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Abstract 
The intersection of Commutative and Multivariate cryptography contains studies of 

cryptographic applications of subsemigroups and subgroups of affine Cremona semigroups 

defined over finite commutative ring K with the unit. We consider two special families of 

subsemigroups in a semigroup of all endomorphisms of K[x1, x2, …, xn]. They can be used 

in Post Quantum Cryptography for the development of key exchange protocols of 

Noncommutative Cryptography with output presented as multivariale map of high degree 

and density. The security of these schemes is based on a complexity of Conjugacy Power 

Problem. Suggested schemes can be converted in protocol based cryptosystems of El 

Gamal type and used for post quantum protection of Virtual Organisations in Global 

Information Space. Algorithms are implemented in the cases of finite fields of 

characteristic 2 and arithmetic rings Zm, m=2n, n=8,16,32. 
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1. Introduction 

NIST 2017 tender starts the standardisation 

process of possible Post-Quantum Public keys 

aimed for purposes to be: 

 Encryption tools. 

 Tools for digital signatures [1]. 

In July 2020 the Third round of the 

competition was started. In the category of 

Multivariate Cryptography (MC) remaining 

candidates are easy to observe [2]. 

For the first task multivariate algorithm were 

not selected, single multivariate candidate is 

Rainbow Like Unbalanced Oil and Vinegar 

(RUOV) In fact RUOV algorithm is investigated 

as appropriate instrument for the second task 

[3, 4]. 
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2. Post Quantum, Multivariate and 
Noncommutative Cryptography 
and Virtual Organizations 

Noteworthy that all multivariate NIST 

candidates were presented by multivariate rule of 

degree bounded by constant (2 or 3) of kind 

x1→f1(x1, x2, …, xn), x2→f2(x1, x2, …, xn), …, 

xn→fn(x1, x2, …, xn). 

In fact RUOV is given by quadratic system of 

polynomial equations. During Third Round of 

NIST project [5] some crypto analytical 

instruments for breaking ROUV were found. So, 

all multivariate algorithms-candidates were 

rejected during the project and first four winners 

were announced in July, 2022. All of them are 

within the area of Lattice based Cryptography. 

We think that these NIST outcomes motivate 

investigations of alternating options in 
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Multivariate Cryptography oriented on encryption 

tools and conducting digital signatures. 

(a) To work with plainspace Fq
n and its 

transformation G of linear degree cn, c > 0 on the 

level of stream ciphers or public keys. 

(b) To use protocols of Noncommutative 

Cryptography with platforms of multivariate 

transformations for the secure elaboration of 

multivariate map G from End(Fq[x1, x2, …, xn]) of 

linear or superlinear degree and density bounded 

below by function of kind cnr, where c>0 and r>1. 

Recall that density is the number of all 

monomial term in standard form xi → gi(x1, x2, …, 

xn), i = 1,2,…,n of G, where polynomials g1 are 

given via the lists of monomial terms in the 

lexicographical order. 

Solution of task (b) can be used for the control 

access to the portal B of virtual organisation 

(knowledge base, virtual decision making centre, 

etc.) via secure communications of portal 

administrator (Alice) and public user (Bob). 

Assume that the information in B is presented 

in binary alphabet.  So we can identify characters 

of this alphabet with elements of finite field Fq, 

q=256. Portal has a search engine. So, we can 

assume that the size of the information through the 

portal is practically unlimited. 

Assume that some secure tools are used to 

protect the entrance of B. To enter the system user 

need a password which is a tuple E of length n 

written in alphabet Fq. It has to be changed 

regularly with the usage of certain period ∆. 

We suggest the following access control 

scheme. Alice and Bob use several session of  

Postquantum Secure Protocols of 

Noncommutative Cryptography based on a 

subsemigroup S of End Fq [x1, x2, …, xn] to 

elaborate multivariate map G  from S of kind  

xi→fi(x1, x2, …, xn), i = 1,2,…,n of degree bounded 

below by cn, c>0 and density bounded below by 

dnr where c, d are positive constants and r > 2. 

The standard form of G can be unknown. This 

map could be non bijective one. It has to be given 

with a polynomial algorithm of computation the 

value of G in given tuple P = (p1, p2, …, pn). 

Alice use some pseudorandom generator of 

tuples for the creation of P = (p1, p2, …, pn) and 

sends it to Bob via open channel. She enters 

password E = G(p1, p2, …, pn)  to secure the 

portal. 

Bob also computes the tuple E and enters the 

system. We can assume that data storage B 

contains a pseudorandom (or genuinely random, 

obtained via quantum computations) matrix of 

rows Mi = (mi,1, mi,2, …, mi,n), i ϵ J for some 

“potentially infinite” set J. 

So, Alice and Bob can periodically compute 

G(Mi) and use this tuple as entrance password. 

Additionally they can  use G for symmetric 

communication via one time pad. 

Alice writes her plaintext P=(p1, p2, …, pn) 

from Fq
n. She computes P + G(Mi) and sends it  to 

Bob. He knows Mi as well. So, Bob restores the 

plaintext. 

Surely instead of one time pad correspondents 

can use other stream cipher with periodical 

change of password. 

It is naturally to consider more general case of 

arbitrarily commutative ring K instead of finite 

field Fq. We will use Algebraic Graphs to generate 

highly nonlinear automorphisms of K[x1, x2, …, 

xn] over commutative ring. 

For creation of Mi, i ϵ J ontological 

technologies can be used. We use files obtained 

by ontological instruments presenting for example 

key words of texts with the relations between 

them in the form of graph (trees or other 

diagrams). One can combine ontological 

extraction with hashing technologies to make 

digests of documents of appropriate size. 

We hope that this new application of 

technologies for special ontological extractions 

will motivate further research in this important 

direction. 

The task is new because of postquantum 

protocols with outputs in the form of highly 

nonlinear map of affine map of K n to itself appear 

very recently. 

We present one of them below. 

3. Multivariate Platforms of 
Noncommutative Cryptography 
and Their Applications 

Regular algebraic graph A(n, q) =A(n, Fq) is an 

important object of Extremal Graph Theory. In 

fact we can consider more general graphs A(n, K) 

defined over arbitrary commutative ring K.  

This graph is  a bipartite graph with the point 

set P=Kn and line set L=Kn (two copies of a 

Cartesian power of K are used). It is convenient to 

use brackets and parenthesis to distinguish tuples 

from P and L. 

So, (p) = (p1, p2, …, pn) ϵ Pn and [l] = [l1, l2, …, 

ln] ϵ Ln. The incidence relation I = A(n,K) (or 

corresponding bipartite graph I) can be given by 
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condition p I l if and only if the equations of the 

following kind hold: 

p2 – l2 = l1p1 

p3 – l3 = p1l2, 

p4 – l4 = l1p3, 

p5 – l5 = p1l4, … , 

pn – ln = p1ln-1 

for odd n and pn – ln = l1pn–1 for even n. 

They were intensively used for the 

constructions of LDPC codes for satellite 

communications and cryptographic algorithms. 

In the case of K=Fq, q > 2 of odd characteristic 

graphs A(n, Fq), n > 1 form a family of small 

world graphs because their diameter is bounded 

by linear function in variable n. We can consider 

an infinite bipartite graph A(K) with points (p1, p2, 

…, pn, …) and lines [l1, l2, …,ln, …]. If K, |K| > 2 

is an integrity then A(K) is a tree and A(n, K), 

n=2,3,… is its algebraic approximation of large 

girth. 

We refer to the first coordinates p1=ῤ((p)) and 

l1=ῤ([l]) as colors of vertices of A(K) (or A(n, K)). 

It is easy to check that each vertex v of the graph 

has a unique neighbor Na(v) of selected colour a. 

So the walk of length 2k from vertex (0,0,…) will 

be given by the sequence w of colours of its 

elements b1, a1, b2, a2, …, bk, ak. 

It will be the walk without repetition of edges  

if 0 ≠ a1, ai ≠ ai+1 and bi ≠ bi+1  for i=1, 2,…, k-1. 

So we can identify walks from 0 point  of even 

length point with sequence of kind w. Let w’=(b’1, 

a’1, b’2, a’2, …, b’s, a’s).We define the 

composition u of w and w’ as the sequence   u=(b1,  

a1, b2, a2, …,bk, ak, b’1 + ak, ak + a’1, b’2 + ak, …, 

b’s + ak, a’s + ak). If w and w’ are paths and 

b’1 + ak ≠ bk then u is also a path. 

Let BP(K) be a semigroup of all walks with this 

operation. One can identify empty string with the 

unity of BP(K).We use term branching semigroup 

for BP(K). 

3.1. Group Family 

Let us take graph A(n, K) together with A(n, 

K[x1, x2, …, xn]). For each element  w from BP(K) 

we consider a walk ∆(w) in  A(n, K[x1, x2, …, xn]) 

with starting point (x1, x2, …, xn) where xi  are 

generic elements of K[x1, x2, …, xn] and special 

colors of vertices x1 + b1, x1 + a1, …, x1 + bk, 

x1 + ak. Let p’=dest(∆(w)) be a destination, i. e. a 

final point of this walk. The destination has 

coordinates (x1 + ak, f1(x1, x2), f2(x1, x2, x3), …, fn-

1(x1, x2, …, xn) where f1 are elements of K[x1, x2, 

…, xn]. We consider the transformation nή(w) of 

P=K n defined bythe rule x1 → x1 + ak, x2→f1(x1, 

x2), x3 → f2(x1, x2, x3), …, xn→ fn-1(x1 x2, …, 

xn).This transformation is bijective map of Kn to 

itself. It is an element of affine Cremona group 

CG(Kn) of elements from Aut(K[x1, x2, …, xn]) 

acting naturally on Kn. The inverse for this map is 
nή(w)-1 which coincides with nή(w’) for w’ 

=Rev(w)=(-at ,b1-at, a2-at, b2-at, …, bt-at).We refer 

to Rev(w)  as reverse string for w from BP(K). 

Proposition 2.1.1 [6]. The map nή from BP(K) 

to CG(Kn) is a homomorphism of the semigroup 

into group. 

We refer to nή as compression map and denote 
nή(BP(K)) as GA(n, K). Degree of element g of 

Cremona group CG(Kn) of kind xi→gi(x1, x2, …, 

xn) is the maximal degree of polynomials gi. 

Theorem 2.1.1 [7]. The maximal degree of 

multivariate  element g from GA(n, K) equals 3. 

It means that subgroup G of kind TGA(n,K)T–1 

where T is an element of AGLn(K) can be used 

efficiently as a platform for the implementation of 

protocols of Noncommutative Cryptography. 

3.2. Semigroup Family 

Let K be a finite commutative ring with the 

unit such that multiplicative group K* of regular 

elements of the ring contains at least 2 elements. 

We take Cartesian power nE(K) = (K*)n and 

consider an Eulerian semigroup nES(K) of 

transformations of kind  

x1 → ϻ1x1 
a(1,1)x2 

a(1,2) … xm a(1,n), 

x2 → ϻ2x1
a(2,1)x2 

a(2,2) … xn 
a(2,n),                            (1) 

… 

xn → ϻnx1 
a(n,1) x2 

a(n,2) … xn 
a(n,n), 

where a(i,j) are elements of arithmetic ring Zd, 

d=|K*|, ϻiϵK*. 

3.3. Two Platforms in a Tandem 

Let nEG(K) stand for Eulerian group of 

invertible transformations from nES(K). It is easy 

to see that the group of monomial linear 

transformations Mn is a subgroup of nEG(K).  So 

semigroup nES(K) is a highly noncommutative 

algebraic system. Each element from nES(K) can 

be considered as transformation of a free module 

Kn. 

1. Twisted Diffie-Hellman protocol. 

Let S be an abstract semigroup which has 

some invertible elements. 

Alice and Bob share element g ϵ S and pair of 

invertible elements h, h–1 from this semigroup.  
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Alice takes positive integer t = kA and d = rA 

and forms h-dghd = gA. Bob takes s = kB and p = rB. 

and forms h-pgshp = gB. They exchange gA and gB 

and compute collision element X as Ag = h-dgB
thd 

and Bg  = h-pgA
s hp respectively.  

2. Inverse twisted Diffie-Hellman protocol.  

Let S be a group. 

Correspondents follow the scheme 1 with the 

inverse  element g ϵ nEG(K) and Alice sends  

h–dg–thd = gA to Bob and she gets h–pgshp = gB from 

him. They use the same formulae for Ag and Bg. 

But in the new version these elements are mutual 

inverses. Alice has X but Bob possesses X–1. 

Both schemes can be implemented with the 

multivariate platforms S=TGA(n,K)T–1 and 
nES(K).  

Algorithm 2.3.1. Correspondents executes 

pairs of directed twisted DH protocols with 

platforms P1 =  nES(K) and P2 = TGA(n,K)T–1. 

Assume that they have outputs H and X. 

Each of correspondents have HX of linear 

degree Θ(n) and density Θ(n4). 

They can compute standard form of G=HX, or 

use two step procedure to compute G(p) as 
1p = H(p) and 2p = X(1p). 

Remark 2.3.1 The density of HX is the 

number of monomial terms of this map in its 

standard form. It is function of the length of 

reimage of X under the homomorphism ή’ sending 

u from BP(K) to Tnή(u)T–1. It depends on 

d(HX)=d(X)=l(ή’–1 (X)). 

Parameter d(X) depends on kA, kB, rA, rB, ή’–

1(g), ή’-1(h) and linear transformation T of the 

protocol with the platform TGA(n,k)T–1 [8, 9]. 

Thus, adversary does not able to estimate 

d(HX). 

Results of computer simulation demonstrate 

connection between d(HX) in the case of field Fq 

of characteristic 2. 

Table 1 corresponds to the case of sparse 

matrix T eith 2n – 1 no zero entries. Table 2 

reflects the case of the matrix with n2 nonzero 

entries. 

Algorithm 2.3.2. Correspondents executes 

pairs of inverse twisted DH protocols with 

platforms P1 = nES(K) and P2 = TGA(n,K)T–1. 

Assume that Alice has outputs H and X, Bob has 

H–1 and X–1 from P1 and P2 respectively. 

Correspondents use space of plaintexts (K*)n and 

space of ciphertexts Kn. 

Alice and Bob encrypt via HX and H–1X–1 and 

decrypt via XH and X–1 H–1. 

Remark 2.3.2. In the case of inverse 

protocols. The access control does not use the 

extraction of information from knowledge base B. 

Alice enters the access password P and sends 

HX(P) it to Bob. He restores the P and enters B. 

Alternatively Bob enters the access password 

P andsends H–1X–1(P) to Alice. She restores P and 

puts as entrance rule to the system. 

 

Table 1 
Density of the map HX of linear degree induced 

by the graph 𝑨(𝒏,𝑭𝟐𝟑𝟐), case I 
 Length of the walk d(HX) 

n 16 32 64 128 256 

16 5623 5623 5623 5623 5623 
32 53581 62252 62252 62252 62252 
64 454375 680750 781087 781087 781087 

128 3607741 6237144 9519921 10826616 10826616 

 
Table 2 
Density of the map of linear degree induced by 

the graph 𝑨(𝒏,𝑭𝟐𝟑𝟐), case II 
 Length of the walk d(HX) 

n 16 32 64 128 256 

16 6544 6544 6544 6544 6544 
32 50720 50720 50720 50720 50720 
64 399424 399424 399424 399424 399424 

128 3170432 3170432 3170432 3170432 3170432 

 
Usage of transformations of kind HX as in 

algorithm 2 in the form of public key was 

considered in [10] and [11]. Classical approach of 

Multivariate Cryptography are presented in [12]. 

Ideas of fast developing Noncommutative 

Cryptography reader can find in [13]–[28]. 

4. Conclusions 

Multivariate Cryptography started from 

studies  of bijective transformations G of a vector 

space (Fq)
n. as possible encryption tools. One can 

increase number of variables n in the equation of 

kind G(x) = b and rewrite the condition of 

existence of solution for this equation in the form 

G’(y) = b’ where G’ is quadratic transformation 

of V = (Fq)
m where m is essentially larger than n, 

y and b’ are vectors from V. 

The complexity of initial and rewritten 

systems of equations are essentially differs. 

Anyway this possibility motivates studies of 

quadratic maps as tools for Public Key 

Cryptography. 

All algorithms of Multivariate Cryptography 

under NIST investigation were based on quadratic 

equations and were not selected as finalists. The 

first four winners of the NIST competition are 

described in term of Lattice based Cryptography. 
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We have to mention that NIST project 

compares implementations of some public keys as 

products of Software Engineering. On the level of 

Theoretical Computer Science all 5 classic 

direction of Post Quantum Cryptography  

inclusive Multivariate Cryptography have future 

perspectives because they are based on known 

NP-hard problems. One of such problems is about 

finding solution of nonlinear system of m = m(n) 

equations in n variables. 

We already mention that restriction on the case 

of quadratic equations is not well motivated. 

Outcomes of NIST project motivates for search of 

efficient and secure public keys based on 

multivariate transformation of unbounded degrees 

of affine space Kn defined over finite commutative 

ring K. 

Noteworthy that some efficient public keys 

over finite fields and arithmetical rings Zm are 

suggested in [10] and [11]. They use no bijective 

transformations of Kn of unbounded linear degree 

d(n). Crypto analytical instruments for breaking 

these algorithms are not founded yet. Other idea 

to use hard problems of Noncommutative 

Cryptography in case of platform-semigroups of 

multivariate transformations is explored in this 

paper. 
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