
142

Encryption Method for Systems with Limited Computing
Resources

Roman Chernenko1, Andriy Anosov1, Roman Kyrychok1, Zoreslava Brzhevska1,

and Svitlana Spasiteleva1

1 Borys Grinchenko Kyiv University, 18/2 Bulvarno-Kudriavska str., Kyiv, 04053, Ukraine

Abstract
Due to the active development of the Internet of Things (IoT) technology, more and more

systems of interconnected devices and sensors are appearing that collect various data and

transmit them through gateways to remote servers. It goes without saying that this data must be

protected at all stages. This is especially important for data on the functioning of potentially

dangerous objects and devices. Because of the features of devices with limited computing

resources, it is impossible to use standard methods of information protection in the gateway-

built-in sensor link. The article considers the algorithm of the Internet of Things system using

limited devices, which consists of a gateway for receiving data from sensors and transmitting

them to servers and limited devices used for data collection and encryption. The proposed

algorithm describes the process of data packet generation, key generation, encryption,

transmission, and decryption of data received from sensors. The reliability of data encryption

transmitted in the gateway-built-in sensor link is ensured by the generation of a truly random

sequence - the encryption key, based on the initial measured value on the unconnected and

ungrounded analog input of the microcontroller, and a series of arithmetic operations.

Keywords 1
Internet of Things, IoT, network security, encryption, Vernam cipher, random number

generation.

1. Introduction

The rapid development of the Internet of

Things has led to the creation of a large number of

heterogeneous systems of interconnected

computing devices, built-in sensors that collect

and measure environmental parameters and

transmit them through IoT gateways to a remote

server in the cloud [1]. It is clear that all data

transmission links of such a system must be

reliably protected. This is especially important for

systems that collect data on the operation of

potentially dangerous objects and devices [2].

Therefore, security is crucial for IoT protocols.

Computer systems on restricted devices operate

on the basis of standard or proprietary protocols,

in which data must be protected from interception,

modification and substitution. In the gateway-

remote server link, the required level of protection

CPITS-2022: Cybersecurity Providing in Information and Telecommunication Systems, October 13, 2022, Kyiv, Ukraine
EMAIL: r.chernenko.asp@kubg.edu.ua (R. Chernenko); a.anosov@kubg.edu.ua (A. Anosov); r.kyrychok@kubg.edu.ua (R. Kyrychok);

z.brzhevska@kubg.edu.ua (Z. Brzhevska); s.spasitielieva@kubg.edu.ua (S. Spasiteleva)

ORCID: 0000-0002-1439-961X (R. Chernenko); 0000-0002-2973-6033 (A. Anosov); 0000-0002-9919-9691 (R. Kyrychok); 0000-0002-
7029-9525 (Z. Brzhevska); 0000-0003-4993-6355 (S. Spasiteleva)

©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

can be provided based on standard protocols [3].

In the gateway-built-in sensor (limited device)

link, there is an objective need to use algorithms

that employ a minimum of computing resources

to ensure the required level of information

protection.

2. Formulation of the Problem

The application of encryption methods in

computer systems on limited devices creates a

limitation in the existing computing resources,

which makes it necessary to work out such a

method that will employ a minimum of such

resources.

After analyzing the algorithms, namely the

required number of calculations and device

memory for organizing these calculations, it was

investigated that for the operation of the RSA

143

algorithms and the El-Gamal scheme it is

necessary to use an amount of memory that

exceeds the amount available in class 0 and 1

devices [4]. Accordingly, they cannot be

implemented on limited devices [5].

Thus, a problematic issue arises regarding the

development and use of the encryption method in

modern objects representing computer systems on

limited devices.

The purpose of the article is to increase the

level of security of systems in the Internet of

Things network by developing a method of data

encryption on devices with limited computing

resources.

3. Analysis of Recent Research
and Publications

In [5], a prototype of the IoT system was

developed using limited devices, which provides

absolute cryptographic stability due to the use of

the Vernam cipher with disposable notebooks [6].

During the development of the prototype, the

following security vulnerabilities were

eliminated, such as transmission of unencrypted

data over an unsecured channel.

During the study of encryption methods, the

main operations that are used were highlighted:

addition, shuffling, bit shift and binary XOR

operation. Considering the concept of using the

XOR operation in existing encryption methods, it

can be noted that such a task remains a priority

[7].

In [8], a study and comparative analysis of the

bandwidth of low-power wireless IoT devices in

the role of wireless switches is presented. Such

switches can be used as gateways when

implementing a prototype of an IoT system using

limited devices.

The complexity of the topological structures of

wireless sensor networks due to their variability

[9] determines the need to create secure data

transmission channels and parameters in all links

of the functioning of computer systems with

limited computing resources.

4. Research Results

The general model of the IoT system using

limited devices (Fig. 1) consists of:

 A gateway for receiving data from sensors and

transferring them to servers.

 Limited devices used to collect and encrypt

data for secure transmission over unsecured

channels to the gateway.

Figure 1: General model of an IoT system using
limited devices

The general algorithm of the system functions

as follows:

1. Reading data from sensors with a limited

device.

2. Generation of a random key, the length of

which is equal to the length of the message.

3. Encrypting the message with the Vernam

cipher, using the bitwise “exclusive OR” operator.

4. Random selection of one of the predefined

keys to encrypt the key itself.

5. Encryption of the key.

6. Sending the message and key to the

gateway.

7. Receiving the message by the gateway and

sending the encrypted message via secure

channels to the company’s servers.

8. Reception of the message by the server and

selection of the necessary key to decrypt the key

with which important data is encrypted.

9. Data decoding and adding them to special

structures for data storage and processing. So, the

software implementation of the system consists of

three parts, the program running on the limited

device is responsible for generating data and

encrypting packets for sending. According to the

block scheme (Fig. 2), the first step is the

generation of the message “M” for further

encryption. The prototype uses a temperature and

humidity sensor to generate useful values.

After the message generation is completed, the

random key sequence generation function is

called for data encryption. In general, the function

should generate a truly random sequence of

characters equal to the length of the message in

order to ensure absolute cryptoresistance [10].

144

Figure 2: Block diagram of the general algorithm
of a limited device operation

Any random number generation function

performs mathematical operations with some

initial value, therefore, to obtain a truly random

sequence, the initial value must be random [11]. It

was decided to initialize the value measured at the

unconnected and ungrounded analog input of the

microcontroller, in other words the noise caused

by the stray current, and to perform some

arithmetic between this value and the sensor

readings to make the value even more random. It

is worth noting that the use of various “noises” of

the environment is a widespread method of

forming truly random sequences [12]. So, the

random sequence generation function (Fig. 3)

performs the following actions:

• Accepts the value of the length of the data to

be sent.

• Initializes the initial value for the generation of

key symbols.

• In the loop, a key symbol is randomly

generated for each symbol of the message.

• The function returns a generated sequence of

characters, the length of which is equal to the

length of the message.

Figure 3: Block diagram for generating a random
key sequence

After running these functions, the program has

two variables, the first one stores the value of the

message, the second, the value of the key to

encrypt this message.

The message is as follows:

14.00,23.00,14.00,23.00,

14.00,23.00,14.00,23.00,

14.00,23.00,14.00,23.00,

14.00,23.00,14.00,23.00,

14.00,23.00,14.00,23.00.

The generated key looks like this:

%⸮9⸮g⸮⸮cV(1p'p9⸮C⸮⸮⸮lȖ⸮gtvgȋ'

(⸮⸮⸮n⸮;P=䌕=⸮⸮⸮B⸮r⸮W⸮⸮%⸮N⸮⸮z⸮⸮W;

⸮t⸮⸮3⸮⸮s&Lf⸮⸮|⸮CKIW*/

⸮M⸮!Z1⸮%⸮l⸮⸮⸮ ާ͋⸮⸮⸮⸮⸮⸮Us8⸮⸮⸮

After generating the message and the key, the

encryption function is performed. For encryption,

a Vernam cipher is used, which uses a bitwise

“exclusive OR” operation to create an encrypted

message (Fig. 4). For each symbol of the message

in bitwise form, an XOR operation is applied with

the corresponding key symbol in bitwise form, for

example:

145

⊕
0 0 1 1 0 0 0 1 = 1
0 0 1 0 0 1 0 1 = %

 0 0 0 1 0 1 0 0 = 𝐷𝐶4

According to the example, after the bitwise

operator XOR was applied to the message

character “1,” the character DC4 (Device

Control 4) was obtained with the corresponding

key character “%” at the output. This operation

takes place in a loop, for each pair of key and

message values. After the end of the loop, the

function returns an encrypted message in the form

of a text variable, which is ready for transmission

to the gateway.

Figure 4: Block diagram of the operation of the
encryption function

Upon completion of the encryption function,

one of the predefined keys is selected to encrypt

the key with which the message was ciphered. The

key is chosen randomly. Since two predefined

keys were used in the system prototype, the

selection algorithm works as follows. The current

value is read on the unconnected analog input:

• With the received value, the operation of the

remainder from division by 2 is performed.

• If a 1 is received, then the first key is used,

otherwise the second key is used.

Keys for encryption of randomly generated

sequences have a fixed length, which is equal to

the length of the message and therefore to the

length of the key that was generated randomly.

Predefined keys must be loaded during flashing of

the limited device. The number of such keys may

be different depending on the memory of the

limited device or the possibility of using

additional energy-independent memory in which

the keys will be stored. Each limited device must

have its own unique keys, so that if one device is

compromised, the security of the entire system

will not be compromised.

The corresponding keys will be stored on the

enterprise server, which will receive and decrypt

the received data from the gateway. After

choosing a predefined key, the encryption

function is called again, but only to encrypt a

randomly generated key. At the output, two text

variables are obtained, which are the encrypted

message and the encrypted key for decrypting the

message. After that, these variables can be

transferred through any unsecured data

transmission channel. As a prototype,

transmission through the UART interface is used.

In a real system, any standard protocols for

Internet of Things networks can be used: ZigBee,

Thread, Z-Wave, MQTT, LwM2M [13, 14]. After

sending the data, the next data packet is formed.

The function of encryption and random sequence

generation works very quickly even on limited

devices, because it has a linear algorithmic

complexity of the algorithm O(n). The data packet

sent to the gateway has the following form as in

Fig. 5.

The gateway, in turn, can work according to

two scenarios depending on the needs of the

system. In the first option, the gateway acts as a

simple intermediary between the server and the

limited device, that is, it uses standard

communication protocols to transmit encrypted

data to the company’s servers without changing

packets.

Figure 5: A data packet that is sent to the gateway

146

In the second option, if there is a need to

perform calculations with the received data and

adjust the operation of the system, the gateway

itself decrypts the data and saves them in a format

convenient for calculations. It is possible to allow

a mixed version of work, in which part of the data

will be decrypted at the gateway, and part will be

sent to the server without changes. In this case, it

is necessary to use different predefined encryption

keys to encrypt the randomly generated keys for

the server and for the gateway, so that in the event

of a breach of the gateway, the data to be

transmitted to the server remains protected.

In any case, the software implementation of

decryption and data storage in a convenient

format will have approximately the same form

(Fig. 6). The algorithm will perform the following

steps:

• Receiving an encrypted message over an

unsecured channel.

• Receiving an encrypted key to decrypt a

message over an unsecured channel.

• Selection of one of the predefined keys for

decryption.

• Decryption of the key.

• Decoding the message.

• Data storage in a convenient form for

calculations option. The CSV format files are

used as a prototype to create a data frame from

the received data [15].

The algorithm begins its work by receiving

data, to which two symbols have been added due

to the peculiarity of sending through the UART

interface. The data is sent to the server and stored

in the form of two arrays of the byte type (Fig. 7).

After receiving the data, the function of

selecting a predefined key (Fig. 8) is called to

decrypt the key with which the message was

encrypted. The function takes three arguments—

the first character of the received encrypted

message, the first character of the encrypted key

and a list of predefined keys.

According to the block diagram, the algorithm

iterates all the keys from the array of predefined

keys one by one. Two text variables are created to

store the first decrypted character. First, the first

character of the key is decrypted, but the key was

generated on the limited device randomly.

Accordingly, it is not possible to verify the

validity of the first character of the key, so with

the received key character, it is necessary to

perform an XOR operation on the first character

of the received message.

Figure 6: The general algorithm of decryption and
data storage

Since the data is transmitted from the

transmitters, then we can expect a certain symbol

of the message, which will already be some kind

of information. But if the key was chosen

incorrectly, then there will be no useful

information in the message. So, you can check the

first character of the message: if after decryption

it represents the expected data, then the function

returns the index of the current operation,

accordingly, this is the index of the key in the

array that needs to decrypt the randomly

generated key. After returning the index, the

function completes its work so as not to perform

unnecessary operations.

Figure 7: Data that is received by the server

147

If, in the case of packet exchange, the value

could not be decrypted, then the function returns

a value that is not included in the array index

range, and further, the message will not be

decrypted, since the key was not matched, and

therefore the message did not come from the

expected limited device.

Figure 8: Block diagram of the predefined key
selection function

After choosing a predefined key, the function

for decryption is called (Fig. 9), which accepts

two arguments, the text to be decrypted and the

key for decrypting the text. The received

encrypted key as text and one key from the array

of predefined keys whose index was found in the

previous step are passed as arguments to the

function.

The first step initializes the variable in which

the decrypted text will be stored. In this case of

the call, the decrypted randomly generated key

will be stored in the variable to decrypt the

message. Next, in a loop that works for each

element in the array of text bytes, except for the

last two characters that do not carry information

and are the end characters of the string added

when sending, a bitwise exclusive OR operation

is applied to the corresponding element of the

selected key.

Figure 9: Block diagram of the decryption
function

After the loop is finished, the function returns

the value of the decrypted text, which in this case

is the key for the next call to the decryption

function. After finding the required key and

decrypting the encrypted key, the decryption

function is called again, but now as arguments, the

encrypted message and the key that was decrypted

in the previous step are passed. At the output, the

function returns a decrypted message that looks

like this:

91.00,24.00,91.00,24.00,

91.00,24.00,91.00,24.00,

91.00,24.00,91.00,24.00,

91.00,24.00,91.00,24.00,

91.00,24.00,91.00,24.00.

Thus, the initial values transmitted from the

limited device were obtained.

5. Analysis Results

Using the initial measured value for the

initialization on the unconnected and ungrounded

analog input of the microcontroller and

performing several arithmetic operations

according to the proposed algorithm, it is possible

to generate a truly random sequence of characters,

as long as the length of the message, to ensure

absolute cryptoresistance.

If there is a need to perform calculations with

the received data and adjust the system operation

148

on the gateway of the Internet of Things system

model, it is necessary to use different predefined

encryption keys to encrypt the randomly

generated keys, for the server and for the gateway,

so that in the event of a breach of the gateway, the

data to be transmitted to server, remained

protected.

6. Conclusions

The developed method makes it possible to

eliminate the threat of unauthorized access to data

in the gateway-built-in sensor link by encrypting

data packets.

Since these algorithms can be used on devices

with limited computing resources due to the

minimization of calculations, since elementary

operations are used for encryption. Encryption

reliability in this case is ensured by a unique

encryption key for each data packet. To generate

random key values, analog noises are used, read

from the unconnected input of the

microcontroller, so the resulting value is truly

random. Preset keys are used to encrypt the keys

with which the encrypted message is ciphered.

Since message encryption keys are random and

unique, encrypting them with preset keys makes it

impossible for an attacker to learn the preset key.

In further research, it is necessary to evaluate

the reliability of the algorithm for generating

random numbers for key generation, in particular,

the ability to influence analog noise using

electromagnetic radiation and to analyze the

developed method of information encryption

using the criteria of various performance

indicators such as execution time, power

consumption, memory requirement for

performing calculations.

7. References

[1] N. Srivastava, P. Pandey, Internet of Things

(IoT): Applications, Trends, Issues and

Challenges, Materials Today, 2022.

[2] F. Yuan, et al., Internet of People Enabled

Framework for Evaluating Performance Loss

and Resilience of Urban Critical

Infrastructures, Safety Science, vol. 134,

2021, 105079.

[3] S. Zeadally, A. K. Das, N. Sklavos, Crypto-

graphic Technologies and Protocol

Standards for Internet of Things, Internet of

Things, vol. 14, 2021, 100075.

[4] C. Bormann, M. Ersue, A. Keranen.

Terminology for Constrained-Node

Networks, Internet Engineering Task Force,

2014.

[5] R. Chernenko, et al., Increasing the Security

Level of Internet of Things Network Systems

Due to Data Encryption on Devices with

Limited Computing Resources,

Cybersecurity: Education, Science,

Technology, vol. 3, no. 11, pp. 124–135.

[6] C. Shannon, Communication Theory of

Secrecy Systems, Bell System Technical

Journal, vol. 28, no. 4, 1949, pp. 656–715.

doi: 10.1002/j.1538-7305.1949.tb00928.x.

[7] K. Rosen, Discrete Mathematics and Its

Applications, 6th Ed., McGraw-Hill Edu.,

2006.

[8] V. Sokolov, B. Vovkotrub, E. Zotkin,

Comparative Analysis of Throughput of

Low-Power Wireless IoT Switches,

Cybersecurity: Education, Science,

Technology, vol. 5, 2019, pp. 16–30.

[9] O. Semko, et al., Methodology of Intelligent

Routing Management in Conflicting Sensor

Networks of Variable Topology, Modern

Special Equipment, vol. 55, no. 4, 2019, pp.

64–76.

[10] C. Henk, (2005). Encyclopedia of

Cryptography and Security, Springer Science

and Business Media.

[11] C. S. Petrie, J. A. Connelly, A Noise-based

IC Random Number Generator for

Applications in Cryptography, IEEE

Transactions on Circuits and Systems I:

Fundamental Theory and Applications,

vol. 47, 2000.

[12] N.G. Bardis, et al., True Random Number

Generation Based on Environmental Noise

Measurements for Military Applications, in

8th WSEAS International Conference on

Signal Processing, Robotics and

Automation, 2009.

[13] A. Karpenko, et al., Ensuring Information

Security in Wireless Sensor Networks,

Cybersecurity: Education, Science,

Technology, vol. 2, no. 10, 2020, pp. 54–66.

doi: 10.28925/2663-4023.2020.10.5466.

[14] I. Opirskyy, et al., Problems and Security

Threats of IoT Devices, Cybersecurity:

Education, Science, Technology, vol. 3,

no. 11, 2021, pp. 31–42. doi: 10.28925/

2663-4023.2021.11.3142.

[15] CSV-1203, CSV File Format Specification,

2012.

