatic support. This paper presents a
first step in this direction. We use Inductive Logic Programming (ILP) to learn declarative domain-specific
heuristics from examples stemming from (near-)optimal answer sets of small but representative problem
instances. Our experimental results indicate that the learned heuristics improve solving performance
and solution quality when solving larger, harder problem instances.
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1. Introduction

Answer Set Programming (ASP) [1, 2, 3, 4] is a declarative problem-solving approach applied
successfully in many industrial and scientific domains. For large and complex problems, however,
domain-specific heuristics may be needed to achieve satisfactory performance [5, 6].

Therefore, state-of-the-art ASP systems offer ways to integrate domain-specific heuristics
in the solving process. An extension for wasp [7] facilitates external procedural heuristics
consulted at specific points during the solving process via an API [5]. Declarative specifications
of domain-specific heuristics in the form of so-called heuristic directives are supported by clingo
[8, 9, 10] and Alpha [11, 12, 13, 14].

However, such heuristics must be invented manually so far. Human domain experts and ASP
experts are needed to invent suitable domain-specific heuristics. This paper presents a first step
toward the automatic learning of declarative heuristics.

Our core idea is to use Inductive Logic Programming (ILP) to learn declarative domain-specific
heuristics from examples stemming from (near-)optimal answer sets of small but representative
problem instances. These heuristics can then be used to improve solving performance and
solution quality for larger, harder problem instances. Our experimental results are promising,
indicating that this goal can be achieved.
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Figure 1: Sample HRP instance (left) and one of its solutions (right) [13]

After covering preliminaries in Section 2, we present our main contribution in Section 3.
Section 4 presents experimental results, and Section 5 describes related work. Section 6 concludes
the paper by giving an outlook on future work.

2. Preliminaries

In this section, we introduce a running example and cover preliminaries on domain-specific
heuristics in ASP and inductive learning in ASP. We assume familiarity with ASP and refer to
[1, 2, 3, 4] for detailed introductions.

2.1. Running Example: The House Reconfiguration Problem (HRP)

The House Reconfiguration Problem (HRP) [15] is an abstracted version of industrial
(re)configuration problems, e.g., rack configuration. A complete description is available from
the ASP Challenge 2019,1 and an encoding is available in Anna Ryabokon’s PhD thesis [16].

Formally, HRP is defined as a modification of the House Configuration Problem (HCP) [13].

Definition 1 (HCP). The input for the House Configuration Problem (HCP) is given by four sets
of constants 𝑃 , 𝑇 , 𝐶 , and 𝑅 representing persons, things, cabinets, and rooms, respectively, and an
ownership relation PT ⊆ 𝑃 × 𝑇 between persons and things.

The task is to find an assignment of things to cabinets TC ⊆ 𝑇 × 𝐶 and cabinets to rooms
CR ⊆ 𝐶 ×𝑅 such that: (1) each thing is stored in a cabinet; (2) a cabinet contains at most five
things; (3) every cabinet is placed in a room; (4) a room contains at most four cabinets; and (5) a
room may only contain cabinets storing things of one person.

Definition 2 (HRP). The input for the House Reconfiguration Problem (HRP) is given by an HCP
instance 𝐻 = ⟨𝑃, 𝑇,𝐶,𝑅, 𝑃𝑇 ⟩, a legacy configuration ⟨TC ′,CR′⟩, and a set of things 𝑇 ′ ⊆ 𝑇
that are defined as “long” (all other things are “short”).

The task is then to find an assignment of things to cabinets TC ⊆ 𝑇 ×𝐶 and cabinets to rooms
CR ⊆ 𝐶 × 𝑅, that satisfies all requirements of HCP as well as the following ones: (1) a cabinet
is either small or high; (2) a long thing can only be put into a high cabinet; (3) a small cabinet
occupies 1 and a high cabinet 2 of 4 slots available in a room; (4) all legacy cabinets are small.

The sample HRP instance shown in Fig. 1 comprises two cabinets, two rooms, five things
belonging to person p1, and one thing belonging to person p2. A legacy configuration is empty,

1https://sites.google.com/view/aspcomp2019/problem-domains
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and all things are small. In a solution, the first person’s things are placed in cabinet c1 in the
first room, and the thing of the second person is in cabinet c2 in the second room. For this
sample instance, a solution of HRP corresponds to a solution of HCP [13].

Instances consist of facts over the following predicates: cabinetDomainNew/1 defines po-
tential cabinets, and roomDomainNew/1 defines potential rooms; thingLong/1 defines which
things are long; and legacyConfig/1 defines all the other data in the legacy configuration,
e.g., legacyConfig(personTOthing(p1,t1)) defines that person p1 owns thing t1, and
legacyConfig(roomTOcabinet(r1,c1)) specifies one tuple in the legacy assignment of
cabinets to rooms.

The main two choice rules guessing the assignment of things to cabinets and the assignment
of cabinets to rooms look as follows:

{ cabinetTOthing(C,T) } :- cabinetDomain(C), thing(T).
{ roomTOcabinet(R,C) } :- roomDomain(R), cabinet(C).

To define the domains of cabinets and rooms as the union of existing objects and newly
available identifiers, the encoding also contains the following rules:

cabinetDomain(C) :- cabinetDomainNew(C).
roomDomain(R) :- roomDomainNew(R).

Instances may optionally include atoms of various predicates to define costs for specific
actions such as placing a thing in a cabinet, placing a cabinet in a room, reusing an existing
placement of a thing in a cabinet, reusing an existing placement of a cabinet in a room, removing
a thing from a cabinet, removing a cabinet from a room, etc. These costs are then determined
based on the difference between solution ⟨TC ,CR⟩ and legacy configuration ⟨TC ′,CR′⟩. A
weak constraint in the encoding instructs the solver to minimise the costs.

Each available instance belongs to one of four instance classes [15, 16]: Empty (“ec”, empty
legacy configuration); long (“lt”, some things are long); new room (“nr”, some cabinets have to
be reallocated to new rooms); and swap (“ss”, only one person and a specific pattern of legacy
configuration).

2.2. Domain-Specific Heuristics in ASP

To solve large instances of industrial problems, employing an ASP solver out-of-the-box may
not be sufficient. Sophisticated encodings or solver tuning methods (such as portfolio solving)
are common ways to deal with this issue.

Domain-specific heuristics are another way to speed-up answer set solving. They were even
needed to achieve breakthroughs in solving industrial configuration problems with ASP [5].

Several approaches have been proposed to embed heuristic knowledge into the ASP solving
process. hwasp [5] extends wasp [7] by facilitating external procedural heuristics consulted at
specific points during the solving process via an API.

A declarative approach to formulating domain-specific heuristics in ASP is provided by
clingo,2 supporting #heuristic directives [9, 10]. Heuristic directives enable the declarative
specification of weights determining atom and sign orders in a solver’s internal decision heuris-
tics. An atom’s weight influences the order in which atoms are considered by the solver when
2https://potassco.org/clingo/
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making a decision. A sign modifier instructs whether the selected atom must be assigned true
or false. Atoms with a higher weight are assigned a value before atoms with a lower weight.

In the syntax for (non-ground) heuristic directives in clingo (1), ha is an atom, hB is a
conjunction of literals representing the heuristic body, and 𝑤, 𝑝, and 𝑚 are terms [10].

#heuristic ha : hB . [𝑤@𝑝,𝑚] (1)

The optional term 𝑝 gives a preference between heuristic values for the same atom (preferring
those with higher 𝑝). The term 𝑚 specifies the type of heuristic information and can take
the following values: sign, level, true, false, init and factor. For instance, heuristics
for 𝑚=init and 𝑚=factor allow modifying initial and actual atom scores evaluated by the
solver’s decision heuristics (e.g., VSIDS). The 𝑚=sign modifier forces the decision heuristics
to assign an atom ha a specific sign, i.e., true or false, and 𝑚=level allows for the definition
of an order in which the atoms are assigned—the larger the value of 𝑤, the earlier an atom must
be assigned. Finally, 𝑚=true specifies that 𝑎 should be assigned true with weight 𝑤 if hB is
satisfied, and 𝑚=false is the analogue heuristics that assigns 𝑎 false.

A new approach implemented in the lazy-grounding ASP system Alpha, based on the clingo
approach, has introduced novel semantics for heuristic directives aimed at non-monotonic
heuristics [12, 13, 14].

2.3. Inductive Learning in ASP

Inductive Logic Programming (ILP) is an approach to learning a program that explains a set
of examples given some background knowledge. ilasp [17, 18] is a system capable of learning
Answer Set Programs, including normal rules, choice rules, and hard and weak constraints.

ilasp operates on a learning task, which consists of three components [17]: The background
knowledge 𝐵 (an ASP program already known before learning), the mode bias 𝑀 (that expresses
which ASP programs can be learned), and the examples 𝐸 (which specify properties the learned
program must satisfy). When the properties specified by a particular example in 𝐸 are satisfied,
the example is said to be covered.

ilasp finds a program (often called a hypothesis) 𝐻 such that 𝐵 ∪𝐻 covers every example in
𝐸 (or, if the examples are considered noisy, such that the total penalty of non-covered examples
is minimised) [17]. 𝐻 is an element of the search space defined by 𝑀 .

2.3.1. Mode Bias

The mode bias consists of a set of mode declarations. There are several types of mode declarations
[19], two of which we will use in this paper: #modeh and #modeb specify what the heads and
bodies of learned rules may look like, respectively. A placeholder is a term var(t) or const(t)
for some constant term t. Such placeholders can be replaced by any variable or constant
(respectively) of type t.

As a simple example, Listing 1 shows part of the mode bias for a learning task for the HRP.

Listing 1: Part of the mode bias for HRP

#modeh(cabinetTOthing(var(cabinet),var(thing))).



#modeb(cabinetDomainNew(var(cabinet))).
#modeb(thing(var(thing))).

The first mode declaration specifies that the binary predicate cabinetTOthing can be used in
the head of rules and that its terms are of variable types cabinet and thing (in this order).
The other two mode declarations specify which predicates can occur in the bodies of learned
rules. Note that the same terms may be used in learned rules wherever the same term types are
used.

Thus, the rule space defined by the mode bias given in Listing 1 consists of the following rule:

cabinetTOthing(V1,V2) :- cabinetDomainNew(V1), thing(V2).

2.3.2. Examples

A positive example is given by a #pos statement, and a negative example by a #neg statement
[17, 19]. Each example consists of several components, the following of which are relevant for
this paper:3 A set of ground atoms called inclusions, a set of ground atoms called exclusions, and
an optional set of rules (usually just facts) called context.

A positive example is covered iff there exists at least one answer set for 𝐵 ∪𝐻 that contains
all of the inclusions and none of the exclusions. A negative example states that there must not
exist an answer set that contains all of its inclusions and none of its exclusions [17, 19].

The context is the problem instance to which the inclusions and exclusions refer (considering
the usual distinction between unvarying problem encoding and problem instances specified by
facts) [17, 19].

Listing 2 shows a simplified example for HRP stating that cabinetTOthing(1,2) shall be
true for the problem instance in which cabinetDomainNew(1) and thing(2) are true.

Listing 2: A simplified example in a learning task for HRP
#pos(
{ cabinetTOthing(1,2) }, % inclusions
{ }, % exclusions
{ cabinetDomainNew(1). thing(2). } % context
).

3. Inductive Learning of Domain-Specific Heuristics

This section presents the main contribution of this paper—our approach to the inductive learning
of domain-specific heuristics for ASP.

The basic idea is to solve a small but representative instance of a problem, use the resulting
answer set as a positive example for inductive learning, learn a set of definite rules, and
transform the learned rules into declarative heuristic directives in the form of Eq. (1) presented
in Section 2.2. These heuristics can then be used to speed up solving larger/harder instances of
the same problem.

The rule space for ilasp is defined as follows in our approach:
3So far, we do not use example identifiers, ordering examples, and noisy examples.



• All predicates appearing in the heads of choice rules4 can be used in the heads of learned
rules (#modeh).

• All (other) predicates appearing in the original program can be used in the bodies of
learned rules (#modeb).

• The same variable type is used several times, wherever a variable denotes the same
real-world concept.

The background knowledge is the original program without any instance.5 Choice rules were
not included, however, because we observed that ilasp only learns anything in our example
domain when choice rules are not part of the background knowledge. We presume this is
because we need to abstract away from the complete problem specification a bit to learn part
of the missing information. Constraints were also not included because the rules we want to
learn don’t have to satisfy all constraints of the program. When used as heuristics, it suffices
for them to give a general indication of what decisions might be useful during solving, even if
some of these decisions will have to be backtracked.

As a positive example for learning, one answer set for a small but representative problem
instance is used. In case the underlying problem is an optimisation problem (like the HRP
described in Section 2.1), we propose to use a (near-)optimal answer set for this process. The
(yet unproven) hypothesis is that learning from better answer sets yields better heuristics.

We use context-dependent examples; the context is given by the problem instance. The set of
inclusions corresponds to the whole answer set, and the set of exclusions is empty.

3.1. Learning in the House Reconfiguration Problem

Let us re-consider the running example from Section 2.1, the House Reconfiguration Problem
(HRP). The smallest instance is called “ec-0001-house-t0100”; it is an HCP instance (i.e., it
does not contain a legacy configuration)6 and contains 100 things distributed among 20 persons.
A near-optimal7 answer set for this instance was computed by clingo [8] and used as a single
positive example.

We built a learning task for this simple instance as described at the beginning of Section 3.
The entire mode bias is shown in Listing 3. Some predicates that we did not expect to be useful
were not included in the mode bias to keep the search space in a feasible range and thus improve
ilasp’s solving performance. Some other predicates were removed since they led to learning
rules that did not make sense in the domain context.

4More strictly speaking, the head of a choice rule contains a collection of choice elements, each of the form
𝑎 : 𝑙1, . . . , 𝑙𝑘 [20]. The predicates used for 𝑎 are the ones that can be used in the heads of learned rules.

5Rules involving aggregates had to be removed because they are not supported by ilasp. See https://doc.ilasp.com/
specification/background.html for details on the syntax for the background knowledge.

6Since an HCP instance is not representative of HRP instances with non-empty legacy configuration, future work
should address learning from small instances of non-HCP instance classes.

7clingo v. 5.4.0, which was used in its default configuration (i.e., with no parameters apart from file names) computed
an answer set with optimisation value 120, but was not able to prove optimality within several days of search.

https://doc.ilasp.com/specification/background.html
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Listing 3: Full mode bias for HRP as used for our experiments
#modeh(cabinet(var(cabinet))).
#modeh(room(var(room))).
#modeh(cabinetTOthing(var(cabinet),var(thing))).
#modeh(roomTOcabinet(var(room),var(cabinet))).
#modeh(cabinetHigh(var(cabinet))).
#modeh(cabinetSmall(var(cabinet))).

#modeb(cabinetDomainNew(var(cabinet))).
#modeb(roomDomainNew(var(room))).
#modeb(cabinetDomain(var(cabinet))).
#modeb(roomDomain(var(room))).
#modeb(thing(var(thing))).
#modeb(personTOthing(var(person),var(thing))).
#modeb(legacyConfig(person(var(person)))).
#modeb(legacyConfig(thing(var(thing)))).
#modeb(legacyConfig(personTOthing(var(person),var(thing)))).
#modeb(thingShort(var(thing))).
#modeb(person(var(person))).
#modeb(personTOroom(var(person),var(room))).

ilasp was used with arguments --version=2i --no-constraints --no-aggregates,
i.e., with version 2i of the learning algorithm and omitting constraints and aggregates (choice
rules) from the search space. We chose version 2i instead of version 4 for performance reasons.
ilasp 2i needed approximately 4 minutes to solve the full learning task on the author’s personal
computer, while ilasp 4 needed over 12 minutes and yielded a slightly different result.8 As an
alternative approach, ilasp 4 was able to solve the learning task within seconds when we cut
down the instance by removing parts of the facts while still keeping the general structure of
the instance.

The following rules form the learned hypothesis:9

cabinetSmall(V1) :- cabinetDomainNew(V1).
cabinetTOthing(V1,V2) :- cabinetDomain(V1),

legacyConfig(personTOthing(V3,V2)).
roomTOcabinet(V1,V2) :- cabinetDomain(V2), roomDomain(V1).

As a next step, we transformed these rules to heuristics in the form of Eq. (1) manually by
using the head of each rule as ha and the body as hB . Since the heads of the heuristics shall
eventually become true, we use the modifier true. And since we don’t have any information
on prioritising the heuristics at this point, all get the same weight 1. This is the result:

#heuristic cabinetSmall(V1) :
cabinetDomainNew(V1). [1,true]

#heuristic cabinetTOthing(V1,V2) :
cabinetDomain(V1), legacyConfig(personTOthing(V3,V2)). [1,true]

#heuristic roomTOcabinet(V1,V2) :
cabinetDomain(V2), roomDomain(V1). [1,true]

8When using ilasp 4 instead of ilasp 2i, the third rule in the learned hypothesis contains the atom
roomDomainNew(V1) instead of roomDomain(V1).

9Note that in ilasp’s output, body literals are separated by semicolons instead of the usual commas, which is valid
gringo syntax [10] but does not conform to ASP-Core-2 [20]. We replaced these semicolons with commas in our
examples to avoid confusion.



The learned heuristics instruct the solver to try and create as many small cabinets as possible
and to try all possible cabinet-to-thing and room-to-cabinet assignments.

3.2. Limitations and Future Work

Our construction of the mode bias was a bit ad hoc, as described above, aiming at a feasible
size of the search space and learning reasonable rules. Finding a meaningful, consistent way to
derive the mode bias is subject of future work.

We also want to explore if and how yet unused features of ilasp can be helpful in our
approach. This includes learning non-normal rules and weak constraints, multiple examples,
exclusions, noise, and using built-in predicates such as arithmetic comparisons in #modeb.

Potential extensions of our approach that should be addressed include assigning variable
types automatically and determining different weights and priorities for the learned heuristic
directives.

4. Experimental Results

To test the effects of the learned heuristics, we used clingo to solve all available HRP instances
(94 in number) with and without the learned heuristics. The HRP instances stem from previous
experiments [13, 14]. These instances were generated in the pattern of the original instances
[15]. This pattern represents four different reconfiguration scenarios encountered in practice,
and the instances are abstracted real-world instances. Our instances are considerably larger
than the original ones, though (ranging up to 800 things, while the original instances used at
most 280 things).

Each of the machines used to run the experiments was equipped with two Intel® Xeon® E5-
2650 v4 @ 2.20GHz CPUs with 12 cores. Furthermore, each machine had 251 GiB of memory and
ran Ubuntu 16.04.1 LTS Linux. Scheduling of benchmarks was done with HTCondor™ together
with the ABC Benchmarking System [21].10 pyrunlim11 was used to limit time consumption
to 10 minutes per instance, memory to 40 GiB, and swapping to 0. Care was taken to avoid
side effects between CPUs, e.g., by requesting exclusive access to an entire machine for each
benchmark from HTCondor.
clingo was instructed to search for the optimal answer set in its default configuration,

given an encoding including a weak constraint. Since the system operated only on a single
encoding containing the learned heuristics, the parameter --heu=Domain was used to achieve
one configuration in which clingo used the domain-specific heuristics (and one in which it did
not). After 10 minutes per instance, search was aborted and the optimisation value of the best
solution found so far was recorded.

Table 1 shows the achieved optimisation values and the relative improvement when using
the learned heuristics for all 36 instances that could be solved with or without domain-specific
heuristics. For the other 58 instances, no answer set could be found either way; therefore, they
are not included in the table.

10http://research.cs.wisc.edu/htcondor, https://github.com/credl/abcbenchmarking
11https://alviano.com/software/pyrunlim/
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Table 1
Experimental results: Achieved optimisation values without (“def”) and with (“heu”) learned heuristics,
and relative improvement

Instance def heu Improvement

ec-0001 159 120 25%

ec-0002 180 150 17%

ec-0003 216 183 15%

ec-0004 253 230 9%

ec-0005 250 271 -8%

ec-0006 285 327 -15%

ec-0007 363 1270 -250%

ec-0008 356 658 -85%

ec-0009 3313 879 73%

ec-0010 4187 1785 57%

ec-0011 3236 1970 39%

ec-0012 5515 ∞ -∞

lt-0001 2101 499 76%

lt-0002 4867 577 88%

lt-0003 6883 656 90%

lt-0004 5539 737 87%

lt-0005 5363 947 82%

lt-0006 7757 909 88%

Instance def heu Improvement

lt-0007 ∞ 998 100%

lt-0008 7411 ∞ -∞

nr-0001 4116 909 78%

nr-0002 5708 622 89%

nr-0003 5526 683 88%

nr-0004 5846 758 87%

nr-0005 6879 818 88%

nr-0006 11399 895 92%

nr-0007 10326 1769 83%

nr-0008 8718 1035 88%

nr-0009 10841 ∞ -∞

ss-0001 132 545 -313%

ss-0002 1496 1040 30%

ss-0003 2555 1225 52%

ss-0004 3255 1402 57%

ss-0005 3883 2632 32%

ss-0006 ∞ 1814 100%

ss-0007 ∞ 3359 100%

The first column shows the instance identifier. The first two characters of each identifier
refer to one of the four instance classes of the HRP (cf. Section 2.1). The numeric part of the
identifier increases with increasing instance size.

The second and third columns contain the achieved optimisation values without and with
learned heuristics, respectively. The symbol ∞ is used when no answer set could be found
within the time limit of 10 minutes.

The fourth column shows the change in the optimisation value when using the learned
heuristics relative to solving without domain-specific heuristics. A positive percentage signifies
an improvement, and negative values indicate a deterioration. The value 100% is used in cases
where an answer set could be found only when using heuristics12 and the value −∞ is used
when an answer set could be found only without heuristics.

The learned heuristics seem to have positive effects even though they are (still) straightfor-

12The rationale for this is that the optimisation value of a minimisation problem can be considered infinitely high
when no solution is found, and that dividing an infinitely high value by an infinitely high value approaches 1.



ward. The average cost improvement over all instances (excluding those where no answer set
could be found when using heuristics) is 38%. However, improvement varies strongly between
different instances. Furthermore, results are sensitive to the chosen time-out. For example,
we observed stronger improvements (on fewer solved instances) when experimenting with a
time-out of three minutes instead of ten.

Besides our experiments with clingo, we also experimented with the lazy-grounding ASP
system Alpha [11]. This system accepts heuristic directives in a slightly different syntax
[13, 14]. Without domain-specific heuristics, Alpha could solve none of the HRP instances
under consideration. The heuristics learned by our approach enabled Alpha to solve three
instances (without optimisation, which is not yet supported by Alpha).13

5. Related Work

Balduccini [22] has also presented an approach to learning domain-specific heuristics offline
from representative instances. The basic idea, which is very different to our approach, is to
record which choices are made in the path of a search tree that led to a solution and to use this
information to compute probabilities for decisions on ground atoms. These probabilities are
then used while solving other problem instances to reduce the likelihood of backtracks. The
approach is restricted to DPLL-style solvers like smodels [23], and extending it to CDCL-based
systems like clingo is mentioned as future work.

A similar approach is aimed at configuration problems encoded as constraint satisfaction
problems (CSPs) [24].

6. Conclusions and Future Work

We have proposed a novel approach to inductively learning declarative specifications of domain-
specific heuristics for ASP from answer sets of small but representative instances. Our approach
employs the inductive learning system ilasp. Utilising an example representing a significant
real-world configuration problem, we have demonstrated that simple heuristics can easily be
learned.

Experimental results are promising: Some instances could be solved only using the learned
heuristics, and solution quality improved considerably on average.

The fact that so far, we have only learned very simple heuristics and those already led to
significant improvements is encouraging. Future work will show whether our method can be
extended to learn more complex heuristics that can improve solving performance and solution
quality even further.
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13Human-made heuristics, however, enable Alpha to solve up to 59 of these instances [13, 14].



References

[1] M. Gelfond, Y. Kahl, Knowledge Representation, Reasoning, and the Design of Intelligent
Agents: The Answer-Set Programming Approach, Cambridge University Press, New York,
NY, USA, 2014.

[2] V. Lifschitz, Answer Set Programming, Springer, 2019. doi:10.1007/
978-3-030-24658-7.

[3] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Answer Set Solving in Practice, Synthesis
Lectures on Artificial Intelligence and Machine Learning, Morgan and Claypool Publishers,
2012.

[4] C. Baral, Knowledge Representation, Reasoning and Declarative Problem Solving, Cam-
bridge University Press, 2003.

[5] C. Dodaro, P. Gasteiger, N. Leone, B. Musitsch, F. Ricca, K. Schekotihin, Combining
answer set programming and domain heuristics for solving hard industrial problems
(application paper), Theory Pract. Log. Program. 16 (2016) 653–669. doi:10.1017/
S1471068416000284.

[6] A. A. Falkner, G. Friedrich, K. Schekotihin, R. Taupe, E. C. Teppan, Industrial applica-
tions of answer set programming, Künstliche Intell. 32 (2018) 165–176. doi:10.1007/
s13218-018-0548-6.

[7] M. Alviano, G. Amendola, C. Dodaro, N. Leone, M. Maratea, F. Ricca, Evaluation of
disjunctive programs in WASP, in: M. Balduccini, Y. Lierler, S. Woltran (Eds.), Logic
Programming and Nonmonotonic Reasoning - 15th International Conference, LPNMR
2019, Philadelphia, PA, USA, June 3-7, 2019, Proceedings, volume 11481 of Lecture Notes in
Computer Science, Springer, 2019, pp. 241–255. doi:10.1007/978-3-030-20528-7_18.

[8] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Multi-shot ASP solving with clingo,
Theory Pract. Log. Program. 19 (2019) 27–82. doi:10.1017/S1471068418000054.

[9] M. Gebser, B. Kaufmann, J. Romero, R. Otero, T. Schaub, P. Wanko, Domain-specific heuris-
tics in answer set programming, in: M. desJardins, M. L. Littman (Eds.), Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelligence, July 14-18, 2013, Bellevue,
Washington, USA, AAAI Press, 2013, pp. 350–356. URL: http://www.aaai.org/ocs/index.
php/AAAI/AAAI13/paper/view/6278.

[10] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski, J. Romero, T. Schaub,
S. Thiele, P. Wanko, Potassco guide version 2.2.0, 2019. URL: https://github.com/potassco/
guide/releases/tag/v2.2.0.

[11] A. Weinzierl, Blending lazy-grounding and CDNL search for answer-set solving, in:
M. Balduccini, T. Janhunen (Eds.), Logic Programming and Nonmonotonic Reasoning -
14th International Conference, LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings,
volume 10377 of Lecture Notes in Computer Science, Springer, 2017, pp. 191–204. doi:10.
1007/978-3-319-61660-5_17.

[12] R. Taupe, K. Schekotihin, P. Schüller, A. Weinzierl, G. Friedrich, Exploiting partial knowl-
edge in declarative domain-specific heuristics for ASP, in: B. Bogaerts, E. Erdem, P. Fodor,
A. Formisano, G. Ianni, D. Inclezan, G. Vidal, A. Villanueva, M. D. Vos, F. Yang (Eds.),
Proceedings 35th International Conference on Logic Programming (Technical Communi-
cations), ICLP 2019 Technical Communications, Las Cruces, NM, USA, September 20-25,

http://dx.doi.org/10.1007/978-3-030-24658-7
http://dx.doi.org/10.1007/978-3-030-24658-7
http://dx.doi.org/10.1017/S1471068416000284
http://dx.doi.org/10.1017/S1471068416000284
http://dx.doi.org/10.1007/s13218-018-0548-6
http://dx.doi.org/10.1007/s13218-018-0548-6
http://dx.doi.org/10.1007/978-3-030-20528-7_18
http://dx.doi.org/10.1017/S1471068418000054
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6278
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6278
https://github.com/potassco/guide/releases/tag/v2.2.0
https://github.com/potassco/guide/releases/tag/v2.2.0
http://dx.doi.org/10.1007/978-3-319-61660-5_17
http://dx.doi.org/10.1007/978-3-319-61660-5_17


2019, volume 306 of EPTCS, 2019, pp. 22–35. doi:10.4204/EPTCS.306.9.
[13] R. Taupe, G. Friedrich, K. Schekotihin, A. Weinzierl, Solving configuration problems

with ASP and declarative domain-specific heuristics, in: M. Aldanondo, A. A. Falkner,
A. Felfernig, M. Stettinger (Eds.), Proceedings of the 23rd International Configuration
Workshop (CWS/ConfWS 2021), Vienna, Austria, 16-17 September, 2021, volume 2945
of CEUR Workshop Proceedings, CEUR-WS.org, 2021, pp. 13–20. URL: http://ceur-ws.org/
Vol-2945/21-RT-ConfWS21_paper_4.pdf.

[14] R. Comploi-Taupe, Speeding Up Lazy-Grounding Answer Set Solving, Ph.D. thesis, Alpen-
Adria-Universität Klagenfurt, 2021. URL: https://digital.obvsg.at/urn/urn:nbn:at:at-ubk:
1-41351.

[15] G. Friedrich, A. Ryabokon, A. A. Falkner, A. Haselböck, G. Schenner, H. Schreiner,
(Re)configuration using answer set programming, in: K. M. Shchekotykhin, D. Jannach,
M. Zanker (Eds.), Proceedings of the IJCAI 2011 Workshop on Configuration, Barcelona,
Spain, July 16, 2011, volume 755 of CEUR Workshop Proceedings, CEUR-WS.org, 2011, pp.
17–24. URL: http://ceur-ws.org/Vol-755/paper03.pdf.

[16] A. Ryabokon, Knowledge-based (Re)configuration of Complex Products and Services, Ph.D.
thesis, Alpen-Adria-Universität Klagenfurt, 2015. URL: http://netlibrary.aau.at/urn:nbn:at:
at-ubk:1-26431.

[17] M. Law, A. Russo, K. Broda, The ILASP system for inductive learning of answer set
programs, CoRR abs/2005.00904 (2020). arXiv:2005.00904.

[18] M. Law, Conflict-driven inductive logic programming, Theory and Practice of Logic
Programming (2022). doi:10.1017/S1471068422000011.

[19] ILASP Limited, The ILASP manual, 2022. URL: https://doc.ilasp.com/.
[20] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,

M. Maratea, F. Ricca, T. Schaub, ASP-Core-2 input language format, Theory Pract.
Log. Program. 20 (2020) 294–309. doi:10.1017/S1471068419000450.

[21] C. Redl, Automated benchmarking of KR-systems, in: S. Bistarelli, A. Formisano,
M. Maratea (Eds.), Proceedings of the 23rd RCRA International Workshop on Experi-
mental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
2016 (RCRA 2016), Genova, Italy, November 28, 2016, volume 1745 of CEUR Workshop
Proceedings, CEUR-WS.org, 2016, pp. 45–56. URL: http://ceur-ws.org/Vol-1745/paper4.pdf.

[22] M. Balduccini, Learning and using domain-specific heuristics in ASP solvers, AI Commun.
24 (2011) 147–164. doi:10.3233/AIC-2011-0493.

[23] T. Syrjänen, I. Niemelä, The smodels system, in: T. Eiter, W. Faber, M. Truszczynski (Eds.),
Logic Programming and Nonmonotonic Reasoning, 6th International Conference, LPNMR
2001, Vienna, Austria, September 17-19, 2001, Proceedings, volume 2173 of Lecture Notes
in Computer Science, Springer, 2001, pp. 434–438. doi:10.1007/3-540-45402-0_38.

[24] D. Jannach, Toward automatically learned search heuristics for CSP-encoded configuration
problems – results from an initial experimental analysis, in: Configuration Workshop,
2013, pp. 9–13.

http://dx.doi.org/10.4204/EPTCS.306.9
http://ceur-ws.org/Vol-2945/21-RT-ConfWS21_paper_4.pdf
http://ceur-ws.org/Vol-2945/21-RT-ConfWS21_paper_4.pdf
https://digital.obvsg.at/urn/urn:nbn:at:at-ubk:1-41351
https://digital.obvsg.at/urn/urn:nbn:at:at-ubk:1-41351
http://ceur-ws.org/Vol-755/paper03.pdf
http://netlibrary.aau.at/urn:nbn:at:at-ubk:1-26431
http://netlibrary.aau.at/urn:nbn:at:at-ubk:1-26431
http://arxiv.org/abs/2005.00904
http://dx.doi.org/10.1017/S1471068422000011
https://doc.ilasp.com/
http://dx.doi.org/10.1017/S1471068419000450
http://ceur-ws.org/Vol-1745/paper4.pdf
http://dx.doi.org/10.3233/AIC-2011-0493
http://dx.doi.org/10.1007/3-540-45402-0_38

	1 Introduction
	2 Preliminaries
	2.1 Running Example: The House Reconfiguration Problem (HRP)
	2.2 Domain-Specific Heuristics in ASP
	2.3 Inductive Learning in ASP
	2.3.1 Mode Bias
	2.3.2 Examples


	3 Inductive Learning of Domain-Specific Heuristics
	3.1 Learning in the House Reconfiguration Problem
	3.2 Limitations and Future Work

	4 Experimental Results
	5 Related Work
	6 Conclusions and Future Work

