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Abstract  
An original key encapsulation scheme is proposed as a modification of the CSIDH algorithm 

built on the isogenies of non-cyclic Edwards curves. The corresponding CSIKE algorithm uses 

only one public key of the recipient. A brief review of the properties of non-cyclic quadratic 

and twisted supersingular Edwards curves is given. We use a new scheme for modeling the 

CSIKE algorithm on isogenies of 4 degrees 3, 5, 7, 11 for p = 9239. In contrast to the CSIDH 

models of previous works, this scheme does not use precomputations and tabulation of the 

parameters of isogenic chains, but uses one known supersingular starting curve Ed with the 

parameter d = 2. Examples of calculations of isogenic chains by Alice and Bob at three stages 

of CSIKE operation using a randomized algorithm are given. It also proposes to abandon the 

calculation of the isogenic function ϕ(R) of a random point R, which significantly speeds up 

the algorithm. 
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1. Introduction 

The post-quantum cryptography (PQC) 

algorithm CSIDH [1] has a well-known advantage 

over others—the minimum key length, close to 

the modulus of the prime field Fp, on which group 

operations are performed. The main criticism of 

CSIDH relates to its vulnerability to a side 

channel attack built on measuring the time it takes 

to compute a chain of isogenies of each prime 

degree lk proportional to lk and the secret exponent 

ek of the key. In a large number of papers [2, 3], 

the solution to this problem is proposed by 

increasing the exponents ek by fictitious ones up 

to a known maximum (Constant time CSIDH). In 

this paper, we use CSIDH and CSIKE algorithm 

randomization as an alternative approach to 

counter this attack. Note that in the key exchange 

problem today preference is given to key 

encapsulation schemes. The main goal of this 

work is to present the original CSIKE 

(Commutative Supersingular Isogeny Key 

Encapsulation) algorithm with an illustration of 

how its model works on the minimum 4 degrees 
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of isogeny. Instead of two public keys in CSIDH, 

the CSIKE algorithm uses one recipient’s public 

key. 

In [4,5], the solution of such a problem is 

proposed on the basis of the well-known KEM 

(Key Encapsulation Mechanism) scheme, built on 

the ElGamal encryption algorithm. Its 

implementation is complex and time-consuming. 

We propose a simpler, faster and more efficient 

CSIKE encryption algorithm with one public key 

as a modification of CSIDH with inversion of the 

recipient’s private key [6–8]. 

As the most efficient technology of the 

algorithm, classes of non-cyclic quadratic and 

twisted supersingular Edwards curves (SEC) 

forming the quadratic twist pairs are proposed [9–

11]. In comparison with the known 

implementations of CSIDH on complete Edwards 

curves [12], this technology doubles the space of 

curves used and, moreover, does not require 

laborious inversion of the curve parameter d in the 

transition to quadratic twist. 

Computing odd degree isogenies on complete 

and quadratic Edwards curves is carried out 
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according to the formulas of Theorems 2–4 of 

[13]. In the fundamental papers [14, 15], some 

classes of Edwards curves, in our opinion, 

received unfortunate terms, which leads to 

ambiguous interpretations. We use the 

classification of curves in the generalized 

Edwards form with two parameters a and d [16, 

17] with their division into three non-intersecting 

classes of curves (Section 2). In [8], we 

generalized the theorems of [12] to curves in the 

generalized Edwards form, which made it 

possible in [9–11] to apply quadratic and twisted 

Edwards curves over a field Fp to implement the 

simplest models of the CSIDH algorithm. To 

illustrate their work, we used pre-computation and 

tabulation of the parameters of isogenic chains, 

which is possible in a limited volume of the article 

with the number of isogeny degrees not more than 

three. For a real cryptosystem, this makes no 

sense. In this article, without pre-computations, 

we give examples of the CSIKE algorithm work 

with the construction of random isogenic SEC 

chains and a starting curve Ed with a parameter 

d = 2 known from [19]. Such modeling is much 

closer to the operation of a real algorithm with a 

large number of isogeny degrees. 

An analysis of the properties of quadratic and 

twisted Edwards curves that form pairs of 

quadratic twist is given in [18, 19]. Supersingular 

curves of these classes with the same order 

NE = p + 1 = 2mn, m ≥ 3 (n is odd) exist only for 

p ≡ 3mod4. The minimum even cofactor of the 

order of such curves is 8; then, for the CSIDH and 

CSIKE algorithms with an odd 𝑛 = ∏ 𝑙𝑖
𝐾
𝑖=1  the 

field Fp modulus, it should be chosen as 

p = 8n – 1. In order to adapt the definitions for the 

arithmetic of the isogenies of Edwards curves and 

curves in the Weierstrass form, we use a modified 

point addition law [16]. 

Section 2 gives a brief overview of the 

properties of noncyclic twisted and quadratic 

supersingular Edwards curves (SEC) [18, 19]. 

Section 3 gives a description of the CSIDH [1] 

algorithm with its adaptation to classes of non-

cyclic SEC, and a theorem [8] on the isogenies of 

such curves. In Section 4, we present the original 

CSIKE scheme and give an example of Alice’s 

calculations at the first stage of her work on a 

model with isogeny degrees 3, 5, 7, 11 over a 

prime field Fp at p = 9239. In Section 5, the 

rationale for the randomization method of the 

CSIDH algorithm is given, a new randomized 

CSIKE algorithm is presented, which also 

suggests abandoning the calculation of the 

isogenic function ϕ(R) of a random point R of the 

curve in the algorithm. Examples of calculations 

by Alice and Bob at three stages of the model of 

the randomized CSIKE algorithm are given. 

2. Brief Review of the Properties of 
Non-Cyclic Supersingular Edwards 
Curves 

We define an elliptic curve in the generalized 

Edwards form [16, 17] by the equation 

 

𝐸𝑎,𝑑: 𝑥
2 + 𝑎𝑦2 = 1 + 𝑑𝑥2𝑦2, 

𝑎, 𝑑 ∈ 𝐹𝑝
∗, 𝑎 ≠ 𝑑, 𝑑 ≠ 1. 

(1) 

 

If the quadratic character is χ(ad) = –1, curve 

(1) is isomorphic to the complete Edwards curve 

[14, 15] with one parameter d 

 

𝐸𝑑: 𝑥
2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2, 𝜒(𝑑) = −1. (2) 

 

Otherwise χ(ad) = 1, χ(a) = χ(d) = 1, the curve 

(1) is isomorphic with the quadratic Edwards 

curve [16] 

 

𝐸𝑑: 𝑥
2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2, 

 𝜒(𝑑) = 1, 𝑑 ≠ 1, 
(3) 

 

having, in contrast to (2), the parameter d defined 

as a square. For both curves (2) and (3) one 

usually takes a = 1. In [15], curve (3) together 

with curve (2) are called Edwards curves. At the 

same time, the difference in the quadratic 

characters of these curves leads to radically 

different properties [16, 17]. In particular, the 

order of cyclic SKE (2) NE ≡ 0mod4, and non-

cyclic SEС (3) NE ≡ 0mod8. 

The twisted Edwards curve is defined in [16] 

as a special case of curve (1) for χ(ad) = 1, 

χ(a) = χ(d) = –1. Only this class of Edwards 

curves requires the second parameter a in 

equation (1). In [15], all curves in the form (1) are 

called twisted. 

Let us define a pair of quadratic and twisted 

Edwards curves [16, 17] as a pair of quadratic 

twist with parameters χ(ad) = 1, aʹ = ca, dʹ = cd, 

χ(c) = –1. Since SEC exist only for p ≡ 3mod4 

[18], we can take c = –1, aʹ = –a = –1, dʹ = –d 

where a and d are the parameters of a quadratic 

curve, respectively aʹ and dʹ, of a twisted curve. In 

other words, the transition from a quadratic to a 

twisted torsion curve and vice versa can be 

defined as Ed = E1,d ↔ E–1,–d. Accordingly, the 
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twisted SEC equation for p ≡ 3mod4 from (1) can 

be written as 

 

𝐸−1,−𝑑: 𝑥
2 − 𝑦2 = 1 − 𝑑𝑥2𝑦2, 

𝑑 ∈ 𝐹𝑝
∗, 𝑑 ≠ 1, 𝜒(𝑑) = 1. 

(4) 

 

Over a prime field Fp, a supersingular curve 

always has order NE = p + 1. 

So, quadratic and twisted SEC as a pair of 

quadratic twist have the same order NE = p + 1 but 

different structure. All their points are different 

(except two points (0,±1)), so isogenies of the 

same degree have different kernels. Both curves 

are non-cyclic with respect to points of the 2nd 

order (contain 3 points of the 2nd order each, two 

of which are exceptional points 𝐷1,2 = (±√
𝑎

𝑑
, ∞) 

[15, 16]). Quadratic SEС (3), in addition, contains 

two exceptional points of the 4th order ±𝐹1 =

(∞,±
1

√𝑑
) The presence of a noncyclic subgroup 

of the 4th order containing 3 points of the 2nd order 

limits the number 8 to the minimum even cofactor 

of the order NE = 8n (n is odd) of quadratic and 

twisted Edwards curves [16]. In general, their 

order is NE = 2mn, m ≥ 3. The maximum order of 

points of these curves is NE/2 = 4n. It is important 

that points of even orders are not involved in the 

calculations of the CSIDH algorithm (after the 

first multiplication of a random point P of 

maximum order by 4, we have a point of odd order 

n). 

3. CSIDH Algorithm on Quadratic 
and Twisted Edwards Curves 

The PQC CSIDH (Commutative 

Supersingular isogeny Diffie-Hellman) algorithm 

proposed by the authors of [1] for solving the key 

exchange problem based on isogenic mappings of 

supersingular elliptic curves as additive Abelian 

groups. Such a commutative mapping over a 

prime field Fp as the class group action is defined 

[1]. It provides the smallest known key size (512 

bits in [1]). 

Let the curve E of order NE = p + 1 contain 

points of small odd orders lk, k = 1, 2, …, K. Then 

there is an isogenic curve Eʹ of the same order as 

a lk-degree map: E → Eʹ = [lk]*E. The repetition 

of this operation ek times we denote [𝑙𝑘
𝑒𝑘]*E. The 

values of the isogeny exponents ek ∈ Z determine 

the length |ek| of the chain of isogenies of degree 

lk. In [1], an interval of exponential values  

[–m ≤ ei ≤ m] is accepted m = 5, which provides a 

security level of 128 bits for a quantum computer 

attack. Negative values of the exponent mean a 

transition to a quadratic twist supersingular curve. 

The implementation of the CSIDH algorithm 

in [1] uses fast arithmetic of Montgomery elliptic 

curves y2 = x3 + Cx2 + x, C ≠ ±2 containing two 

points of the 4th order and, accordingly, having an 

order NE = p + 1 = 4n (n is odd) [14]. In [12] the 

CSIDH algorithm implemented on complete SEC 

of the same order. In [9–11] and this paper, we use 

quadratic and twisted SECs in the CSIDH 

algorithm, which have the same speed 

performance as complete Edwards curves [12]. In 

[8] we proved two theorems for implementation 

such possibility. With a minimum cofactor of 8, 

the order of twisted and quadratic SEC is NE = 8n. 

Thus, for these SEC classes with order 

NE = 8n = p + 1, 𝑛 = ∏ 𝑙𝑘
𝐾
𝑘=1  the field modulus in 

the CSIDH algorithm we chosen as 𝑝 =
∏ 𝑙𝑘
𝐾
𝑘=1 − 1 ≡ −1mod8. 

Non-interactive Diffie-Hellman key exchange 

includes the following steps [1]: 

1. Choice of parameters. For small odd primes 

li, compute 𝑛 = ∏ 𝑙𝑘
𝐾
𝑘=1 , where the value K is 

determined by the security level (in [1] K = 74, 

l74 = 587), and choose an appropriate field 

modulus 𝑝 = 2𝑚∏ 𝑙𝑘 − 1
𝐾
𝑘=1 , m ≥ 3 and a 

starting elliptic curve E0. 

2. Calculation of public keys. Alice uses her 

private key ΩA = (e1, e2, …, eK) to build an 

isogenic mapping ΘA = [𝑙1
𝑒1, 𝑙2

𝑒2, …, 𝑙𝐾
𝑒𝐾] (class 

group action [1]) and calculates the isogenic curve 

EA = ΘA*E0 as her public key. Based on the secret 

key ΩB and function ΘB, Bob performs the same 

calculations and obtain his public key EB = ΘB*E0. 

These curves are defined their parameters dA,dB up 

to isomorphism, which are accepted as public 

keys known to both parties. 

3. Sharing secrets. Here the protocol is similar 

to item 2 with replacements E0 → EB for Alice and 

E0 → EA for Bob. Knowing Bob’s public key, 

Alice calculates EBA = ΘA*EB = ΘAΘB*E0. Similar 

actions of Bob give a result EAB = ΘB*EA = 

 ΘBΘA*E0 that coincides with the first one due to 

the commutatively of the group operation. The J-

invariant of the curve EAB(EBA) is accepted the 

shared secret. 

Below we present a modification of Alice’s 

computational algorithm according to item 2 [1] 

using isogenies of quadratic and twisted SEС. 
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Algorithm 1: Evaluating the class-group action on twisted and quadratic SEC. 

 

Input: dA ∈ EA, χ(d) = 1 and a list of integers ΩA = (e1, e2, …, eK). 

Output: dB such that [𝑙1
𝑒1, 𝑙2

𝑒2, …, 𝑙𝐾
𝑒𝐾]*EA = EB, where EA,B: x2 + ay2 = 1 + adA,Bx2y2. 

1. While some ek ≠ 0 do 

2. Sample a random x ∈ Fp, 

3. Sеt a ← 1, EA: x2 + y2 = 1 + dAx2y2 if (x2 – 1)(dy2 – 1) is a square in Fp, 

4. Else a ← –1, EA: x2 – y2 = 1 – dAx2y2, 

5. Let S = {k | aek > 0}. If S = ∅ then start over to line 2 while a ← –a, 

6. Let 𝑛 = ∏ 𝑙𝑘𝑘𝜖𝑆 , and compute R ← [(p + 1)/2n]P, P ← P(x,y), 

7. For each k ∈ S do 

8. Compute Q ← [n/lk]R 

9. If Q ≠ (1,0), compute an isogeny ϕ: EA → EB with ker ϕ = Q, 

10. Set dA ← dB, R ← ϕ(R), ek ← ek – a, 

11. Skip k in S and n ← n/lk if ek = 0, 

12. Return dA.

 

In comparison with Algorithm 2 in [1], our 

Algorithm 1, adapted to twisted and quadratic 

SEC, has some modifications: 

1. Checking the square in line 3 use the 

equation of the quadratic Edwards curve (3). 

2. Lite 10 has been corrected (you cannot reset 

the index k before zeroing ek in line 10). 

3. Updating the number n ← n/lk and reset k in 

line 11 we perform after zeroing ek. 

According to line 10, exactly |ek| isogenies we 

calculate for each lk until the exponent ek is set to 

zero. Depending on its sign, isogenies are 

calculated in the class of quadratic (ek > 0) or 

twisted SEC (ek < 0). 

The construction of isogenies of odd prime 

degrees for quadratic Edwards curves based on 

Theorem 2 [13], and for twisted Edwards 

curves—Theorem 1 [8]. In the last work, for the 

first time, mapping ϕ(P) formulas for the curve (1) 

are given, depending on two parameters a and d. 

4. CSIDH Algorithm on Quadratic 
and Twisted Edwards Curves 

The classic non-interactive Diffie-Hellman 

algorithm is based on the use of two public keys. 

The same task of forming a shared secret can be 

solved in a protocol with one transmission session 

and one public key of the recipient, which is more 

secure. To do this, Alice generates a shared secret, 

encrypts it with Bob’s public key, and sends him 

the encrypted key (the encapsulation key). Bob 

decrypts it with his private key. This protocol is 

called key encapsulation. 

Based on CSIDH, we propose its 

modification—the Commutative Supersingular 

Isogeny: Key Encapsulation (CSIKE) algorithm, 

which, like [4, 5], includes three stages: 

1. Key generation. Alice, using a random 

number generator, finds a secret vector Ωκ = (e1, 

e2, …, eK), builds an isogenic map Θκ = [𝑙1
𝑒1, 𝑙2

𝑒2, 

…, 𝑙𝐾
𝑒𝐾] and calculates an isogenic curve 

Eκ = Θκ*E0 whose parameter d is taken as d = κ. 

2. Key encapsulation. This is the procedure for 

Alice to encrypt a key with Bob’s public key EB. 

To do this, Alice computes an isogenic curve 

Θκ*EB = EκB. The parameter dκB of this curve as an 

encrypted key is sent to Bob. 

3. Key decapsulation. Bob’s decryption of the 

curve EκB with his secret key ΩB is reduced to his 

calculation of the isogenic curve Θ𝐵̅̅ ̅̅ *EκB = Eκ  , 

where the inverse function Θ𝐵̅̅ ̅̅  is constructed by 

inverting all signs of the exponent of Bob’s secret 

key: ΩB → (–ΩB). 

Consider a simple implementation model of 

the CSIKE algorithm on quadratic and twisted 

SEC that form pairs of quadratic twist with the 

same order p + 1. Such curves exist only for  

p ≡ –1mod8 and have order NE = NE
t = p + 1 = cn 

(n is odd), c ≡ 0mod8. 

Let such a pair of curves contain points of 

prime order 3, 5, 7, 11, then n = 1155, the 

minimum prime p = 8n – 1 = 9239 and the order 

of these curves NE = 8n =9240. The number of 

supersingular curves at a rough estimate 2√𝑝 in 

this model is close to 200; therefore, the 

parameters of all such curves and their exact 

number are assumed to be unknown. Unlike 

previous models [9–11], which use 

precomputation and tabulation of the parameters 

of isogenic chains on a period, in this paper we 

proceed only from the known starting curve E0 

and Algorithm 1, which brings the model closer to 
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a real cryptosystem. As a starting curve E0, we can 

take the Edwards curve (3) for d = 2 which is 

supersingular with J-invariant J = 663 [18]. Let us 

pose the problem of calculating isogeny chains at 

stage 1 of the CSIKE algorithm. 

Let’s take the secret key vector Ωκ = (4,–3, 

–3,2), then the group action class function, 

respectively Θκ = [34,5–3,7–3,112)]. According to 

this function, Alice calculates the secret key κ. For 

the starting curve, we take Ed
(0) = E2, then 

Eκ = E2*Θκ. In our example, the length of the 

chain of isogenies, equal to the sum of the 

absolute values of the exponents, is 12. At each 

step, you can choose any of the 4 degrees of 

isogenies, then there are 224 paths leading to one 

result. A result can be considered reliable if it is 

found in at least two ways. 

If the calculations are carried out according to 

the function Θκ and algorithm 1 from left to right, 

first for curves Ed
(i) (ek > 0), then for curves E–1,–

d
(i) (ek < 0), it is possible to construct two chains of 

length 6 each. 

Example 1. The starting curve is the SEC Ed
(0), 

d = 2. Let us consider Alice’s calculations at the 

first step according to Algorithm 1. For isogenies 

of degrees 3 and 11, we first need to find a random 

point R33 of the curve E2 of order n0 =3·11=33. 

According to Algorithm 1, we determine a 

random point P = (503,2304) having the 

maximum order 4n. By doubling twice, we obtain 

a point R = 4P = (8779,5631) of order n. Next, we 

find a point R33 = 35R = (5412,–3772) of the 33rd 

order. The kernel of the 3-isogeny is the point 

Q3 = 11R33 = (–6153,3016) of the 3rd order. 

Finally, using formula (6), we determine the 

parameter of the isogenic curve d(1) = 5861. 

In order to simplify the notation in the 

algorithm for calculating an isogenic curve 

Eκ = E2*Θκ, we will use only the parameters d(i), 

which completely determine the curves Ed
(i) 

(ek > 0) and E–1,–d
(i) (ek < 0) as pairs of quadratic 

twist. For the first chain of length 6 curves Ed
(i) 

(ek > 0), Alice’s calculations can be written as 

 

𝑑(0) = 2

(3)

1
→
𝑑(1) = 5861

(3)

1
→
7935

(3)

1
→ 

1
→
7745

(3)

1
→
4900

(11)

1
→
393

(11)

1
→4637 = 𝑑(6). 

 

Here, under the value d(i) in brackets, we 

conditionally set the degree of isogeny, and above 

the arrow, the value a of parameter of the curve Ed 

or E–1,–d. 

Continuation of calculations for isogenic 

curves of degrees 5 and 7 gives the results 
 

𝑑(6) = 4637

(5)

−1
→ 
𝑑(7) = 259

(5)

−1
→ 
6813

(5)

−1
→  

−1
→ 
1941

(7)

−1
→ 
7805

(7)

−1
→ 
5308

(7)

−1
→ 443 = 𝑑(12). 

 

So, the secret key shared with Bob, calculated 

by Alice, is κ = 443. By changing the order of the 

degrees of isogenies from the highest to the lowest 

(in the same class of curves), we obtain the second 

path of the chain with the results 
 

𝑑(0) = 2

(11)

1
→
7327

(11)

1
→
50

(3)

1
→ 

1
→
8935

(3)

1
→
4647

(3)

1
→
8262

(3)

1
→4637 = 𝑑(6), 

𝑑(6) = 4637

(7)

−1
→ 
3376

(7)

−1
→ 
4550

(7)

−1
→  

−1
→ 
445

(5)

−1
→ 
2431

(5)

−1
→ 
3880

(5)

−1
→ 443 = 𝑑(12). 

 

It can be seen that only the parameters d(0)d(12), 

and d(6) = 4637, coincide on the first and second 

calculation paths. The last result is explained by 

the fact that it completes a chain of length 6 for all 

curves Ed
(i) (ek > 0) and is the same when the 

degrees of 3- and 11-isogenies are interchanged. 

However, such a collision event reduces the 

security of the CSIDH and CSIKE algorithms. We 

propose an approach free from this shortcoming [11]. 

5. Randomization of the CSIKE 
Algorithm 

The CSIDH algorithm proposed by the authors 

of [1] (Algorithm 1 in Section 3) is constructed in 

such a way that the calculations of isogenic chains 

according to functions Θ𝐴,𝐵 = [𝑙1
𝑒1 , 𝑙2

𝑒2 , … , 𝑙𝐾
𝑒𝐾] are 

performed in two stages: first, a set S with key 

exponents ek of one sign is formed, then another. 

At each stage, the kernels and parameters of 

exactly |ek| isogenic curves of isogenies of degrees 

lk constructed on curves of the same class (Ed or 

E–1,–d) are successively calculated. This obviously 

gives rise to the threat of a side channel attack 

based on the measurement of the time of these 

calculations, proportional to the length |ek| and 

degree lk of each chain. In this regard, in a large 

number of articles on this topic, various variants 

of “constant time CSIDH” are considered, in 

which the secret exponents ek are increased to the 



6 

upper bound m by fictitious chains of isogenies. It 

is clear that such protection is achieved by 

significant redundancy and algorithm slowdown. 

In [11], we proposed an alternative approach 

to solving the problem—randomization of the 

path of isogenic chains. Along with counteracting 

side channel attacks, this method makes it 

possible to practically avoid the collisions 

described in the final part of Section 4. The idea 

is that any random coordinate x of an elliptic curve 

always generates a random point P = (x,y) of one 

of the two curves Ed or E–1,–d a pair of quadratic 

twist. Then one can avoid fruitless attempts to find 

a point of a curve of a given class and immediately 

determine the class of the curve and the y-

coordinate of a point P = (x,y) of this class. 

Further, in this class, the first isogenic curve 

E(1) = [lk]*E(0) of the degree lk of isogeny 

corresponding to the sign of the exponent ek is 

calculated. The choice lk is randomized, and the 

value |ek| is reduced by 1. At the next step, with a 

new parameter d(1) value, a random point P = (x,y) 

of one of the curves Ed or E–1,–d is determined 

again, the isogeny kernel of a randomly chosen 

degree lk is determined, and the parameter d(2) is 

calculated. The process continues until zeroing all ek. 

Some estimates of the probability of a 

successful time attack by an analyst who 

calculates the secret exponents ek of isogenic 

chains of degree lk are given in [11]. Below we 

provide Algorithm 2 of CSIKE (CSIDH) 

Randomized Implementation. 

 

Randomized algorithm 2: Evaluating the class-group action on quadratic and twisted SEC. 

 

Input: dA ∈ EA, χ(d) = 1 and a list of integers ΩA = (e1, e2, …, eK). 

Output: dB such that [𝑙1
𝑒1, 𝑙2

𝑒2, …, 𝑙𝐾
𝑒𝐾]*EA = EB, where EA,B: x2 + ay2 = 1 + adA,Bx2y2. 

1. Let S0 = {k | ek > 0}, S1 = {k | ek < 0}, 𝑛0 = ∏ 𝑙𝑘𝑘𝜖𝑆0 , 𝑛1 = ∏ 𝑙𝑘𝑘𝜖𝑆1 , 

2. While some ek ≠ 0 do 

3. Sample a random x ∈ Fp, 

4. Sеt a ← 1, λ ← 0, EA: x2 + y2 = 1 + dAx2y2 if χ((x2 – 1)/(dx2 – 1)) = 1, 

5. Else a ← –1, λ ← 1, EA: x2 – y2 = 1 – dAx2y2, 

6. Compute y-coordinate of the point P = (x,y) ∈ EA 

7. Compute R ← [(p + 1)/2nλ]P, 

8. Sample a random lk | k ∈ Sλ, 

9. Compute Q ← [nλ/lk]R 

10. If Q ≠ (1,0) compute kernel G of lk-isogeny ϕ: EA → EB, 

11. Else start over to line 3, 

12. Compute dB of curve EB, dA ← dB, ek ← ek – a, 

13. Skip k in Sλ and set nλ ← nλ/lk if ek = 0, 

14. Return dA. 

 

This algorithm has two important differences 

from Algorithm 1. Firstly, we do not divide the 

calculation of isogenies into two stages with 

curves of one class, then another (a ← –a), but 

build a random sequence {λ} with an 

equiprobable choice of curves Ed or E–1,–d, at each 

step. Together with the twofold acceleration of the 

procedure for selecting curves, this deprives the 

analyst of the possibility of orderly construction 

of two subsets S0,S1 of isogeny degrees. In 

addition, for each component [𝑙𝑘
𝑒𝑘] of the function 

Θ, the chain of isogenies of length |ek| is divided 

into fragments of the general chain, which are 

inserted at random times. This inevitably 

complicates the task of measuring the 

computation time according to the function [𝑙𝑘
𝑒𝑘]. 

A rough lower bound for the number of paths of 

isogenic chains for the data of [1] is 21300. 

Secondly, as in [11], in Algorithm 2 (section 

12) we refuse to calculate the isogenic function 

ϕ(R), which significantly speeds up the algorithm. 

The ultimate goal of the CSIDH secret sharing 

algorithm is to find the common parameter dAB of 

curve EAB. For each step in the chain of isogenies 

E → Eʹ, it is only necessary to calculate the 

parameter dʹ = ψ(d,Q) based on the parameter d 

and the kernel <Q> of the domain E. This 

calculation involves two scalar multiplications 

SM of odd-order nλ random points R and (lk – 1)/2 

recurrent doublings of points from <Q>. Thus, the 

construction and calculation of a sufficiently 

complex function ϕ(R) is not necessary for the 

implementation of the CSIDH and CSIKE 

algorithms. A significant part of the calculations 

in Algorithm 1 related to the calculation of the 

function ϕ(R) can be saved. 
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At the beginning of Algorithm 2, two subsets 

Sλ,λ = 0,1 are formed with degree numbers lk, 

together with two factors n0 and n1 of number 

n = n0n1. Since the order of the curve is p + 1 =8n, 

then in step 7 of the algorithm, a point R = 4n1P 

of odd order n0 is calculated for the curve Ed, and 

a point R = 4n0P of odd order n1 is calculated for 

the curve E–1,–d. As in Algorithm 1, this minimizes 

the cost of the next scalar multiplication that 

determines the degree lk isogeny kernel point Q 

(Item 9). Further, in step 10 of the algorithm, the 

(lk – 1)/2 coordinates of the points of the kernel 

<Q> are calculated by doubling the points. 

Example 2. To illustrate the randomization 

method based on the data of Example 1, let’s give 

an example of Alice calculating the secret key κ, 

as well as its encapsulation with Bob’s public key 

and Bob’s decapsulation of the encrypted key in 

the randomized CSIKE algorithm (Algorithm 2). 

In order for the reader to be able to check the 

calculations of the first stage, we have 

summarized their key results in Table 1. In its 

upper half we write the results for the first six 

isogenic curves (i = 1..6), and in the lower half for 

the rest (i = 7..12). 

The first line of the table specifies the number 

i of the isogenic curve, then given the coordinates 

of a random point P, a point R of odd order, its 

order, the degree l of isogeny, the coordinates of 

the point Ql of the kernel, the parameters α1, α2, 

…, αs of the kernel points and, finally, the 

parameter d(i) calculated by the formula (6). 

We note right away that in this example we 

practically do not change the x-coordinates of the 

point P, and the choice of the curve Ed or E–1,–d at 

each step is due to a change in the flow parameter 

d(i). For i = 8 and x =100, the order of the point R 

turned out to be 11, and this degree of isogeny has 

been exhausted by previous calculations. We took 

x = 101 and continued the calculations until the 

final step i = 12. Here, the curve E–1,–d with 5-

isogeny is found at x = 104. The number of 

degrees of freedom at the end of the calculations 

naturally decreases. Random points R with small 

probabilities Lk/n may not have the maximum 

order n, which sometimes leads to a return to the 

beginning of the cycle.

 

Table 1 
Results of calculating the parameters d(i) of a chain of isogenies of length 12 at p = 9239 based on 
Algorithm 2 and the function Θκ = (34,5–3,7–3,112) 

i 1 2 3 4 5 6 

P (100,8575) (100,1188) (100,6058) (100,36) (100,8756) (100,6475) 

R=4P (2355,3000) (7437,8394) (1314,6857) (1999,6221) (5518,5326) (6757,8503) 

OrdR 3*7*11 5*7*11 5*11 3*5*7*11 3*5*7*11 3*5*7*11 

l 7 11 11 3 5 3 

R (3765,1727) (79,5609) (3770,1401)  (6068,2793) (8212,2432) (–500,8513) 

1 3765 79 3770 –3171 8212 –500 

2 4218 2380 –1364 — 2592 — 

3 4670 387 8468 — — — 

4 — –7876 –7225 — — — 

5 — –33 –8620 — — — 

d(i) 5135 8326 35 2590 8588 3466 

i 7 8 9 10 11 12 

P (100,8968) (101,8248) (101,6278) (101,5375) (101,401) (104,6408) 

R=4P (1283,6372) (6731,5854) (8362,524) (-943,4106) 3690,6330) (7842,6474) 

OrdR 3*5*7*11 3*5*7*11 3*5*7*11 3*5*7*11 3*5*7*11 3*5*7*11 

l 3 7 7 3 5 5 

Ql (1442,6713) (407,556) (5751,3010) (–885,2008) (1072,2627) (6577,715) 

1 1442 407 5751 –885 1072 6577 

2 — –2358 1789 — 8878 8979 

3 — –398 –550 — — — 

d(i)
 7327 8326 389 2431 3880 443 
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According to the results of calculations in 

Table 1, Alice determines the secret key κ = 443. 

With a random choice of the x-coordinate of 

the point P, another chain of isogenies was 

defined with parameters d(i) 

 

𝑑(0) = 2

(3)

1
→
5861

(5)

−1
→ 
1919

(7)

−1
→  

−1
→ 
2992

(11)

1
→
2755

(7)

−1
→ 
3880

(7)

−1
→ 6365 = 𝑑(6), 

𝑑(6) = 6365

(11)

1
→
4684

(3)

1
→
5734

(5)

−1
→  

−1
→ 
7113

(3)

1
→
623

(5)

1
→
1507

(3)

−1
→ 443 = 𝑑(12) = 𝜅. 

 

This secret key κ = 443 is the same as the result 

of the previous section and Table 1. Randomizing 

the choice of curves essentially randomly splits 

the key exponents Ωκ and introduces significant 

uncertainty into the side channel attack problem. 

Consider next the stages of encapsulation and 

decapsulation. Let Bob’s secret key be  

ΩB = (3,–2,2,–3), and the class group action, 

respectively, be ΘB = [33,5–2,72,11–3]. Then he 

calculates his public key of one of the possible 

isogeny chains of length 10 

 

𝑑(0) = 2

(5)

−1
→ 
2723

(3)

1
→
1919

(3)

1
→ 

1
→
7971

(3)

1
→
4014

(11)

−1
→ 
5164

(5)

−1
→ 6482 = 𝑑(6), 

𝑑(6) = 6482

(7)

1
→
393

(11)

−1
→  

−1
→ 
4900

(7)

1
→
1821

(11)

−1
→ 2504 = 𝑑(10). 

 

Bob thus has a public key dB = 2504. Knowing 

it, Alice encrypts it at the encapsulation step using 

the secret function of the group action class. 

Θκ = [34,5–3,7–3,112]. To do this, she calculates an 

isogenic curve Θκ*EB = EκB. Her calculations 

yield an encrypted encapsulation key 

 
𝑑𝐵 = 2504

(3)

1
→
3276

(7)

−1
→ 
7327

(5)

−1
→  

−1
→ 
6250

(7)

−1
→ 
1787

(11)

1
→
667

(3)

−1
→ 9033 = 𝑑(6), 

𝑑(6) = 9033

(11)

1
→
833

(3)

1
→
894

(5)

−1
→  

−1
→ 
6661

(3)

1
→
6163

(5)

−1
→ 
5881

(3)

1
→5154 = 𝑑(12). 

 

This key dκB = 5154 is sent to Bob. To 

decapsulate dκB, Bob uses his reverse secret key 

Θ𝐵̅̅ ̅̅  = [3–3,52,7–2,113]. He calculates Θ𝐵̅̅ ̅̅ *EκB and 

obtain 

 
𝑑𝜅𝐵 = 5154

(5)

1
→
667

(7)

−1
→ 
9033

(7)

−1
→  

−1
→ 
3282

(3)

−1
→ 
7190

(3)

−1
→ 
6813

(11)

1
→8001 = 𝑑(6), 

𝑑(6) = 8001

(3)

−1
→ 
583

(11)

1
→ 

1
→
5734

(5)

1
→
8704

(11)

1
→443 = 𝑑(10). 

 

As a result, both parties have a common secret 

key κ = 443 to work in a symmetric cryptosystem. 

The security level of the algorithm is evaluated 

similarly to CSIDH [1], but under the conditions 

of an attack with a known one public key instead 

of two. 

Let us now turn to some properties of the 

curves Ed and E–1,–d, which are useful in choosing 

a random point of one of them. For curves of 

order, NE = 8n there are 8 times more points of 

maximum order 4n than points of odd order n. For 

the latter, in turn, the choice of a point of order 

that divides n is unlikely. 

Equations (3) and (4) will be rewritten as 

 

𝐸𝑑: 𝑦
2 =

𝑥2 − 1

𝑑𝑥2 − 1
, 𝜒(𝑑) = 1, 

𝐸−1,−𝑑: 𝑦
2 =

1 − 𝑥2

𝑑𝑥2 − 1
, 𝜒(𝑑) = 1. 

 

Excluding points of small even orders, and 

singular points ((xy ≠ 0), (dx2 ≠ 1), (dy2 ≠ –1)), the 

choice of a random element x ∈ Fd generates a 

random point P(x,y) ∈ Fd or P(x,y) ∈ E–1,–d. In the 

first case χ((dx2 – 1)(x2 – 1)) = 1, in the second 

case, χ((dx2 – 1)(x2 – 1)) = –1 is performed. 

According to the above formulas, the y-coordinate 

of the point P = (x,y) is calculated. 

The results of the implementation of the 

Edwards-CSIDH model [12] in projective 

coordinates (W:Z) state that it is faster than the 

Montgomery-CSIDH model in coordinates (X:Z) 

by 20%. Note that this model in [12] is built on 

complete Edwards curves with order NE = p + 1(n 

is odd). Based on theorems [8] and the 

randomization method [11], in this paper we have 

shown how to implement a simple CSIKE model 

on non-cyclic quadratic and twisted SKEs that 

form quadratic twist pairs. The advantage of these 

classes of Edwards curves over the complete ones 
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at fixed p is the doubling of the number of curves 

in the algorithm with a corresponding increase in 

security. In addition, the time-consuming 

inversion of the parameter d → d–1 is not required 

when going to the quadratic twist complete curve. 

6. Conclusions 

The paper presents the original PQC CSIKE 

algorithm, which implements a scheme for 

encrypting a shared secret with a single public key 

of the recipient. The algorithm, in contrast to the 

well-known KEM scheme [2, 3], does not use the 

ElGamal encryption scheme, but is built as a 

modification of CSIDH using the recipient’s 

reverse secret key. Such an implementation is 

undoubtedly much faster than the KEM scheme. 

An illustration of CSIKE operation on a model 

with isogenies of degrees 3, 5, 7, and 11 at and 

order NE = 9240 of SEC is given. In the absence 

of precalculation of the SEC parameters d (they 

were used in previous works [9–11]), all isogenic 

curves were calculated from the starting curve Ed 

with the parameter [19]. 
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