
Computing Eternal Vertex Cover Number of Maximal
Outerplanar Graphs in Linear Time
Jasine Babu

1,‡
, K. Murali Krishnan

2,†
, Veena Prabhakaran

1,*,†
and Nandini J. Warrier

2,†

1Indian Institute of Technology Palakkad, India
2National Institute of Technology Calicut, India

Abstract
Eternal vertex cover problem is a variant of the classical vertex cover problem modeled as a two player

attacker-defender game. Computing eternal vertex cover number of graphs is known to be NP-hard

in general and even for bipartite graphs. There is a quadratic complexity algorithm known for this

problem for chordal graphs. Maximal outerplanar graphs forms a subclass of chordal graphs, for which

no algorithm of sub-quadratic time complexity is known. In this paper, we obtain a linear time recursive

algorithm for computing eternal vertex cover number of maximal outerplanar graphs.

Keywords
Eternal Vertex Cover, Maximal Outerplanar Graph, Linear Time Algorithm

1. Introduction

A set 𝑆 of vertices in a graph 𝐺 forms a vertex cover of 𝐺 if every edge in 𝐺 has at least one

end point in 𝑆. The size of a minimum vertex cover in 𝐺, called the vertex cover number of 𝐺,

will be denoted by mvc(𝐺). The eternal vertex cover problem of graphs is motivated by the

following dynamic network security / fault-tolerance model. A network can be modeled by a

graph 𝐺(𝑉,𝐸), where the nodes of the network are represented by the vertices of 𝐺 and the

links by the edges of 𝐺. The problem is to deploy a minimum set of guards at the nodes, so that

if there is an attack (or fault) on a single link at any time, a guard is available at the end of the

link, who can move across the link to defend (or repair) the attack (or fault). Simultaneously, the

remaining guards need to reconfigure themselves, possibly by repositioning themselves to one

of their adjacent nodes, so that any attack (or fault) on a single edge at any future instant of time

can also be protected in the same manner. Thus, the model requires guaranteeing protection

against single link attacks/failures ad-infinitum. It is immediate that lowest number of guards

needed to achieve this goal in a graph 𝐺 is at least mvc(𝐺). If 𝑘 guards are sufficient to achieve

the goal, then we say that 𝐺 is 𝑘-defendable.

Formally, guards are initially placed on a vertex cover𝐶0 of𝐺, forming an initial configuration.

Proceedings of the 23rd Italian Conference on Theoretical Computer Science, Rome, Italy, September 7-9, 2022
*
Corresponding author.

†
These authors contributed equally.

‡
Jasine Babu acknowledges support from SERB Power Grant SPG/2021/003250

" jasine@iitpkd.ac.in (J. Babu); kmurali@nitc.ac.in (K. Murali Krishnan); veenaprabhakaran7@gmail.com

(V. Prabhakaran); nandini.wj@gmail.com (N. J. Warrier)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:jasine@iitpkd.ac.in
mailto:kmurali@nitc.ac.in
mailto:veenaprabhakaran7@gmail.com
mailto:nandini.wj@gmail.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Suppose at instant 𝑖, guards are placed in a configuration 𝐶𝑖 and an attack occurs on an arbitrary

edge 𝑢𝑣 ∈ 𝐸(𝐺), then a guard at either 𝑢 or 𝑣 (or both) must move across the edge. Other

guards may or not move across one of their neighboring edges simultaneously. At the end

of these movements, the next configuration 𝐶𝑖+1 is reached. To ensure that all edges remain

guarded at the instant 𝑖+ 1, we require 𝐶𝑖+1 to be a vertex cover of 𝐺. The minimum number

of guards necessary for a graph 𝐺 to be protected against any infinite sequence of single edge

attacks is called the eternal vertex cover number of 𝐺, denoted by evc(𝐺). The eternal vertex

cover problem has two models. The first one allows only at most one guard on a vertex in any

configuration, while in the second model this constraint is absent. The results in this paper

work in both the models.

Computing evc(𝐺) for an arbitrary graph 𝐺 is NP-hard, though in PSPACE [1], and is fixed

parameter tractable with evc(𝐺) as parameter [1]. Recently, it was shown that the problem

is NP-hard even for bipartite graphs [2]. It is also known that the problem is NP-complete

for biconnected internally triangulated planar graphs [3]. Polynomial time algorithms for

computing evc(𝐺) exactly were known only for very elementary graph classes such as an 𝑂(𝑛)
algorithm for trees [4], a polynomial time algorithm for a tree-like graph class [5] and a linear

time algorithm for cactus graphs [6]. A recent structure theorem developed in [7] has resulted

in a quadratic time algorithm for chordal graphs.

An outerplanar graph is a planar graph that admits a planar embedding with all its vertices

lying on the exterior face and it is maximal outerplanar if addition of any more edges between

existing vertices will make the graph not outerplanar. Since maximal outerplanar graphs are

chordal, it follows from [7] that its evc number can be computed in quadratic time. We improve

the complexity and show that the evc number of maximal outerplanar graphs can be computed

in linear time. The techniques used here are fundamentally different from that used in the

algorithm known for cactus graphs [6], which is based on the fact that no edge of a cactus graph

lies on more than one cycle.

Our algorithm takes a maximal outerplanar graph 𝐺 on at least three vertices and an edge

𝑢𝑣 on the outer face of 𝐺 and recursively computes evc(𝐺), mvc(𝐺) along with some related

parameters. If both 𝑢 and 𝑣 are of degree greater than two, then the recursion is applied on

the two induced subgraphs 𝐺𝑢 and 𝐺𝑣 of 𝐺 as shown in Figure 1. Otherwise, the recursion

works on the graph obtained by deleting the degree two end point of the edge 𝑢𝑣 from 𝐺. Since

evc(𝐺) happens to be not merely a function of the eternal vertex cover number and vertex

cover number of these associated subgraphs, the algorithm has to recursively compute this

larger set of parameters. The linear time complexity of the algorithm is derived from Theorems

1 to 4, which assert that evc(𝐺) can be determined in constant time from this larger set of

parameters of the associated subgraphs. Apart from the algorithmic result, these theorems serve

to demonstrate the structural connection between the minimum vertex cover problem and the

eternal vertex cover problem for maximal outerplanar graphs.

2. Preliminaries

Let 𝐺(𝑉,𝐸) be a graph with 𝑆 ⊆ 𝑉 . The parameter evc𝑆(𝐺) denotes the minimum number

𝑘 such that 𝐺 is 𝑘-defendable with all vertices of 𝑆 occupied in all configurations. Similarly,



u v

w

Gu Gv

Figure 1: 𝐺𝑢 is the 𝑢𝑣 segment of this graph that contains 𝑢 and 𝐺𝑣 is the 𝑢𝑣 segment that contains 𝑣.

mvc𝑆(𝐺) denote the size of the smallest cardinality vertex cover of 𝐺 containing all vertices of 𝑆.

When 𝑆 = {𝑣1 . . . 𝑣𝑖} for 1 ≤ 𝑖 ≤ 3, we shorten the notation evc{𝑣1...𝑣𝑖}(𝐺) and mvc{𝑣1...𝑣𝑖}(𝐺)
as evc𝑣1...𝑣𝑖(𝐺) and mvc𝑣1...𝑣𝑖(𝐺) respectively.

Proofs omitted from the main content due to space constraints are available in the arXiv

preprint [8]. Proposition 1 given below is an easy adaptation of a result given in [3].

Proposition 1. [3] Let 𝐺(𝑉,𝐸) be a maximal outerplanar graph with at least two vertices and
𝑆 ⊆ 𝑉 . If for every vertex 𝑣 ∈ 𝑉 ∖ 𝑆, mvc

𝑆∪{𝑣}(𝐺) = mvc𝑆 (𝐺), then evc𝑆 (𝐺) = mvc𝑆 (𝐺).
Otherwise, evc𝑆 (𝐺) = mvc𝑆 (𝐺) + 1. Hence, evc𝑆 (𝐺) = max𝑣∈𝑉 (𝐺)mvc

𝑆∪{𝑣}(𝐺).

The following proposition is a direct consequence of Proposition 1.

Proposition 2. Let 𝐺 be a maximal outerplanar graph with an edge 𝑢𝑣. Then, evc𝑣(𝐺) ≤
evc𝑢𝑣(𝐺) ≤ evc(𝐺) + 1.

From now on, whenever we say a graph is maximal outerplanar, we assume a fixed outerplanar

embedding of the graph. For a maximal outerplanar graph 𝐺 on at least three vertices and

any edge 𝑢𝑣 on the outer face of 𝐺, we use the notation ∆(𝑢𝑣) to denote the unique common

neighbor of 𝑢 and 𝑣.

Definition 1 (𝑢𝑣-segments). Let 𝐺 be a maximal outerplanar graph with at least three vertices.
Let 𝑢𝑣 be an edge on the outer face of 𝐺. Let 𝑤 = ∆(𝑢𝑣). We define the graph 𝐺𝑢(𝑢𝑣) (respectively,
𝐺𝑣(𝑢𝑣)) to be the maximal biconnected outerplanar subgraph of 𝐺 that satisfies the following two
properties (see Figure 1):

1. The edge 𝑢𝑤 (respectively, 𝑣𝑤) is on the outer face of 𝐺𝑢(𝑢𝑣) (respectively, 𝐺𝑣(𝑢𝑣)).
2. 𝐺𝑢(𝑢𝑣) (respectively, 𝐺𝑣(𝑢𝑣)) does not contain the vertex 𝑣 (respectively 𝑢).

𝐺𝑢(𝑢𝑣) and 𝐺𝑣(𝑢𝑣) will be called the 𝑢𝑣 segments of 𝐺.

Note 1. We will write 𝐺𝑢 and 𝐺𝑣 instead of 𝐺𝑢(𝑢𝑣) and 𝐺𝑣(𝑢𝑣) when there is no scope for
confusion. Observe that 𝐺𝑢 and 𝐺𝑣 will be single edge graphs if 𝐺 is a triangle.

Definition 2 (mvc and evc parameters). For a maximal outerplanar graph 𝐺 and an edge 𝑢𝑣,
the set of parameters M (𝐺, 𝑢𝑣) = {mvc(𝐺), mvc𝑢(𝐺), mvc𝑣(𝐺), mvc𝑢𝑣(𝐺)} is called the (set
of) mvc parameters of 𝐺 with respect to 𝑢𝑣 and the set E (𝐺, 𝑢𝑣) = {evc(𝐺), evc𝑢(𝐺), evc𝑣(𝐺),
evc𝑢𝑣(𝐺)} is called the (set of) evc parameters of 𝐺 with respect to 𝑢𝑣.



The following proposition that gives the mvc and evc parameters of a triangle is the base

case of the recursive computation of these parameters for larger graphs described in subsequent

sections.

Proposition 3. Suppose 𝐺 is a triangle and 𝑢𝑣 an edge of it. Then,

1. mvc(𝐺) = mvc𝑢(𝐺) = mvc𝑣(𝐺) = mvc𝑢𝑣(𝐺) = 2

2. evc(𝐺) = evc𝑢(𝐺) = evc𝑣(𝐺) = 2 and evc𝑢𝑣(𝐺) = 3

3. Computation of the mvc Parameters

Throughout this section, we assume that 𝐺 is a maximal outerplanar graph of at least four

vertices, 𝑢𝑣 is an edge on the outer face of 𝐺 and 𝑤 = ∆(𝑢𝑣). The results in this section show

that the mvc parameters of 𝐺 with respect to the edge 𝑢𝑣 - viz., M (𝐺, 𝑢𝑣), can be computed in

constant time if the mvc parameters of 𝐺𝑢 with respect to 𝑢𝑤 - viz., M (𝐺𝑢, 𝑢𝑤) and the mvc

parameters of 𝐺𝑣 with respect to 𝑣𝑤 - viz., M (𝐺𝑣, 𝑣𝑤) are given.

The following observation is easy to see.

Observation 1. If 𝑑𝑒𝑔𝐺(𝑢) = 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2, then,

1. mvc(𝐺) = mvc𝑣𝑤(𝐺 ∖ 𝑢)
2. mvc𝑢(𝐺) = mvc(𝐺 ∖ 𝑢) + 1

3. mvc𝑣(𝐺) = mvc(𝐺)

4. mvc𝑢𝑣(𝐺) = mvc𝑣(𝐺 ∖ 𝑢) + 1

The following theorem is a consequence of Observation 1.

Theorem 1. Let 𝐺 be a maximal outerplanar graph and 𝑢𝑣 be an edge on the outer face of 𝐺
such that 𝑑𝑒𝑔𝐺(𝑢) = 2. Let 𝑤 = ∆(𝑢𝑣).

1. Given M (𝐺 ∖ 𝑢, 𝑣𝑤), it is possible to compute mvc(𝐺) in constant time.
2. Given mvc(𝐺) and M (𝐺 ∖ 𝑢, 𝑣𝑤), it is possible to compute the remaining mvc parameters

of 𝐺 with respect to 𝑢𝑣 in constant time.

Now, we look at the computation of M (𝐺, 𝑢𝑣) when 𝑑𝑒𝑔𝐺(𝑢) > 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2. The

following proposition is easy to obtain.

Proposition 4. If 𝑑𝑒𝑔𝐺(𝑢) > 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2, then
mvc(𝐺) ∈ {mvc(𝐺𝑢) + mvc(𝐺𝑣)− 1,mvc(𝐺𝑢) + mvc(𝐺𝑣)}.

The following lemma gives a method to compute mvc(𝐺) using M (𝐺𝑢, 𝑢𝑤) and M (𝐺𝑣, 𝑣𝑤).

Lemma 1. If 𝑑𝑒𝑔𝐺(𝑢) > 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2, then mvc(𝐺) = min{mvc𝑤(𝐺𝑢)+mvc𝑣𝑤(𝐺𝑣)−
1,mvc𝑢𝑤(𝐺𝑢) + mvc𝑤(𝐺𝑣)− 1,mvc(𝐺𝑢) + mvc(𝐺𝑣)}.

The next lemma shows that given mvc(𝐺), M (𝐺𝑢, 𝑢𝑤) and M (𝐺𝑣, 𝑣𝑤), the values of

mvc𝑢(𝐺), mvc𝑣(𝐺) and mvc𝑢𝑣(𝐺) are computable in constant time.



Lemma 2. If 𝑑𝑒𝑔𝐺(𝑢) > 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2, then:

1. If mvc(𝐺) = mvc(𝐺𝑢) + mvc(𝐺𝑣) − 1, then mvc𝑢(𝐺) = mvc𝑢𝑤(𝐺𝑢) + mvc(𝐺𝑣) − 1,
mvc𝑣(𝐺) = mvc(𝐺𝑢)+mvc𝑣𝑤(𝐺𝑣)−1 and mvc𝑢𝑣(𝐺) = mvc𝑢𝑤(𝐺𝑢)+mvc𝑣𝑤(𝐺𝑣)−1.

2. If mvc(𝐺) = mvc(𝐺𝑢) + mvc(𝐺𝑣), then
mvc𝑢(𝐺) = min{mvc𝑢(𝐺𝑢) + mvc(𝐺𝑣),mvc(𝐺𝑢) + mvc𝑤(𝐺𝑣),mvc(𝐺) + 1},
mvc𝑣(𝐺) = min{mvc(𝐺𝑢) + mvc𝑣(𝐺𝑣),mvc𝑤(𝐺𝑢) + mvc(𝐺𝑣),mvc(𝐺) + 1} and
mvc𝑢𝑣(𝐺) = min{mvc𝑢(𝐺𝑢) + mvc𝑣(𝐺𝑣),mvc(𝐺) + 1}.

From Lemma 1 and Lemma 2, the following theorem is immediate.

Theorem 2. Let 𝐺 be a maximal outerplanar graph and 𝑢𝑣 be an edge on the outer face of 𝐺
such that 𝑑𝑒𝑔𝐺(𝑢) > 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2. Let 𝑤 = ∆(𝑢𝑣).

1. Given M (𝐺𝑢, 𝑢𝑤) and M (𝐺𝑣, 𝑣𝑤), it is possible to compute mvc(𝐺) in constant time.
2. Given mvc(𝐺), M (𝐺𝑢, 𝑢𝑤) and M (𝐺𝑣, 𝑣𝑤), it is possible to compute the remaining mvc

parameters of 𝐺 with respect to 𝑢𝑣 in constant time.

4. Bounds on the evc Parameters

In this section, we will derive some bounds on the evc parameters of a maximal outerplanar

graph. These bounds will be used in the next section for the recursive computation of the evc

parameters. Throughout this section, we consider 𝐺 to be a maximal outerplanar graph on at

least four vertices, 𝑢𝑣 an edge on its outer face and 𝑤 = ∆(𝑢𝑣). First, we derive some bounds

for E (𝐺, 𝑢𝑣) when 𝑑𝑒𝑔𝐺(𝑢) = 2.

The proof of the lemma below is easy to obtain by repeated applications of Proposition 1.

Lemma 3. If 𝑢 is a degree-2 vertex in 𝐺, then:

1. evc(𝐺) ≤ evc𝑢(𝐺) = evc(𝐺 ∖ 𝑢) + 1

2. evc𝑢𝑣(𝐺) = evc𝑣(𝐺 ∖ 𝑢) + 1

3. evc(𝐺) ≥ 𝑚𝑎𝑥{mvc(𝐺 ∖ 𝑢) + 1, evc𝑣𝑤(𝐺 ∖ 𝑢)}
4. evc𝑣(𝐺) = max{mvc𝑢𝑣(𝐺), evc(𝐺)}

Now, we derive some upper bounds for E (𝐺, 𝑢𝑣) when 𝑑𝑒𝑔𝐺(𝑢) > 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2. The

following proposition is a direct consequence of Proposition 1.

Proposition 5.

1. max𝑥∈𝑉 (𝐺𝑣)mvc𝑥(𝐺) ≤ min{mvc𝑤(𝐺𝑢) + evc𝑣𝑤(𝐺𝑣)− 1,
mvc𝑢𝑤(𝐺𝑢) + evc𝑤(𝐺𝑣)− 1,mvc(𝐺𝑢) + evc(𝐺𝑣)}

2. max𝑥∈𝑉 (𝐺𝑢)mvc𝑥(𝐺) ≤ min{evc𝑢𝑤(𝐺𝑢) + mvc𝑤(𝐺𝑣)− 1,
evc𝑤(𝐺𝑢) + mvc𝑣𝑤(𝐺𝑣)− 1, evc(𝐺𝑢) + mvc(𝐺𝑣)}

The proof of Lemma 4 follows easily from propositions 1 and 5.

Lemma 4. If 𝑑𝑒𝑔𝐺(𝑢) > 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2, then:



1. evc(𝐺) ≤ min{mvc(𝐺) + 1, evc𝑤(𝐺𝑢) + evc𝑤(𝐺𝑣)− 1}
2. evc(𝐺) ≤ max{𝑈, 𝑉 }, where 𝑈 = min{evc𝑢𝑤(𝐺𝑢) + mvc𝑤(𝐺𝑣) − 1, evc𝑤(𝐺𝑢) +

mvc𝑣𝑤(𝐺𝑣) − 1, evc(𝐺𝑢) + mvc(𝐺𝑣)} and 𝑉 = min{mvc𝑤(𝐺𝑢) + evc𝑣𝑤(𝐺𝑣) −
1,mvc𝑢𝑤(𝐺𝑢) + evc𝑤(𝐺𝑣)− 1,mvc(𝐺𝑢) + evc(𝐺𝑣)}

In a similar way, we can also prove Lemma 5 and Lemma 6, which give upper bounds on

evc𝑣(𝐺) and evc𝑢𝑣(𝐺) respectively.

Lemma 5. If 𝑑𝑒𝑔𝐺(𝑢) > 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2, then:
1. evc𝑣(𝐺) ≤ min{evc(𝐺) + 1,mvc𝑣(𝐺) + 1, evc𝑤(𝐺𝑢) + evc𝑣𝑤(𝐺𝑣)− 1}
2. evc𝑣(𝐺) ≤ max{𝑈, 𝑉 }, where 𝑈 = min{evc(𝐺𝑢) + mvc𝑣(𝐺𝑣), evc𝑤(𝐺𝑢) +

mvc𝑣𝑤(𝐺𝑣)− 1} and 𝑉 = min{mvc(𝐺𝑢) + evc𝑣(𝐺𝑣),mvc𝑤(𝐺𝑢) + evc𝑣𝑤(𝐺𝑣)− 1}
Lemma 6. If 𝑑𝑒𝑔𝐺(𝑢) > 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2, then:

1. evc𝑢𝑣(𝐺) ≤ min{evc(𝐺) + 1,mvc𝑢𝑣(𝐺) + 1,max{𝑃1, 𝑃2}}, where
𝑃1 = 𝑚𝑖𝑛{evc𝑢𝑤(𝐺𝑢) + mvc𝑣𝑤(𝐺𝑣)− 1, evc𝑢(𝐺𝑢) + mvc𝑣(𝐺𝑣)} and
𝑃2 = 𝑚𝑖𝑛{mvc𝑢𝑤(𝐺𝑢) + evc𝑣𝑤(𝐺𝑣)− 1,mvc𝑢(𝐺𝑢) + evc𝑣(𝐺𝑣)}

2. evc𝑢𝑣(𝐺) ≤ min{𝑄, evc𝑢𝑤(𝐺𝑢) + evc𝑣𝑤(𝐺𝑣) − 1, evc𝑢(𝐺𝑢) + evc(𝐺𝑣), evc𝑣(𝐺𝑣) +
evc(𝐺𝑢)}, where 𝑄 = max{evc𝑢(𝐺𝑢) + evc𝑣𝑤(𝐺𝑣)− 1, evc𝑢(𝐺𝑢) + mvc𝑣(𝐺𝑣)}

The next lemma gives some lower bounds for E (𝐺, 𝑢𝑣) when 𝑑𝑒𝑔𝐺(𝑢) > 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2.

Lemma 7. If 𝑑𝑒𝑔𝐺(𝑢) > 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2, then:
1. evc(𝐺) ≥ max{evc𝑤(𝐺𝑢) + mvc(𝐺𝑣)− 1,mvc(𝐺𝑢) + evc𝑤(𝐺𝑣)− 1}
2. evc𝑢(𝐺) ≥ max{evc(𝐺),mvc𝑢𝑤(𝐺𝑢) + evc(𝐺𝑣)− 1, evc𝑢𝑤(𝐺𝑢) + mvc(𝐺𝑣)− 1,

evc𝑢(𝐺𝑢) + mvc𝑤(𝐺𝑣)− 1}
3. evc𝑢𝑣(𝐺) ≥ max{evc(𝐺), evc𝑢(𝐺), evc𝑣(𝐺),mvc𝑢𝑤(𝐺𝑢) + evc𝑣(𝐺𝑣)− 1,

evc𝑢(𝐺𝑢)+mvc𝑣𝑤(𝐺𝑣)− 1, evc𝑢𝑤(𝐺𝑢)+mvc𝑣(𝐺𝑣)− 1,mvc𝑢(𝐺𝑢)+ evc𝑣𝑤(𝐺𝑣)− 1}

5. Computation of the evc Parameters

Let 𝐺 be a maximal outerplanar graph with at least four vertices, 𝑢𝑣 be an edge on its outer

face and 𝑤 = ∆(𝑢𝑣). In this section, we describe the method of computing E (𝐺, 𝑢𝑣) using the

bounds obtained in Section 4.

5.1. Computing E (𝐺, 𝑢𝑣) when 𝑑𝑒𝑔𝐺(𝑢) = 2

In this subsection, we consider the case when 𝑢 is a degree-2 vertex in 𝐺. Bounds obtained in

Proposition 2 and Lemma 3 together with Proposition 1 give the following.

Lemma 8. evc(𝐺) = max{mvc(𝐺 ∖ 𝑢) + 1, evc𝑣𝑤(𝐺 ∖ 𝑢)}.
From Lemma 3 and Lemma 8, the following theorem is immediate.

Theorem 3. Let 𝐺 be a maximal outerplanar graph and 𝑢 be a degree-2 vertex in 𝐺 with neighbors
𝑣 and 𝑤.

1. Given mvc(𝐺 ∖ 𝑢) and E (𝐺 ∖ 𝑢, 𝑣𝑤), it is possible to compute evc(𝐺) in constant time.
2. Given evc(𝐺), M (𝐺, 𝑢𝑣) and E (𝐺 ∖ 𝑢, 𝑣𝑤), it is possible to compute the remaining evc

parameters of 𝐺 with respect to 𝑢𝑣 in constant time.



5.2. Computing E (𝐺, 𝑢𝑣) when 𝑑𝑒𝑔𝐺(𝑢) > 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2

Now, we will see how E (𝐺, 𝑢𝑣) can be computed when 𝑑𝑒𝑔𝐺(𝑢) > 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2 using

mvc(𝐺), M (𝐺𝑢, 𝑢𝑤), M (𝐺𝑣, 𝑣𝑤), E (𝐺𝑢, 𝑢𝑤) and E (𝐺𝑣, 𝑣𝑤). For this subsection, we will

assume that 𝑑𝑒𝑔𝐺(𝑢) > 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2. We will also assume that mvc(𝐺𝑢) = 𝑘𝑢 and

mvc(𝐺𝑣) = 𝑘𝑣 .

Lemma 9 handles the computation of evc(𝐺). The proof of this lemma uses the bounds

obtained in Lemma 4 and Lemma 7.

Lemma 9.

1. If evc(𝐺𝑢) = 𝑘𝑢 and evc(𝐺𝑣) = 𝑘𝑣 , then

• evc(𝐺) = max{evc𝑤(𝐺𝑢) + mvc(𝐺𝑣)− 1,mvc(𝐺𝑢) + evc𝑤(𝐺𝑣)− 1}.
2. If evc(𝐺𝑢) = 𝑘𝑢 and evc(𝐺𝑣) = 𝑘𝑣 + 1, then

• evc(𝐺) = min{mvc(𝐺)+1, evc(𝐺𝑢)+evc𝑣𝑤(𝐺𝑣)−1, mvc𝑢𝑤(𝐺𝑢)+evc𝑤(𝐺𝑣)−1}.
3. If evc(𝐺𝑢) = 𝑘𝑢 + 1 and evc(𝐺𝑣) = 𝑘𝑣 + 1, then

• evc(𝐺) = min{mvc(𝐺) + 1,max{evc𝑢𝑤(𝐺𝑢) + mvc𝑤(𝐺𝑣) − 1,mvc𝑤(𝐺𝑢) +
evc𝑣𝑤(𝐺𝑣)− 1}}.

Lemmas 10-12 deal with the computation of the remaining parameters in E (𝐺, 𝑢𝑣) using

evc(𝐺), M (𝐺, 𝑢𝑣), M (𝐺𝑢, 𝑢𝑤), M (𝐺𝑣, 𝑣𝑤), E (𝐺𝑢, 𝑢𝑤) and E (𝐺𝑣, 𝑣𝑤). The proofs of these

lemmas critically use the bounds stated in lemmas 5-7.

Lemma 10. Suppose evc(𝐺𝑢) = 𝑘𝑢 and evc(𝐺𝑣) = 𝑘𝑣 .

1. If evc(𝐺) = 𝑘𝑢 + 𝑘𝑣 − 1, then

• evc𝑢(𝐺) = evc𝑢𝑤(𝐺𝑢) + mvc(𝐺𝑣)− 1.
• evc𝑣(𝐺) = evc𝑣𝑤(𝐺𝑣) + mvc(𝐺𝑢)− 1.
• evc𝑢𝑣(𝐺) = 𝑚𝑖𝑛{mvc𝑢𝑣(𝐺) + 1, evc𝑢𝑤(𝐺𝑢) + evc𝑣𝑤(𝐺𝑣)− 1}.

2. If evc(𝐺) = 𝑘𝑢 + 𝑘𝑣 , then

• evc𝑢(𝐺) = evc𝑣(𝐺) = evc(𝐺).
• evc𝑢𝑣(𝐺) = min{evc𝑢(𝐺𝑢) + mvc(𝐺𝑣), evc𝑣(𝐺𝑣) + mvc(𝐺𝑢),mvc𝑢𝑣(𝐺) + 1}.

Lemma 11. Suppose evc(𝐺𝑢) = 𝑘𝑢 and evc(𝐺𝑣) = 𝑘𝑣 + 1.

1. If mvc(𝐺) = 𝑘𝑢 + 𝑘𝑣 − 1, then

• evc𝑢(𝐺) = mvc𝑢𝑤(𝐺𝑢) + evc(𝐺𝑣)− 1.
• evc𝑣(𝐺) = min{mvc𝑣(𝐺) + 1, evc𝑤(𝐺𝑢) + evc𝑣𝑤(𝐺𝑣) − 1,max{mvc𝑤(𝐺𝑢) +
evc𝑣𝑤(𝐺𝑣)− 1, evc(𝐺𝑢) + mvc𝑣(𝐺𝑣)}}.

• evc𝑢𝑣(𝐺) = min{mvc𝑢𝑣(𝐺) + 1, evc𝑢𝑤(𝐺𝑢) + evc𝑣𝑤(𝐺𝑣) − 1, evc𝑢(𝐺𝑢) +
max{evc𝑣𝑤(𝐺𝑣)− 1,mvc𝑣(𝐺𝑣)}}.

2. If mvc(𝐺) = 𝑒𝑣𝑐(𝐺) = 𝑘𝑢 + 𝑘𝑣 , then

• evc𝑢(𝐺) = evc𝑢(𝐺𝑢) + evc𝑤(𝐺𝑣)− 1



• evc𝑣(𝐺) = min{mvc𝑣(𝐺) + 1, evc𝑤(𝐺𝑢) + evc𝑣𝑤(𝐺𝑣) − 1,max{mvc𝑤(𝐺𝑢) +
evc𝑣𝑤(𝐺𝑣)− 1, evc(𝐺𝑢) + mvc𝑣(𝐺𝑣)}}

• evc𝑢𝑣(𝐺) = min{evc(𝐺) + 1,max{evc𝑢(𝐺𝑢) + mvc𝑣(𝐺𝑣), evc𝑢(𝐺𝑢) +
evc𝑣𝑤(𝐺𝑣)− 1}}.

3. If evc(𝐺) = 𝑘𝑢 + 𝑘𝑣 + 1, then

• evc𝑢(𝐺) = evc𝑣(𝐺) = evc(𝐺)

• evc𝑢𝑣(𝐺) = min{mvc𝑢𝑣(𝐺) + 1, evc(𝐺𝑢) + evc𝑣(𝐺𝑣)}.

Lemma 12. Suppose evc(𝐺𝑢) = 𝑘𝑢 + 1 and evc(𝐺𝑣) = 𝑘𝑣 + 1. Then,

1. evc𝑢(𝐺) = min{mvc𝑢(𝐺) + 1, evc𝑢(𝐺𝑢) + evc𝑤(𝐺𝑣)− 1}
2. evc𝑣(𝐺) = min{mvc𝑣(𝐺) + 1, evc𝑣(𝐺𝑣) + evc𝑤(𝐺𝑢)− 1}
3. • If mvc𝑢𝑣(𝐺) ≤ 𝑘𝑢 + 𝑘𝑣 then evc𝑢𝑣(𝐺) = mvc𝑢𝑣(𝐺) + 1.

• Otherwise, evc𝑢𝑣(𝐺) = 𝑚𝑖𝑛(mvc𝑢𝑣(𝐺) + 1,𝑚𝑎𝑥(𝑄1, 𝑄2)), where
𝑄1 = 𝑚𝑖𝑛(evc𝑢𝑤(𝐺𝑢) + mvc𝑣𝑤(𝐺𝑣)− 1, evc𝑢(𝐺𝑢) + mvc𝑣(𝐺𝑣)) and
𝑄2 = 𝑚𝑖𝑛(evc𝑣𝑤(𝐺𝑣) + mvc𝑢𝑤(𝐺𝑢)− 1, evc𝑣(𝐺𝑣) + mvc𝑢(𝐺𝑢)).

From Lemma 9-12, the following theorem is immediate.

Theorem 4. Let 𝐺 be a maximal outerplanar graph and 𝑢𝑣 be an edge on the outer face of 𝐺
such that 𝑑𝑒𝑔𝐺(𝑢) > 2 and 𝑑𝑒𝑔𝐺(𝑣) > 2. Let 𝑤 = ∆(𝑢𝑣).

1. Given M (𝐺𝑢, 𝑢𝑤), E (𝐺𝑢, 𝑢𝑤), M (𝐺𝑣, 𝑣𝑤) and E (𝐺𝑣, 𝑣𝑤), it is possible to compute
evc(𝐺) in constant time.

2. Given evc(𝐺), M (𝐺, 𝑢𝑣), M (𝐺𝑢, 𝑢𝑤), E (𝐺𝑢, 𝑢𝑤), M (𝐺𝑣, 𝑣𝑤) and E (𝐺𝑣, 𝑣𝑤), it is
possible to compute the remaining evc parameters of 𝐺 with respect to 𝑢𝑣 in constant time.

6. A Linear Time Algorithm to Compute evc Number

In this section, we formulate a divide and conquer algorithm that takes a pair (𝐺, 𝑢𝑣) as input,

where 𝐺 is a maximal outerplanar graph and 𝑢𝑣 is an edge on its outer face, and recursively

computes M (𝐺, 𝑢𝑣) and E (𝐺, 𝑢𝑣). The case when 𝐺 is a triangle forms the base case of

the recursion and it is handled using Proposition 3. Let 𝑤 = ∆(𝑢𝑣). If 𝑑𝑒𝑔𝐺(𝑢) > 2 and

𝑑𝑒𝑔𝐺(𝑣) > 2, then the recursion works on (𝐺𝑢, 𝑢𝑤) and (𝐺𝑣, 𝑣𝑤) using Theorem 2 and

Theorem 4. Otherwise, suppose 𝑢′ is the degree-2 vertex among 𝑢 and 𝑣 and 𝑣′ is the other one.

In this case, the recursion works on (𝐺 ∖ 𝑢′, 𝑣′𝑤) using Theorem 1 and Theorem 3.

A high level overview of our method is given in Algorithm 1. To obtain the linear time

guarantee, we need to ensure that the time spent in steps other than the recursive calls is 𝑂(1).
Theorems 1-4 guarantee that lines 8− 11 and lines 17− 20 work in constant time, forming the

most crucial part of our algorithm. However, we will have to avoid the explicit computation of

the subgraphs and passing them as explicit parameters in the recursive calls using a refinement

of Algorithm 1.



Algorithm 1 To compute M (𝐺, 𝑢𝑣) and E (𝐺, 𝑢𝑣) of a maximal outerplanar graph 𝐺 with 𝑢𝑣
an edge on its outer face. [A high level overview]

Inputs: A maximal outerplanar graph 𝐺 with at least three vertices, an edge 𝑢𝑣 on the outer

face of 𝐺.

Outputs: M (𝐺, 𝑢𝑣) and E (𝐺, 𝑢𝑣).

1: procedure EVC_Parameters(𝐺, 𝑢𝑣)

2: 𝑤 ← ∆(𝑢𝑣).
3: if 𝐺 is a triangle then
4: mvc(𝐺)=evc(𝐺)=mvc𝑢(𝐺)=mvc𝑣(𝐺)=mvc𝑢𝑣(𝐺)=2, evc𝑢(𝐺)=evc𝑣(𝐺)=2,

evc𝑢𝑣(𝐺)=3.

5: else if One end point of 𝑢𝑣 is degree-2 then
6: 𝑢′=degree-2 end point of 𝑢𝑣, 𝑣′=higher degree end point of 𝑢𝑣.

7: Recursively call EVC_Parameters(𝐺 ∖ 𝑢′, 𝑣′𝑤).
8: Compute mvc(𝐺) using Theorem 1 (Part 1).

9: Compute mvc𝑢(𝐺), mvc𝑣(𝐺) and mvc𝑢𝑣(𝐺) using Theorem 1 (Part 2).

10: Compute evc(𝐺) using Theorem 3 (Part 1).

11: Compute evc𝑢𝑣(𝐺) in constant using Theorem 3 (Part 2).

12: else
13: 𝐺𝑢 ← 𝑢𝑣-segment of 𝐺 containing the vertex 𝑢
14: 𝐺𝑣 ← 𝑢𝑣-segment of 𝐺 containing the vertex 𝑣
15: Recursively call EVC_Parameters(𝐺𝑢, 𝑢𝑤).
16: Recursively call EVC_Parameters(𝐺𝑣, 𝑣𝑤).
17: Compute mvc(𝐺) using Theorem 2 (Part 1).

18: Compute mvc𝑢(𝐺), mvc𝑣(𝐺), mvc𝑢𝑣(𝐺) using Theorem 2 (Part 2).

19: Compute evc(𝐺) using Theorem 4 (Part 1).

20: Compute evc𝑢(𝐺), evc𝑣(𝐺), evc𝑢𝑣(𝐺) using Theorem 4 (Part 2).

21: end if
22: return (M (𝐺, 𝑢𝑣) and E (𝐺, 𝑢𝑣))
23: end procedure

For the purpose of a refined algorithm, we maintain a Vertex Edge Face Adjacency List data

structure using which the following operations are possible:

• For any edge 𝑒, in constant time we can traverse through the internal faces on which the

edge 𝑒 lies.

• For any internal face 𝑓 , in constant time we can traverse through the edges on the

boundary of 𝑓 .

The details of the data structure is given in Figure 2. For any edge 𝑣𝑖𝑣𝑗 , there are links between

the edge node 𝑣𝑖𝑣𝑗 and the edge node 𝑣𝑗𝑣𝑖. For each face 𝑓 in 𝐺, the face node representing

𝑓 contains links to the edge nodes corresponding to the bounding edges of 𝑓 and vice versa.

Remember that each edge of 𝐺 has two edge nodes corresponding to it. Hence, for each face

node 𝑓 , there are six pointers to edge nodes. For each face node, there is a visit field which is

initialized to unvisited. Each vertex node has a mark field, which is initialized to unmarked, the



cur-edge field which is initialized to null and a pointer to the beginning of the adjacency list of

that vertex.

struct edgenode
{
int vertex1;
int vertex2;
facenode ∗f1;
facenode ∗f2 ;
edgenode *pair;

}

struct vertex
{

int vnum;

boolean mark;

edgenode*head;

edgenode *cur-edge;
}

struct facenode
{
edgenode ∗e1;

edgenode ∗e2;

boolean visit;

}

edgenode ∗e3;edgenode *next;

struct vertex Varray[size]

edgenode ∗pair-e1;

edgenode ∗pair-e2;

edgenode ∗pair-e3;

int degree

Figure 2: Details of the vertex edge face adjacency list data structure.

Algorithm 2 gives a linear time refinement of Algorithm 1. To compute the evc number

of a maximal outerplanar graph, we pass an edge 𝑢𝑣 on the outer face of the graph as input

parameter to the algorithm. We assume that the vertex face adjacency list of this graph is

maintained as a global data structure. It may be noted that the Vertex Edge Face Adjacency List

of a maximal outerplanar graph can be produced in linear time by modifying the algorithm

suggested by N. Chiba and T. Nishizeki [9] for listing all the triangles of a planar graph.

Using the visit field of faces in the data structure, we avoid passing the subgraph as an explicit

parameter in recursive calls. Initially, the visit field of all (internal) faces are set to unvisited.

Note that, the edge 𝑢𝑣 is present in exactly one unvisited face 𝑢𝑣𝑤 initially. In subsequent

recursive calls, the following invariants will be maintained:

• the edge 𝑒 passed as parameter to the recursion is present in exactly one unvisited face 𝑓 .

• The 𝑒-segment of 𝐺 that contains the unvisited face 𝑓 containing 𝑒 is precisely the

subgraph on which the recursive call in Algorithm 1 would have been made.

Now we explain how the correspondence between the computational steps of Algorithm 1 and

Algorithm 2 are maintained.

In line number 2 of Algorithm 1, we find the unique common neighbor 𝑤 of 𝑢 and 𝑣 in the

input graph. Instead of this step, line number 2 of Algorithm 2 identifies 𝑤 as the third vertex in

the unique unvisited face containing the edge 𝑢𝑣. After this, the face 𝑢𝑣𝑤 is marked as visited

in line number 4 of Algorithm 2 and subsequently the edges 𝑢𝑤 and 𝑣𝑤 are in at most one

unvisited face each.

Algorithm 1 is divided into following three cases:

1. The input graph is a triangle (degrees of both the end vertices of the edge 𝑢𝑣 are 2). Refer

to line number 3 of Algorithm 1.

2. The input graph is not a triangle and exactly one end vertex of the input edge 𝑢𝑣 is of

degree 2. Refer to line number 5 of Algorithm 1.

3. The input graph is not a triangle and both the end vertices of the input edge 𝑢𝑣 has degree

greater than 2. Refer to line number 12 of Algorithm 1.



The three cases of Algorithm 2 corresponding to the three cases of Algorithm 1 are as follows:

1. Both edges 𝑢𝑤 and 𝑣𝑤 lie in no unvisited face and thereby 𝑢𝑣𝑤 is a triangle. Refer to

line number 5 of Algorithm 2.

2. Exactly one among the edges 𝑢𝑤 and 𝑣𝑤 lie in an unvisited face. Refer to line number 8

of Algorithm 2.

3. Both 𝑢𝑤 and 𝑣𝑤 lie in one unvisited face each. Refer to line number 16 of Algorithm 2.

Algorithm 2 For computing M (𝐺, 𝑢𝑣) and E (𝐺, 𝑢𝑣) of a maximal outerplanar graph 𝐺 with

𝑢𝑣 an edge on its outer face in linear time

Inputs: An edge 𝑢𝑣 on the outer face of the maximal outerplanar graph 𝐺 that has at least

three vertices.

Output: M (𝐺, 𝑢𝑣) and E (𝐺, 𝑢𝑣).
Assumption: The vertex edge face adjacency list is maintained globally.

1: procedure EVC_Parameters

2: Identify the unvisited face 𝑢𝑣𝑤 in which the edge 𝑢𝑣 lie.

3: ◁ Possible in constant time by vertex edge face adjacency list

4: Set the visit field of the face 𝑢𝑣𝑤 to visited.

5: if neither edge 𝑢𝑤 nor edge 𝑣𝑤 is in any unvisited faces then
6: ◁ Possible to check in constant time using vertex edge face adjacency list

7: mvc(𝐺)=evc(𝐺)=mvc𝑢(𝐺)=mvc𝑣(𝐺)=mvc𝑢𝑣(𝐺)=2, evc𝑢(𝐺)=evc𝑣(𝐺)=2,

evc𝑢𝑣(𝐺)=3.

8: else if exactly one among 𝑢𝑤 and 𝑣𝑤 lie in an unvisited face then
9: ◁ Possible to check in constant time using the vertex edge face adjacency list

10: 𝑒 be the edge among 𝑢𝑤 and 𝑣𝑤 that lie in an unvisited face.

11: 𝑡←− EVC_Parameters(𝑒).
12: Compute mvc(𝐺) in constant time using Theorem 1 (part 1).

13: Compute mvc𝑢(𝐺), mvc𝑣(𝐺) and mvc𝑢𝑣(𝐺) in constant time using Theorem 1 (part

2).

14: Compute evc(𝐺) in constant time using Theorem 3 (part 1).

15: Compute evc𝑢𝑣(𝐺) in constant using Theorem 3 (part 2).

16: else
17: 𝑡1 ←− EVC_Parameters(𝑢𝑤).
18: 𝑡2 ←− EVC_Parameters(𝑣𝑤).
19: Compute mvc(𝐺) in constant time using Theorem 2 (part 1).

20: Compute mvc𝑢(𝐺), mvc𝑣(𝐺), mvc𝑢𝑣(𝐺) in constant time using Theorem 2 (part 2).

21: Compute evc(𝐺) in constant time using Theorem 4 (part 1).

22: Compute evc𝑢(𝐺), evc𝑣(𝐺), evc𝑢𝑣(𝐺) in constant time using Theorem 4 (part 2).

23: end if
24: return (M (𝐺, 𝑢𝑣) and E (𝐺, 𝑢𝑣))
25: end procedure

Now, we show that line number 3 of Algorithm 1 is equivalent to line number 5 of Algorithm 2.

In line number 3 of Algorithm 1, we check whether the input graph is a triangle, which is the



base case. Equivalently, by the invariants stated above, in Algorithm 2, it is enough to check

if the 𝑢𝑣-segment of 𝐺 containing the face 𝑢𝑣𝑤 is a triangle. In line 5 of Algorithm 2, we do

the following in constant time using vertex edge face adjacency list: We check if 𝑢𝑤 or 𝑣𝑤
lie in any unvisited face. If neither 𝑢𝑤 nor 𝑣𝑤 lie in an unvisited face, then we can infer that

𝑢𝑣-segment of 𝐺 containing the face 𝑢𝑣𝑤 is a triangle.

In line 5 of Algorithm 1, we check whether exactly one end vertex of the edge 𝑢𝑣 is of degree

2. In line number 8 of Algorithm 2, if 𝑢𝑤 (respectively, 𝑣𝑤) is in any univisited face, then we

can infer that the degree of the vertex 𝑢 (respectively, 𝑣) is greater than 2 in the 𝑢𝑣-segment of

𝐺 that contains the face 𝑢𝑣𝑤. Otherwise, the degree of 𝑢 (respectively, 𝑣) in the 𝑢𝑣-segment of

𝐺 that contains the face 𝑢𝑣𝑤 is equal to 2.

In line number 7 of Algorithm 1, we recursively call the function EVC_Parameters with two

input parameters: (1) the graph obtained by deleting the degree-2 endpoint 𝑢′ of the edge 𝑢𝑣
from the input graph and (2) the edge 𝑣′𝑤 bounding the face 𝑢𝑣𝑤, where degree of 𝑣′ is greater

than 2 in the input graph. Since in Algorithm 2, 𝑢𝑣𝑤 is already marked as visited in line number

4, it is enough to invoke the recursive call with the edge 𝑒 as parameter, where 𝑒 is the bounding

edge of the face 𝑢𝑣𝑤 with one unvisited face adjacent to it. This is achieved in line number 12

of Algorithm 2, in which we recursively call the function EVC_Parameters with the edge 𝑒 as

input, where 𝑒 is that edge among the edges 𝑢𝑤 and 𝑣𝑤 which lies in an unvisited face. Note

that the invariants of the Algorithm 2 are maintained.

The equivalence between line number 12 of Algorithm 1 and line number 16 of Algorithm 2

follows from our arguments so far. In line number 15 (respectively, 16) of Algorithm 1, a recursive

call to the algorithm is made with input parameters: (1) 𝐺𝑢 (respectively, 𝐺𝑣), the 𝑢𝑤-segment

(respectively, 𝑣𝑤-segment) of 𝐺 that does not contain the edge 𝑣𝑤 (respectively, 𝑢𝑤) and (2)

the edge 𝑢𝑤 (respectively, 𝑣𝑤). Note that the edges bounding the face 𝑢𝑣𝑤, other than 𝑢𝑣, are

used as parameters in these two calls. Equivalently, in line number 17 and 18 of Algorithm 2,

recursive calls are made respectively with the edges 𝑢𝑤 and 𝑣𝑤 as input parameters. Since the

face 𝑢𝑣𝑤 is marked as visited already, the invariants of the algorithm are maintained here as

well.

Thus, we can see that Algorithm 2 is a linear time implementation of Algorithm 1.

7. Conclusion
This paper presents a linear time algorithm for computing the eternal vertex cover number

of maximal outerplanar graphs, lowering the best known upper bound to the complexity of

the problem from quadratic [7] time to linear. The techniques presented in the paper make

crucial use of the planarity of the underlying graph to yield a divide and conquer algorithm

for computing the evc number of a maximal outerplanar graph. Attempts to generalize our

techniques to maximal planar graphs may not be successful due to the known NP-hardness

result on the evc computation of biconnected internally triangulated planar graphs [3]. The

complexity status of the problem of computing the evc number of outerplanar graphs is open,

and may be attempted using some techniques developed in this work. However, the observation

that for a chordal graph, any vertex cover containing all its cut vertices is connected [3], which

yields Proposition 1 that is extensively used in this work, does not hold for outerplanar graphs.



References

[1] F. V. Fomin, S. Gaspers, P. A. Golovach, D. Kratsch, S. Saurabh, Parameterized algorithm for

eternal vertex cover, Information Processing Letters 110 (2010) 702 – 706.

[2] N. Misra, S. Nanoti, Eternal vertex cover on bipartite and co-bipartite graphs, CoRR

abs/2201.03820 (2022). URL: https://arxiv.org/abs/2201.03820. arXiv:2201.03820.

[3] J. Babu, L. S. Chandran, M. Francis, V. Prabhakaran, D. Rajendraprasad, N. J. Warrier, On

graphs whose eternal vertex cover number and vertex cover number coincide, Discrete

Applied Mathematics 319 (2022) 171–182. doi:https://doi.org/10.1016/j.dam.2021.
02.004.

[4] W. Klostermeyer, C. Mynhardt, Edge protection in graphs, Australasian Journal of Combi-

natorics 45 (2009) 235 – 250.

[5] H. Araki, T. Fujito, S. Inoue, On the eternal vertex cover numbers of generalized trees, IEICE

Transactions on Fundamentals of Electronics, Communications and Computer Sciences

E98.A (2015) 1153–1160. doi:10.1587/transfun.E98.A.1153.

[6] J. Babu, V. Prabhakaran, A. Sharma, A substructure based lower bound for eternal vertex

cover number, Theoretical Computer Science (2021). doi:https://doi.org/10.1016/j.
tcs.2021.08.018.

[7] J. Babu, V. Prabhakaran, A new lower bound for the eternal vertex cover number of graphs,

Journal of Combinatorial Optimization (2021) 1–17.

[8] J. Babu, K. M. Krishnan, V. Prabhakaran, N. J. Warrier, Eternal vertex cover number of

maximal outerplanar graphs, 2022. URL: https://arxiv.org/abs/2201.06577.

[9] N. Chiba, T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM Journal on

computing 14 (1985) 210–223.

https://arxiv.org/abs/2201.03820
http://arxiv.org/abs/2201.03820
http://dx.doi.org/https://doi.org/10.1016/j.dam.2021.02.004
http://dx.doi.org/https://doi.org/10.1016/j.dam.2021.02.004
http://dx.doi.org/10.1587/transfun.E98.A.1153
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2021.08.018
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2021.08.018
https://arxiv.org/abs/2201.06577

	1 Introduction
	2 Preliminaries
	3 Computation of the mvc Parameters
	4 Bounds on the evc Parameters
	5 Computation of the evc Parameters
	5.1 Computing E(G, uv) when degG(u)=2
	5.2 Computing E(G, uv) when degG(u)>2 and degG(v)>2

	6 A Linear Time Algorithm to Compute evc Number
	7 Conclusion

