
Uniform Circle Formation for Fully, Semi-, and
Asynchronous Opaque Robots with Lights⋆

Caterina Feletti, Carlo Mereghetti
†
, Beatrice Palano and Priscilla Raucci

Università degli Studi di Milano, Italy

Abstract

We study the Uniform Circle Formation (UCF) problem, which asks a swarm of mobile agents, arbi-

trarily positioned onto the plane, to arrange on the vertices of a regular polygon. Each agent, customarily

called robot, runs a distributed algorithm by executing a sequence of look-compute-move cycles. The

robot swarm may adhere to three synchronization modes: fully synchronous, semi-synchronous, and

asynchronous. Our robots are assumed to be punctiform, anonymous, and indistinguishable by their

appearance; they do not store past actions or system snapshots, and they have neither a coordinate

system nor chirality in common. Moreover, we consider opaque robots, i.e. they may have obstructed

visibility due to collinearities. To cope with these strong limitations, we consider luminous robots, that is,

they are equipped with a persistent light assuming different colors. This latter peculiarity represents the

only way robots have to communicate. For all three synchronization modes, we solve the UCF problem

with a constant number of colors. Concerning the running time, our solutions use a constant number

of cycles (epochs) for fully synchronous (semi-synchronous) robots, and linearly many epochs in the

worst-case for asynchronous robots.

Keywords
Autonomous mobile robots, Opaque robots, Luminous robots, Pattern formation

1. Introduction

A well consolidated trend in the literature on distributed computing studies models and al-

gorithms for agent-based computing systems, having great relevance in several real-world

applications. In these systems, a swarm of mobile computing entities, called robots, has to coop-

erate to solve a given problem. Robots act under several assumptions on their capabilities and

on a particular scenario. Of great importance are models where robots are autonomous, i.e. they

work without a central control, and operate through a sequence of look-compute-move cycles

in which each robot: (i) takes the snapshot of the system (look), (ii) executes a deterministic

algorithm (compute), and (iii) travels to the computed destination, if any (move) [1, 2, 3, 4].

Different modeling assumptions are considered, affecting the computational power of robots.

For instance, robots may have distinct identifiers (yielding the ability of distinguishing one

Proceedings of the 23rd Italian Conference on Theoretical Computer Science, Rome, Italy, September 7-9, 2022
⋆

Partially supported by UniMI through the Seal of Excellence (SoE) SEED 2020, under the project Self-Organizing
Photonic Quantum Links (S-O PhoQuLis).

†
Corresponding author.

" carlo.mereghetti@unimi.it (C. Mereghetti); beatrice.palano@unimi.it (B. Palano); priscilla.raucci@unimi.it

(P. Raucci)

� 0000-0002-7778-7257 (C. Mereghetti); 0000-0003-3948-4658 (B. Palano)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:carlo.mereghetti@unimi.it
mailto:beatrice.palano@unimi.it
mailto:priscilla.raucci@unimi.it
https://orcid.org/0000-0002-7778-7257
https://orcid.org/0000-0003-3948-4658
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


robot from another) or, on the contrary, they may be anonymous. They may have a finite but

persistent memory, which is preserved from one look-compute-move cycle to the next one.

If no such memory exists, robots are said to be oblivious. A “compromise” between memory

and obliviousness is given by luminous robots, featuring a persistent light assuming different

colors as a means of communication as well. Another step towards realistic models is to work

with no point-like (punctiform model) but fat robots, where all robots are supposed to be solid

discs with a certain radius. Moreover, robots can be transparent, enabling a complete visibility

of the system, or opaque. Depending on the nature of the problem, robots can move either

on the Euclidean plane, or on a graph which can either be known in advanced or not. For

robot activation policy, three models are proposed in the literature: fully synchronous, where all

robots execute their cycle synchronously, semi-synchronous, where a subset of robots executes

its cycle synchronously whereas the others remain idle, and asynchronous, where each robot

acts asynchronously.

Several research efforts focus on very basic classes of geometric pattern formation problems

to be solved within such distributed environments [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. In the Uniform
Circle Formation problem, we ask robots to move to vertices of a common regular polygon

whose number of vertices — known or not in advance — is exactly the number of robots in

the system. This problem received a lot of attention from the literature (see, e.g., [15] for a

survey) for both theoretical and practical reasons. From a practical point of view, a regular

layout may present several advantages for a distributed system. E.g., for a network of mobile

agents, it may be convenient to regularly displace them to facilitate communications, visibility

and computations. Every agent is equidistant from its neighbors and has the same view of

the system: this guarantees a fair communication, where there are no evident differences in

the energy spent in sending messages. Moreover, this uniform pattern allows to implement

distributed algorithms which guarantee a fair load balancing among the agents.

In [16], an algorithm for Uniform Circle Formation is designed, which asymptotically

converges to a regular polygon. In [17], a semi-synchronous solution is given, starting from

particular robot configurations. For asynchronous systems, the problem is solved in [18] for

robots which are punctiform and transparent, and in [19] for fat robots with limited visibility

and agreeing on common origin and axes.

So far, swarms of transparent robots have been mainly considered. In more realistic models,

robots are assumed to be opaque so that they can obstruct visibility in case of collinearity. In

this realm, the first natural problem to be tackled is Complete Visibility, where robots are

required to displace on the plane so that each robot is visible to all others. For the Complete
Visibility problem, opaqueness is a serious problem. Thus, additional robot capabilities

might be considered. Solutions in the literature are proposed for luminous robots (see, e.g., [20,

21, 22, 23, 1, 2]), i.e., robots with persistent lights assuming different colors. In [24], a 𝒪(log𝑁)
time and 𝒪(1) colors asynchronous algorithm is designed for Complete Visibility. In

[25] ([26]), the problem is solved by a 𝒪(1) time and colors semi-synchronous (asynchronous)

algorithm. In [27], a fault-tolerant algorithm for Complete Visibility is exhibited.

In [28], we focused on the Uniform Circle Formation (UCF) problem which, as recalled

above, consists of displacing robots on the vertices of a common regular polygon. In particular,

we exhibited an algorithm solving UCF for a swarm of opaque robots with lights only in the fully
synchronous model, featuring six cycles and a constant number of colors. In the present paper,



instead, we propose algorithms to solve UCF by opaque luminous robots in the fully, semi-, and

asynchronous settings. In particular, the algorithm for the fully synchronous case improves the

one in [28] in that it uses only three instead of six cycles and a constant number of colors. The

semi-synchronous case is solved within constant time (epochs) and a constant number of colors.

Finally, we adapt our algorithmic designs in order to obtain a solution for the asynchronous

model, working in worst-case linear time (epochs) and with a constant number of colors.

Due to page limit, some material and proofs have been omitted.

2. Preliminaries

We overview the distributed system we shall be dealing with (see, e.g., [3, 4, 23] for details), and

formally state the Uniform Circle Formation (UCF) problem.

Robot swarms. Consider a finite set (swarm) of punctiform computational agents, called robots,

which forms a distributed system located in the plane R2
. These robots are: (i) anonymous and

indistinguishable: they do not share any own identifier, (ii) autonomous: there is no central

coordinator, (iii) homogeneous: they execute the same deterministic algorithm, (iv) oblivious:

they do not remember any data about previous actions, (v) mobile: they can freely move on

the plane, provided they never collide, (vi) rigid: they cannot be stopped before reaching the

computed destination (i.e., no adversary can stop robot movement).

The robots are equipped with sensory capabilities to spot the positions of other robots.

Moreover, they are able to compute in finite time and infinite precision any algebraic function

of points in the plane. Also, we assume the following limitations on robots: (i) they do not know

how many they are, (ii) they are disoriented: no agreement among the individual coordinate

systems, nor on unit distance and chirality (roughly speaking, agreement on clockwise direction),

(iii) they are opaque (not transparent): collinearity causes obstructed visibility. Indeed, these

latter three inabilities introduce complications in algorithm design. E.g., due to opacity (iii) and

lack of knowledge of the number of robots (i), each robot may not be able to know whether or

not some robots are hidden at any given time. Clearly, this lack of the knowledge of the number

of robots makes the system easily scalable. Moreover, the disorientation (ii) might cause robot

collisions which may compromise system integrity. To deal with these adversities, we equip
robots with a light displaying a certain number of different colors they can communicate through
(see, e.g., [1, 2, 20, 21, 22, 23]). We remark that such a light is the only means robots have to

exchange information.

When taking the system snapshot at any given time, a robot 𝑟 basically collects the coordinates

—according to its own coordinate system — and the light color for any visible robot (itself included).

So, 𝑟 operates in look-compute-move cycles, each executed in a single and atomic instant of time

and consisting of the three phases:

• Look: 𝑟 takes the instantaneous snapshot of the system.

• Compute: 𝑟 runs a deterministic algorithm which, by having the snapshot as sole input,

computes the destination point of 𝑟 and the (possibly) new color for the light of 𝑟.

• Move: 𝑟 sets its new color and moves straight towards the destination point computed

above, without being stopped (rigidity assumption).



Different models of robot activation and synchronization are studied. In the fully synchronous
model, time is logically subdivided into global rounds. All robots are activated at every round

occurring at each time 𝑡. Since look-compute-move cycles are executed atomically, all robots

terminate their cycle by the next round. The semi-synchronous model coincides with the fully

synchronous model, except that not all robots are necessarily activated at every round. However,

every robot is activated infinitely often (fair condition). In the asynchronous model, the robots

are activated independently and each robot executes its look-compute-move cycle within an

unpredictable but finite amount of time. There does not exist a common notion of time. Also,

notice that the configuration perceived by a robot during its look phase — by which the robot

computes its final destination — may significantly change before the robot starts moving.

The UCF problem. We are now ready to present the UCF problem to be solved on fully, semi-,

and asynchronous swarms of opaque robots with lights. Let a fully, semi-, or asynchronous

swarm of 𝑛 robots be in any given initial valid configuration C0 (i.e. where all the robots occupy

a distinct point of the plane). The UCF problem asks the swarm to move from C0 to a valid

terminal configuration in which robots form a regular 𝑛-gon.

3. Some Notions and Results

Throughout the paper, we will be working with swarms of at least 5 robots. This is due to some

technicalities that can be dealt with, but that will be omitted here.

Let a set of 𝑛 robots sit on their smallest enclosing circle (SEC). Two distinct robots 𝑝, 𝑞 on the

SEC delimit two arcs

⌢
𝑝𝑞 (clockwise and counterclockwise). We say that 𝑝 and 𝑞 are adjacent

whenever there is at least one of the two arcs

⌢
𝑝𝑞 upon which no other robot sits. Clearly, in a

robot swarm forming a regular 𝑛-gon, each pair 𝑝, 𝑞 of adjacent robots forms an angle of 2𝜋/𝑛

with the center 𝑂 of the SEC, formally
̂︂𝑝𝑂𝑞 = 2𝜋/𝑛.

Definition 1. For any given 2 ≤ 𝑘 ≤ 𝑛, let (𝑟1, 𝑟2, . . . , 𝑟𝑘) be a 𝑘-tuple of distinct robots
satisfying ˆ︂𝑟𝑖𝑂𝑟𝑖+1 = 2𝜋/𝑛 for every 1 ≤ 𝑖 < 𝑘. Then, (𝑟1, 𝑟2, . . . , 𝑟𝑘) is said to be a regular

𝑘-tuple. For odd 𝑘 (even 𝑘 > 2), the central robot 𝑟⌈ 𝑘
2
⌉ (the central robots 𝑟 𝑘

2
, 𝑟 𝑘

2
+1) is the pivot

(are the pivots) of the regular 𝑘-tuple.

Our strategies to move the robots on the vertices of a regular 𝑛-gon (inscribed in the SEC)

start by setting particular regular {3, 4, 5}-tuples. These tuples will not move for the whole

computation, while the other robots will move to form the regular 𝑛-gon. In particular, the

pivots in such regular tuples will be crucial to set the main diameter of the SEC (see Definition 2).

A key result for our algorithms is contained in the following

Theorem 1. Let 𝑛 be the number of robots lying on the SEC.

• For odd 𝑛, there is a diameter passing through a robot and dividing the SEC into two halves,
each having (𝑛− 1)/2 robots.

• For even 𝑛, there is a diameter dividing the SEC into two halves such that: (𝑖) either the
diameter passes through a robot and the half-SECs have 𝑛/2 and (𝑛/2)−1 robots, or (𝑖𝑖) the
diameter passes through two (opposite) robots and the half-SECs have (𝑛/2)− 1 robots each.



Another central role in our algorithms will be played by the notion of a main diameter. We

distinguish between three cases, depending on the type of symmetry possessed by the robot

swarm configuration:

Definition 2.

• Asymmetry. A diameter settled according to Theorem 1 will be called the main diameter.
In this case, the main diameter has at least one robot at one endpoint, whose light will assume
color pivot.

• Symmetry with exactly one axis. We call main diameter the diameter laying on the
symmetry axis. In this case, the main diameter does not necessarily pass through a robot
with light of color pivot.

• Rotational symmetry with two sectors. We call main diameter the diameter joining
two opposite robots whose lights have color pivot.

Let 𝑑 be a main diameter by Definition 2. Let 𝑏 be one of the nearest robots to 𝑑 but not

laying on 𝑑, and let ℓ(𝑏, 𝑑) be the distance from 𝑏 to 𝑑. Moreover, let 𝜈 be one of the closest but

not belonging to 𝑑 vertices of the regular polygon that has to be formed by our robot swarm.

Definition 3. Let 𝑑′ and 𝑑′′ be the two opposite chords parallel to a main diameter 𝑑, at distance
min{ℓ(𝑏,𝑑),ℓ(𝜈,𝑑)}

2 from 𝑑. We call 𝑑′ and 𝑑′′ the safe diameters of 𝑑.

For rotational symmetries with more than two sectors, instead of safe diameters we will be

considering safe chords:

Definition 4. Let (𝑎1, 𝑝1, 𝑎2) and (𝑎3, 𝑝2, 𝑎4) be two adjacent regular 3-tuples (i.e., without any
other 3-tuple on the arcs

⌢
𝑎1𝑎3 or

⌢
𝑎2𝑎4), and suppose that 𝑝1 and 𝑝2 are not the two endpoints of a

same diameter. The chord joining 𝑝1 and 𝑝2 is called a safe chord.

As we will see, a key operation of our algorithms is to set at most three robots on three points

per each half-SEC, such points being actually three vertices of the regular polygon. The robots

reaching such vertices will assume color angle or pivot. In the following theorem, we show that

this can be done in a single cycle, provided robots share a common clockwise direction in the

half-SEC they sit on:

Definition 5. Two or more robots are said to be oriented whenever they agree on a common
clockwise direction.

For a group of oriented robots, it is always possible to unambiguously spot robots to move

within a cycle (e.g., the last ones according to the common orientation). This is crucial for the

following

Theorem 2. Given three oriented robots and three points on the same half-SEC, it is always
possible for the robots to reach these points in a single cycle and avoiding collisions.



4. The Algorithm for the Fully Synchronous Case

In a first phase, all robots gain complete visibility of the swarm [25, 26], and then move onto

their SEC maintaining the knowledge of the exact number 𝑛 of robots in the system. The robots

work out this phase by using a set of colors different from the colors used later on. This ensures

robots are always aware of the ongoing phase.

Let CH be the swarm configuration at this point; without loss of generality, we assume robots

lights having the same color. Clearly, all robots are again vertices of a convex hull. The resulting

dynamic of the algorithm depends on the type of this convex hull, in particular on its degree of

symmetry. First of all, a special case occurs whenever the convex hull is perfect [29]. In this

case, all robots lie onto the edges of the associated regular 𝑛-gon (called supporting polygon, SP),

two robots per alternate edges. The goal of our algorithm for this particular configuration is to

slide robots along the edges of the SP, until they reach the vertices of the SP. Given a perfect

convex hull, the SP is unique and computable in a single round: each robot takes its snapshot

(look), checks whether the system configuration forms a perfect convex hull and computes

the SP (compute), eventually slides along the edge until it reaches the correct vertex (move).

Notice that two robots on the same edge head in opposite directions, and therefore no collision

occurs. We remark that a biangular configuration1
is a special case of perfect convex hull. Also

in [18], the perfect convex hull and biangular configuration are dealt with as special cases at

the beginning of their algorithm.

Let us show how our algorithm works.

4.1. Cycle 1: pivots selection and angle setting

From𝐶𝐻 , we start setting the regular tuples which will be the reference points for the movements

of the other robots. Once settled, a regular tuple will not move anymore, thus fixing once and

for all for the whole robot swarm the angle 2𝜋/𝑛 of the regular 𝑛-gon to be formed. As observed

above, the dynamic of the algorithm depends on the degree of symmetry of 𝐶𝐻 . We distinguish

between three cases: asymmetry, symmetry with exactly one axis, and rotational symmetry.

Asymmetry. Consider the general case of asymmetry, i.e., no symmetry axis exists in 𝐶𝐻 .

However, there exists at least one diameter passing through a robot and dividing the SEC into

two halves, upon which robots distribute according to Theorem 1. The robot swarm must

agree on one of such diameters, say 𝐷, which by Definition 2 will be the main diameter. To

find 𝐷, robots agree on starting from a commonly designated robot 𝑥 and following a common

orientation on the SEC. To perform this task, we need

Lemma 1. Starting from the configuration 𝐶𝐻 and in case of asymmetry, all robots on the SEC
are able to unambiguously agree on a robot 𝑥.

So, let 𝑥 be the robot chosen by the swarm according to Lemma 1 (i.e., 𝑥 has the lexicograph-

1

A set of 𝑛 ≥ 2 robots forms a biangular configuration if robots lie on a circle 𝐶 centered in 𝑂, and two non zero

angles 𝛼, 𝛽 exist such that for every pair 𝑟 and 𝑝 of robots consecutive on 𝐶 , we have
̂︂𝑟𝑂𝑝 ∈ {𝛼, 𝛽} and 𝛼 and 𝛽

alternate clockwise [29].



ically smallest angle-string
2
). By the same reasoning, the swarm can also agree on a second

robot 𝑦 with the lexicographically second-smallest angle-string and such that 𝑥 and 𝑦 are not

the endpoints of the same diameter. (Note that such a 𝑦 can always be found since we are in an

asymmetric configuration.) This allows us to have a starting robot (i.e., 𝑥) and an orientation on

the SEC (i.e., the direction from 𝑥 to 𝑦), by which the main diameter 𝐷 search can be carried on:

each robot starts checking whether the diameter through 𝑥 satisfies Theorem 1; if not, it tries

with the next robot along the orientation settled by 𝑦. Clearly, this process makes the whole

swarm to converge on the claimed main diameter 𝐷. Let 𝑝 be the position of the robot that

determines 𝐷. Such a position represents a vertex of the regular polygon to be formed, so the

light of the robot on position 𝑝 assumes color pivot. Let us now distinguish between having an

odd or even number 𝑛 of robots in the swarm. Here, we discuss the latter case.

Even 𝑛. By Theorem 1, one or two robots may sit at the endpoints of 𝐷. In both cases,

the robot at position 𝑝 has color pivot. Moreover, in the second case, the opposite robot on 𝐷
assumes color angle. Let us now continue discussing the first situation, since the second may be

easily derived. By Theorem 1, one of the half-SEC, say 𝐻+
, has one more robot than the other,

say 𝐻−
. So, a robot in 𝐻+

needs to move to the empty endpoint 𝑎3 (opposite to 𝑝) of 𝐷 and

assume color angle. At the same time, two other positions 𝑎1 and 𝑎2 (regular polygon vertices)

must be reached by two robots. These two positions correspond to the polygon vertices at the

immediate left and right of 𝑝. The three robots sat at positions 𝑎1, 𝑝, 𝑎2 form the regular 3-tuple.

So, globally, three robots must be moved: two from 𝐻+
and one from 𝐻−

, so that both the

half-SECs contain the same number of robots at the end of this cycle. To determine which robots

in 𝐻+
and 𝐻−

must move at the vertices of the polygon, we use the orientation provided by 𝑥
and 𝑦: for instance, we choose the last robots by such an orientation. Then, Theorem 2 ensures

that the three vertices will be safely reached by the robots. Summing up, each robot 𝑟 performs:

• Look-Compute: 𝑟 unambiguously spots the pivot position 𝑝 on the main diameter.

Furthermore, it computes the positions 𝑎1, 𝑎2, 𝑎3 and the robots heading to these positions.

• Move: If 𝑟 is in the pivot position 𝑝, then it does not move and sets its color as pivot. If 𝑟
is one of the robots heading to positions 𝑎1, 𝑎2, 𝑎3, it moves there and sets its color as

angle. Otherwise, 𝑟 does nothing.

Symmetry with exactly one axis3. Let 𝑙 be the axis of symmetry in 𝐶𝐻 . By Definition 2,

the diameter of the SEC lying on 𝑙 will be the main diameter. We consider three cases: odd 𝑛,

even 𝑛 with two axis pivots, and even 𝑛 with no axis pivot. Here, we discuss the odd case.

Odd 𝑛. Suppose that 𝑙 passes through a robot, which will be the pivot 𝑝, and splits the

opposite edge of the polygon. So, 𝑙 divides the SEC into two symmetric halves, each with

(𝑛− 1)/2 robots (𝑝 excluded). Now, we aim to create the regular 3-tuple around 𝑝, as well as

setting two robots at the endpoints of the polygon edge opposite to 𝑝. Therefore, two robots in

each half-SEC must be moved. Even in this case, Theorem 2 ensures no crossing trajectories.

However, notice that to apply Theorem 2 we need an orientation which in this case can be

trivially settled in each half-SEC as being the direction from the pivot to the other endpoint of

2

Let 𝑟0, . . . , 𝑟𝑛−1 be a listing of the 𝑛 robots on the SEC so that they are consecutive, i.e., 𝑟𝑖 and 𝑟𝑖+1 are adjacent

for every 0 ≤ 𝑖 < 𝑛− 1. Let 𝛼𝑖 = ˆ︁𝑟𝑖𝑂𝑟(𝑖+1) mod𝑛. The corresponding angle-string is 𝛼0 · · ·𝛼𝑛−1.

3

Two or more symmetry axes yield a rotational symmetry, considered in the next case.



the diameter (namely, the main diameter) laying on the axis 𝑙. To determine which robots in

each half-SEC must move at the vertices of the polygon, we can choose, e.g., the last robots

according to such an orientation. As in the asymmetric case discussed above, we call 𝑎1 and 𝑎2
the positions of the two polygon vertices around 𝑝, while 𝑎3 and 𝑎4 are the positions of the two

vertices of the polygon edge opposite to 𝑝. Summing up, each robot 𝑟 performs:

• Look-Compute: 𝑟 computes the axis of symmetry 𝑙 (and hence the main diameter) and

the positions 𝑎1, 𝑎2, 𝑎3, 𝑎4 of the polygon vertices.

• Move: If 𝑟 is on 𝑙, it sets its color as pivot and stays put. If 𝑟 is one of the robots heading to

positions 𝑎1, 𝑎2, 𝑎3, 𝑎4, it gets there and sets its color as angle. Otherwise, 𝑟 does nothing.

Rotational symmetry. Let 𝑟0, . . . , 𝑟𝑛−1 be the sequence of robots consecutive on the SEC,

starting from an arbitrary robot. If the related angle-string 𝛼0 · · ·𝛼𝑛−1 can be factored into 𝑘
identical substrings up to rotation, then the convex hull on the SEC can be divided into 𝑘 identical

sectors, each being the
2𝜋
𝑘 -rotation of the previous one. Let 𝑃𝑖 = {𝑟𝑗 | 𝑗 ≡ 𝑖 mod 𝑛/𝑘} be the

class of symmetry which contains 𝑛/𝑘 robots sharing the same position in the 𝑘 different sectors.

By using angle-strings, we can unambiguously choose one or two classes of symmetry. For the

sake of simplicity, in what follows we assume a single
4 main class of symmetry 𝑃 . The robots

in 𝑃 will be the pivots. Note that, in case of rotational symmetry with two sectors, the diameter

joining the two pivots will be the main diameter, by Definition 2. For more than two sectors,

the chords joining pivots in two consecutive sectors will be the safe chords, by Definition 4. We

now show how to set 𝑘 regular 3-tuples in this 𝑘-angular configuration. Each robot 𝑟 performs:

• Look-Compute: 𝑟 computes the main class of symmetry 𝑃 = {𝑝1, . . . , 𝑝𝑘} and the

positions {𝑎𝑗1 , 𝑎𝑗2 | 𝑗 ∈ {1, . . . , 𝑘}} of the vertices which will be the nearest to elements

in 𝑃 in the regular 𝑛-gon. For a rotational symmetry with two (more than two) sectors,

determining 𝑃 amounts to settle the main diameter (the safe chords) as well.

• Move: If 𝑟 belongs to 𝑃 , it sets its color as pivot. If 𝑟 is the nearest robot to some 𝑎𝑖1
or 𝑎𝑖2 , it sets its color as angle and moves to its nearest destination point 𝑎𝑖1 or 𝑎𝑖2 . If two

robots share the same distance from their destination, we can unambiguously choose one

robot (as before) by considering the distance from the pivot. Otherwise, 𝑟 does nothing.

4.2. Cycle 2: rappelling down on the safe diameters or safe chords

Let us distinguish among the following cases:

One or two regular 3-tuples, or 4-tuples. Let us consider the cases of asymmetry, symmetry

with one axis, and rotational symmetry with two sectors. Let 𝑑 be their main diameter, which

is uniquely determined as observed above. Let 𝑑′ and 𝑑′′ be their safe diameters. In this cycle,

each robot 𝑟 performs:

• Look-Compute: If 𝑟 is pivot or angle, it does nothing. Otherwise, 𝑟 computes: the

safe diameters 𝑑′ and 𝑑′′, its destination point 𝑡 on the SEC, the point 𝑡⊥, which is the

projection of 𝑡 on the safe diameter nearest to 𝑟.

4

The case of two classes of symmetry follows by generalization.



• Move: 𝑟 sets its color as internal and travels to 𝑡⊥.

Three or more regular 3-tuples. Let us consider the case of 𝑘 ≥ 3 regular 3-tuples. It is

easy to see that this kind of configuration is a rotational symmetry. In this cycle, each robot 𝑟
performs:

• Look-Compute: If 𝑟 is pivot or angle, it does nothing. Otherwise, 𝑟 computes: the

nearest safe chord 𝑐, its destination point 𝑡 on the SEC, the point 𝑡⊥, which is the projection

of 𝑡 on 𝑐.

• Move: 𝑟 sets its color as internal and travels to 𝑡⊥.

Our algorithm yields safe robot movements, as stated by the following

Lemma 2. The rappelling in Cycle 2 of robots on safe diameters and chords yields collision-free
trajectories.

4.3. Cycle 3: reaching the SEC

At the end of the previous cycle, each robot which is not pivot or angle colored lies on a safe

diameter or on a safe chord. Our strategy was to move the robot to a position where enough

information from the system configuration is available to compute its final destination on the

SEC. So, in this cycle, each robot 𝑟 performs:

• Look-Compute: If 𝑟 is pivot or angle colored, it does nothing. Otherwise, 𝑟 is within the

SEC on a safe chord or a safe diameter, and sees at least three robots on the SEC which

are pivot or angle colored. Thus, 𝑟 can reconstruct the SEC. So, 𝑟 computes: the original

SEC upon which it has to travel, the safe chord or safe diameter it currently lies on, its

destination arc 𝐻 , and the projection point 𝑡 of 𝑟 on 𝐻 .

• Move: 𝑟 sets its color as sec and travels to 𝑡.

5. The Algorithm for the Semi-Synchronous Case

Let us outline our algorithm to solve UCF on the semi-synchronous model, pointing out main

differences with the fully synchronous algorithm presented in the previous section. Again, we

let CH be the swarm configuration where all robots sit onto their SEC, thus knowing the exact

number 𝑛 of robots in the system. We assume robots lights having the same color. The dynamic

of the algorithm depends on the degree of symmetry of CH .

It is worth remarking that, for the semi-synchronous model, an appropriate way to measure

time is addressed by the notion of an epoch. By epoch, we mean an amount of time within

which each robot will be activated at least once. This must occur by the fairness condition on

the system, pointed out in Section 2.

Asymmetry. In the first epoch, with the same dynamic as in the fully synchronous case, we

set the color pivot to the robot through which the main diameter passes, dividing the swarm

into two subs-swarms of the same cardinality.



In the second epoch, we set the color angle to robots, but now we need two different colors

angle and angle_o to fix a common orientation. For odd (even) 𝑛, we set one (two) regular

3-tuple(s) of type (angle, pivot, angle_o), plus two robots of colors angle_o and angle for odd 𝑛.

As in the fully synchronous setting, asymmetry always enables to provide a common orientation

for the whole SEC.

In the third epoch, robots move to the main diameter. By the common orientation, the

robots on a half-SEC can choose one of the two radiuses giving the main diameter. Then, they

move onto such a radius as follows. An activated robot 𝑟 first checks whether it sits on an 𝑛-gon

vertex. If so and it is not already colored as pivot, angle, angle_o, then 𝑟 assumes color sec and

ends its task. Otherwise, 𝑟 moves onto the radius in a position which univocally determines the

polygon vertex on the SEC to be reached in the next epoch without collisions. At the beginning

of the fourth epoch, all robots are on their own radius, except those on the SEC with light

color pivot, angle, angle_o, sec. Each robot on the radiuses sees at least three lighted robots on

the SEC. So, it computes its target vertex on the SEC by its current position.

Symmetry with exactly one axis. While in the fully synchronous case, pivot and angle colors

are both turned on in the first cycle, here we spend the first epoch to determine only those

robots acting as pivot, and light them with new colors pivot_s1, pivot_s2, pivot_s3. Determining

these robots takes place as in the fully synchronous case, while the new colors must be used

to signal along the whole evolution the fact that the system starts in a configuration with a

single symmetry axis. This latter fact turns out to be crucial since, due to semi-synchronous

dynamics, at a certain instant it maybe the case that the initial symmetry is lost. We set pivot
lights pivot_s1, pivot_s2, pivot_s3 depending on the odd or even number of robots and on the

number of robots (zero, one or two) laying on the symmetry axis at the beginning of this epoch.

Precisely: case a – pivot_s1 is used for an odd number of robots and one robot on the symmetry

axis, case b – pivot_s2 is used for an even number of robots and no pivot on the symmetry axis,

case c – pivot_s3 is used for an even number of robots and two pivots on the symmetry axis. So,

in this first epoch, for cases a and c, the robots on the symmetry axis immediately assume

color pivot_s1 and pivot_s3, respectively, and stay put. For case b, the robots nearest to the

polygon vertices around the symmetry axis move to such positions and assume color pivot_s2
(the case of robots equally distant from these vertices can be dealt with, e.g., by considering

their distance from the symmetry axis).

Now, the second epoch comes: we move some robots on polygon vertices, and light them

up with angle color. As in the fully synchronous case, robots can agree on an upper and a lower
direction. So, in case a, a regular 3-tuple (angle, pivot_s1, angle) is formed in the upper part of

the SEC, and a regular 4-tuple (angle, angle, angle, angle) in the lower part. For case b, a regular
4-tuple (angle, pivot_s2, pivot_s2, angle) is formed in the upper part of the SEC, and a regular
2-tuple (angle, angle) in the lower part. For case c, a regular 3-tuple (angle, pivot_s3, angle) is

formed in the upper part of the SEC, and a regular 5-tuple (angle, angle, pivot_s3, angle, angle) in

the lower part. We stress that in all these cases, no more than three robots per each half-SEC

move to reach their final destinations. Hence, by Theorem 2, no crossing trajectory exists.

For the following epochs, we note that, given the type of symmetry we are considering, the

whole swarm cannot share a common sense of orientation. So, in the third epoch, along which

robots move into the SEC, they cannot choose a radius to drop on, as in the asymmetric case.

Instead, as in the fully synchronous case, they can set safe diameters and move onto them on



the orthogonal projections of polygon vertices. At this point, in the fourth epoch, robots get

back to the SEC by leaving perpendicularly from safe diameters. It is worth mentioning that

during this latter epoch, in all three cases a, b, and c at least three robots with lights on are

always visible, so that the SEC can be safely reconstructed.

Rotational symmetry. In the first epoch, we determine only those robots acting as pivot and

light them with the new color pivot_r. This new color is used to signal along the whole evolution

the fact that the system starts in a rotational symmetry configuration. Let ℎ > 2 be the number

of rotational symmetry sectors (the case ℎ = 2 can be managed by adapting the asymmetric

case technique). The following epochs basically take place as in the fully synchronous case.

During the second epoch, we set ℎ regular 3-tuples (angle, pivot_r, angle); in the third epoch,

robots drop down to the safe chords; in the fourth epoch, all robots get back to the SEC at

polygon vertex positions.

6. The Algorithm for the Asynchronous Case

In an asynchronous setting, severe problems may arise whenever robots are activated while

other robots are moving to their destinations. In fact, the awoken robots would take snapshots

which most likely will not be useful to exactly reconstruct some fundamental aspects of the

system (e.g., SEC, main diameters, safe diameters and chords), crucial for their correct motion.

This is basically due to the fact that moving robots can obscure other robots. Moreover, even

if this is not the case, we cannot generally compute the final destination of a moving robot.

Clearly, this could prevent an activated robot from targeting its correct final destination, e.g.,

when reaching angle and pivot positions, or right positions on main diameter, safe diameters

and chords. To overcome the problem of moving robots, new light colors of type moving are

lighted up as soon as a robot starts moving. Thus, we can use our semi-synchronous algorithm

plus the following features, depending on the phases of the algorithm:

• In the first phase, pivots and then angles must be set, according to the same precedence

logic as in the semi-synchronous mode. More precisely, if an activated robot does not see

such points and does not see moving robots (i.e., robots with some moving light colors),

it establishes whether or not it has to move towards a pivot or angle position. In the

affirmative, its light assumes color moving_pivot_s2, or moving_angle, or moving_angle_o
depending on its final destination, and the robot moves there. Once re-activated, a robot

with color moving_x simply changes its color into x ∈ {pivot_s2, angle, angle_o}, and

stands still. Otherwise, if the robot does not have to reach a pivot or angle position, or it

sees some robots with color light moving, then it stays put.

• The second phase starts after setting angles and pivots. Robots enter the SEC on diameters

and chords only if they see no other robot with color moving_internal. Activated robots

that sit on 𝑛-gon vertices and are not colored by pivot, angle, angle_o, assume color sec
and stay put. When entering the SEC, a robot assumes color moving_internal. Once

re-activated, a robot colored moving_internal simply switches its color into internal
and stays put.

• The third phase starts whenever on the SEC there are only robots with lights on (with

colors pivot, pivot_r, pivot_s1, pivot_s2, pivot_s3, angle, angle_o, sec), and no robot is



moving (i.e., has a light color of type moving). In this phase, robots get back to SEC

from their positions on chords and diameters. A robot travels back only when it sees

three light colors among pivot, angle, angle_o, so that it can reconstruct the SEC. If this is

the case, it determines its 𝑛-agon vertex position and moves there while assuming the

color sec. Otherwise, it stays put. We notice that, along this phase, our algorithm takes

full advantage of parallelization since the trajectory of moving robots cannot collide, as

explained in the fully and semi-synchronous cases.

7. Conclusions and Research Outlooks

In this paper, we designed algorithms solving the Uniform Circle Formation (UCF) problem

on opaque luminous robot swarms. Our first algorithm solves the problem for fully synchronous

swarms of robots, by using a constant number of look-compute-move cycles as well as a constant

number of colors. In particular, with respect to our result in [28], here we reduce the number of

cycles from six to three. In addition, we also study the semi-synchronous and asynchronous

cases. For the former setting, we propose an algorithm featuring a constant number of epochs;

for the latter a linear amount of epochs is required in the worst case. In both settings, we use a

constant number of colors.

Among many possible future researches, we feel it interesting to pinpoint connections with

Forma Language Theory. In the literature, and in the present paper as well, some interesting

formal language aspects show up and, in our opinion, deserve further and more systematic

investigations. For instance, as observed, recognizing certain types of symmetries in the robot

swarm displacement reduces to verifying certain properties enjoyed by angle-strings. This is

equivalent to accepting certain languages, such as the palindrome language, mirror language,

copy language, etc.. Therefore, well established results on the hardness of language acceptance

could carry over to distributed system investigation, stating the possibility or not to solving

certain problems or the minimal amount of computational resources agents must posses to

correctly operate.

In particular, considering the realm of luminous robots, the communication system provided

by a constant number of colors is easily seen to be modeled by a finite state automaton. This

observation might suggest, e.g., that minimizing the number of colors could be related to

minimizing the number of states in finite state automata. More generally, finite state automata

can be examined by so many points of view: descriptional complexity [30, 31, 32, 33, 34],

studying the size (number of states) of automata, descriptive complexity [35], studying automata

representation by logic frameworks, quantum computing [36, 37, 38], studying the impact of

the quantum paradigm on finite state machines size reduction. All these and other viewpoints

might bring interesting insights and new tools and research problems in distributed system

investigation.

Acknowledgments

The authors wish to thank the anonymous referees for their very helpful comments and remarks.



References

[1] M. D’Emidio, D. Frigioni, A. Navarra, Synchronous robots vs asynchronous lights-enhanced

robots on graphs, Electronic Notes in Theoretical Computer Science 322 (2016) 169–180.

[2] M. D’Emidio, D. Frigioni, A. Navarra, Characterizing the computational power of anony-

mous mobile robots, in: 36th IEEE International Conference on Distributed Computing

Systems (ICDCS), IEEE, 2016, pp. 293–302.

[3] P. Flocchini, G. Prencipe, N. Santoro, Distributed computing by oblivious mobile robots,

Synthesis Lectures on Distributed Computing Theory 3 (2012) 1–185.

[4] P. Flocchini, G. Prencipe, N. Santoro, Distributed Computing by Mobile Entities. Current

Research in Moving and Computing, volume 11340 of LNCS, Springer, 2019.

[5] R. Adhikary, M. K. Kundu, B. Sau, Circle formation by asynchronous opaque robots on

infinite grid, Computer Science 22 (2021).

[6] K. Bose, M. K. Kundu, R. Adhikary, B. Sau, Arbitrary pattern formation by asynchronous

opaque robots with lights, Theoretical Computer Science 849 (2021) 138–158.

[7] K. Bolla, T. Kovacs, G. Fazekas, Gathering of fat robots with limited visibility and without

global navigation, in: Int. Symposium on Evolutionary Computation/Swarm Intelligence

and Differential Evolution (EC/SIDE), volume 7269 of LNCS, Springer, 2012, pp. 30–38.

[8] J. Czyzowicz, L. Gasieniec, A. Pelc, Gathering few fat mobile robots in the plane, Theoretical

Computer Science 410 (2009) 481–499.

[9] S. Das, R. Focardi, F. L. Luccio, E. Markou, M. Squarcina, Gathering of robots in a ring

with mobile faults, Theoretical Computer Science 764 (2019) 42–60.

[10] S. Datta, A. Dutta, S. Gan Chaudhuri, K. Mukhopadhyaya, Circle formation by asyn-

chronous transparent fat robots, in: 9th International Conference on Distributed Comput-

ing and Internet Technology (ICDCIT), volume 7753 of LNCS, Springer, 2013, pp. 195–207.

[11] P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer, Gathering of asynchronous robots

with limited visibility, Theoretical Computer Science 337 (2005) 147–168.

[12] K. Sugihara, I. Suzuki, Distributed algorithms for formation of geometric patterns with

many mobile robots, Journal of Robotic Systems 13 (1996) 127–139.

[13] I. Suzuki, M. Yamashita, Distributed anonymous mobile robots: Formation of geometric

patterns, SIAM Journal on Computing 28 (1999) 1347–1363.

[14] M. Yamashita, I. Suzuki, Characterizing geometric patterns formable by oblivious anony-

mous mobile robots, Theoretical Computer Science 411 (2010) 2433–2453.

[15] G. Viglietta, Uniform circle formation, in: Distr. Comp. by Mobile Entities. Current

Research in Moving and Computing, volume 11340 of LNCS, Springer, 2019, pp. 83–108.

[16] X. Défago, A. Konagaya, Circle formation for oblivious anonymous mobile robots with

no common sense of orientation, in: 2nd ACM International Workshop on Principles of

Mobile Computing (POMC), 2002, pp. 97–104.

[17] Y. Dieudonné, F. Petit, Squaring the circle with weak mobile robots, in: 19th Int. Symp. on

Algorithms and Computation (ISAAC), volume 5369 of LNCS, Springer, 2008, pp. 354–365.

[18] P. Flocchini, G. Prencipe, N. Santoro, G. Viglietta, Distributed computing by mobile robots:

uniform circle formation, Distributed Computing 30 (2017) 413–457.

[19] M. Mondal, S. Gan Chaudhuri, Uniform circle formation by swarm robots under limited

visibility, in: 16th International Conference on Distributed Computing and Internet



Technology (ICDCIT), volume 11969 of LNCS, Springer, 2020, pp. 420–428.

[20] K. Buchin, P. Flocchini, I. Kostitsyna, T. Peters, N. Santoro, K. Wada, Autonomous mobile

robots: Refining the computational landscape, in: 2021 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), IEEE, 2021, pp. 576–585.

[21] S. Das, P. Flocchini, G. Prencipe, N. Santoro, M. Yamashita, The power of lights: synchro-

nizing asynchronous robots using visible bits, in: 32nd IEEE International Conference on

Distributed Computing Systems (ICDCS), IEEE, 2012, pp. 506–515.

[22] G. A. D. Luna, P. Flocchini, S. Gan Chaudhuri, N. Santoro, G. Viglietta, Robots with lights:

Overcoming obstructed visibility without colliding, in: 16th International Symposium

on Stabilization, Safety, and Security of Distributed Systems (SSS), volume 8756 of LNCS,

Springer, 2014, pp. 150–164.

[23] S. Das, P. Flocchini, G. Prencipe, N. Santoro, M. Yamashita, Autonomous mobile robots

with lights, Theoretical Computer Science 609 (2016) 171–184.

[24] G. Sharma, R. Vaidyanathan, J. L. Trahan, C. Busch, S. Rai, 𝑂(log 𝑛)-time complete visibility

for asynchronous robots with lights, in: 2017 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), IEEE, 2017, pp. 513–522.

[25] G. Sharma, R. Vaidyanathan, J. L. Trahan, C. Busch, S. Rai, Complete visibility for robots

with lights in 𝑂(1) time, in: 18th International Symposium on Stabilization, Safety, and

Security of Distributed Systems (SSS), volume 10083 of LNCS, Springer, 2016, pp. 327–345.

[26] G. Sharma, R. Vaidyanathan, J. L. Trahan, Constant-time complete visibility for asyn-

chronous robots with lights, in: 19th International Symposium on Stabilization, Safety, and

Security of Distributed Systems (SSS), volume 10616 of LNCS, Springer, 2017, pp. 265–281.

[27] A. Aljohani, G. Sharma, Complete visibility for mobile robots with lights tolerating faults,

International Journal of Networking and Computing 8 (2018) 32–52.

[28] C. Feletti, C. Mereghetti, B. Palano, Uniform circle formation for swarms of opaque robots

with lights, in: 20th International Symposium on Stabilizing, Safety, and Security of

Distributed Systems (SSS), volume 11201 of LNCS, Springer, 2018, pp. 317–332.

[29] Y. Dieudonné, F. Petit, Swing words to make circle formation quiescent, in: 14th Interna-

tional Colloquium on Structural Information and Communication Complexity (SIROCCO),

volume 4474 of LNCS, Springer, 2007, pp. 166–179.

[30] A. Malcher, C. Mereghetti, B. Palano, Descriptional complexity of two-way pushdown

automata with restricted head reversals, Theoretical Computer Science 449 (2012) 119–133.

[31] V. Geffert, Z. Bednárová, C. Mereghetti, B. Palano, Boolean language operations on

nondeterministic automata with a pushdown of constant height, in: 8th Int. Computer

Science Symposium in Russia (CSR), volume 7913 of LNCS, Springer, 2013, pp. 100–111.

[32] S. Jakobi, K. Meckel, C. Mereghetti, B. Palano, Queue automata of constant length, in: 15th

International Workshop on Descriptional Complexity of Formal Systems (DCFS), volume

8031 of LNCS, Springer, 2013, pp. 124–135.

[33] Z. Bednárová, V. Geffert, C. Mereghetti, B. Palano, Boolean language operations on

nondeterministic automata with a pushdown of constant height, Journal of Computer and

System Science 90 (2017) 99–114.

[34] M. Kutrib, A. Malcher, C. Mereghetti, B. Palano, Descriptional complexity of iterated uni-

form finite-state transducers, in: 21st International Workshop on Descriptional Complexity

of Formal Systems (DCFS), volume 11612 of LNCS, Springer, 2019, pp. 223–234.



[35] C. Choffrut, A. Malcher, C. Mereghetti, B. Palano, First-order logics: some characterizations

and closure properties, Acta Informatica 49 (2012) 225–248.

[36] C. Mereghetti, B. Palano, Quantum automata for some multiperiodic languages, Theoretical

Computer Science 387 (2007) 177–186.

[37] M. P. Bianchi, C. Mereghetti, B. Palano, Quantum finite automata: Advances on Bertoni’s

ideas, Theoretical Computer Science 664 (2017) 39–53.

[38] A. Kumar, D. A. de Jesus Pacheco, K. Kaushik, J. J.P.C. Rodrigues, Futuristic view of

the Internet of quantum drones: Review, challenges and research agenda, Vehicular

Communications 36 (2022) 100487.


	1 Introduction
	2 Preliminaries
	3 Some Notions and Results
	4 The Algorithm for the Fully Synchronous Case
	4.1 Cycle 1: pivots selection and angle setting
	4.2 Cycle 2: rappelling down on the safe diameters or safe chords
	4.3 Cycle 3: reaching the SEC

	5 The Algorithm for the Semi-Synchronous Case
	6 The Algorithm for the Asynchronous Case
	7 Conclusions and Research Outlooks

