
117 

Modified Delta Maintainability Model of Object-Oriented 
Software 
 

Pavlo Skladannyi1, Olena Nehodenko2, Svitlana Shevchenko1, Oksana Zolotukhina2,  

and Vitalii Nehodenko2 

 
2 Borys Grinchenko Kyiv University, 18/2 Bulvarno-Kudryavska str., Kyiv, 04053, Ukraine 
1 State University of Telecommunications, 7 Solomenska str., Kyiv, 03110, Ukraine 

  

Abstract  
Modern software systems are increasingly integrated into vital society areas, from 

managing critical infrastructure to piloting vehicles. That is why one of the most important 

priorities is the reduction of possible software defects. The speed of development of social 

processes and technologies determines the need for adaptation, which in turn requires 

software adjustments. Analysis of various definitions and aspects of maintainability, as 

well as established models and approaches to measuring object-oriented software, remains 

a relevant issue. This analysis makes it possible to determine the possibilities of improving 

the efficiency of the assessment by methods of statistical analysis. Predictive assumptions 

about object development include maintainability of object-oriented software. At the same 

time, the method of modifying Delta Maintainability Model (DMM) by expanding the 

measurable properties of the source code is used. It is important to demonstrate the stability 

and effectiveness of object-oriented software change measurement by conducting 

comparative analysis for source code changes, which makes it possible to measure 

maintainability in processes with continuous delivery and uninterrupted integration 

methodological approaches. At the same time, the interpretation of the assessment results 

makes it possible to establish a causal relationship and eliminate shortcomings. 
 

Keywords  1 
Quality of software, delta maintainability model, DMM, SIG maintainability model, SIG-

MM, object-oriented software, methods of statistical analysis, Mozilla Rhino. 

 

1. Introduction 

Research by C. Jones shows a steady 

increase in the involvement of engineers in 

software support jobs, from 9.09% percent in 

1950 to 72.73% in 2000 and a projected 

involvement rate of 77.27% in 2025 [1]. The 

requirements to increase the level of quality and 

maintainability are the reason for many studies 

and the constant search for software 

measurement and evaluation methodologies. 

Software maintainability is a well-researched 

topic [2]. 

Most of the research is based on the 

importance of software maintainability, 

                                                      
CPITS-2022: Cybersecurity Providing in Information and Telecommunication Systems, October 13, 2022, Kyiv, Ukraine 
EMAIL: p.skladannyi@kubg.edu.ua (P. Skladannyi); negodenkoav@i.ua (O. Nehodenko); s.shevchenko@kubg.edu.ua (S. Shevchenko); 

zolotukhina.oks.a@gmail.com (O.Zolotukhina) negodenkovp@gmail.com (V. Nehodenko); 

ORCID: 0000-0002-7775-6039 (P. Skladannyi); 0000-0001-6645-1566 (O. Nehodenko); 0000-0002-9736-8623 (S. Shevchenko); 0000-0002-
3314-417 (O. Zolotukhina); 0000-0002-7678-9138 (V. Nehodenko) 

 
©️  2022 Copyright for this paper by its authors.  

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  
 

emphasizing the relationship with adaptability, 

and reducing the number of defects [3]. The 

quality of the software, specifically, 

maintainability differs from other properties by 

the complexity of the factors that determine 

them, so their adjustment is almost always 

difficult and long-term [4]. 

Scientific studies devoted to software 

quality problems include publications of 

authors: C. Jones [1], R. Plösch, H. Gruber, 

C. Korner, M. Saft [5], A. Madi, O.K. Zein [6]. 

Improving the quality and maintainability of 

object-oriented software by reducing the 

number of defects is important for any 

development. 

http://foreign.dut.edu.ua/en/pages/13


118 

2. Maintainability in Modern 
Software Quality Models 

Software quality models define 

maintainability as one of the main attributes. 

Most of the methods of measuring 

maintainability, consider not only 

maintainability itself, but are also part of quality 

models. Maintainability is a complex concept 

that has been repeatedly examined by studies 

offering different formulations and 

measurement approaches. However, most of 

the studied approaches, to some extents, have 

the following aspects: 

 Ambiguity of terminology and definitions of 

quality criteria. 

 Abstractness, absence of definitions of 

formulations and methods of measurement. 

 Complexity or impossibility of 

interpretation. 

 Conducting a causal analysis of 

measurement results. 

McCall’s model [7] consists of a 3-level 

hierarchy and determines the relationship 

between software quality attributes. 

Maintainability, as an internal quality factor, is 

related to product modification and is defined 

as the amount of effort required to identify and 

correct a program defect in the operating 

environment. Maintainability, like all internal 

quality factors, is measured indirectly through 

related software properties: simplicity, brevity, 

informativeness, and modularity.  

It is offered to measure the properties by 

ranking from 1 (goal not achieved) to 10 

(excellent implementation), without indicating 

specific metrics or methods of measurement. 

An example of the Fig. 1 according to the 

model, maintainability is determined by the 

levels of the hierarchy. 

Quality Model for Object-oriented Design 

(QMOOD), offered by Bansia and Davis in 

2002 [8]. This model consists of a 4-level 

hierarchical structure. The model also includes 

a set of metrics designed to measure quality 

attributes. The definition of quality attributes, 

with some modifications, is based on the 

software quality model ISO 9126 [9]. The 

model also defines design attributes and their 

corresponding metrics. Design attributes, in 

turn, are related to quality attributes. 

Maintainability, which is defined by ISO 9126 

as a quality attribute, implies a certain stage of 

software completion, therefore the model is 

focused only on its sub-characteristic—

understandability, which should allow using the 

model at earlier stages of development. 

 

 
Figure 1: Maintainability model hierarchy levels 

 



119 

The connections between design properties 

and quality attributes [8] in the model 

(QMOOD) were established. Basic metrics for 

measuring design properties can be defined. 

Design Size in Classes (DSC) is the number 

of all classes provided by the program design. 

Number of Hierarchies (NOH) is the amount 

of class hierarchies of the program. 

Average Number of Attributes (ANA) is the 

average of the number of classes inherited by a 

class and is calculated by counting the number 

of classes along all inheritance paths from the 

root class(es) to all classes of the inheritance 

structure. 

Data Access Metric (DAM) is a value 

between 0 and 1 and is the ratio of the number 

of private (protected) attributes of a class to the 

total number of attributes defined by the class. 

Direct Class Coupling (DCC) is the number 

of classes on which the class depends directly, 

either by defining an attribute or passing 

message (parameters) in methods. 

Class Association Method (CAM) is a value 

in the range from 0 to 1, and is a calculation of 

the interdependence of class methods based on 

the list of method parameters [10]. The metric 

is calculated by summing the intersection of the 

method parameters with the maximally 

independent set of parameters of all types in the 

class. 

Measure of Aggregation (MOA) this metric 

measures the degree of part-to-whole 

connection implemented by attributes. The 

value is the sum of the number of declared data 

whose types are user-defined classes. 

Measure of Functional Abstraction (MFA) 

ranges from 0 to 1 and is the ratio of the number 

of methods inherited by a class to the total 

number of methods accessed from other 

methods of the class. 

Number of Polymorphic Methods (NOP) is 

the sum of the number of methods that can 

exhibit polymorphic behavior. 

Class Interface Size (CIS) is a quantitative 

measure of the count of public methods of a 

class. 

Number of Methods (NOM) is a quantifier 

of the count of all methods defined by a class. 

The quality model ISO/IEC 25010:2016 

“Systems and software engineering” defines the 

Security Quality Requirements Engineering 

(SQuaRE). System and software quality models 

[11, 12] is a replacement for the ISO 9126 

standard [9] (Fig. 2). The standard extends the 

quality model with two new high-level 

characteristics: compatibility (is a new 

characteristic) and security (in the previous 

standard is a sub-characteristic of functional 

suitability). 

 

Table 1 
Matrix of relationships of design properties and quality attributes 

Attributes of 
design 

Attribute of quality 

Reusability Flexibility Understan-
dability 

Functionality Expandability Efficiency 

Size of design + – – + – – 
Hierarchy – – – + – – 

Abstractness – – – – + + 
Encapsulation – + + – – + 
Connectivity – – – – – – 

Connectedness + – + + – – 
Composition – + – – – + 
Inheritance – – – – + + 

Polymorphism – + – + + + 
Message 
exchange 

+ – – + – – 

 



120 

 
Figure 2: High-level characteristics of product quality according to ISO/IEC 25010 
 

The standard also introduced changes to the 

maintainability structure. New sub-characte-

ristics have been introduced: “modularity” and 

“reusability.” The subcharacteristics “varia-

bility” and “stability” were replaced by the new 

characteristic “modification.” The standard 

provides the following definitions of 

maintainability: 

 Maintainability is defined as the degree of 

effectiveness and efficiency in which a 

product or system can be modified by 

designated service personnel. At the same 

time, maintainability can be construed as the 

inherent ability of a product or system to 

facilitate maintenance work or as quality 

during use; 

 Modularity is the degree to which a system 

or computer program is composed of 

discrete components such that a change in 

one component has minimal impact on other 

components. 

 Reusability is the degree to which an asset 

can be used in more than one system or in 

the construction of other assets. 

 Analysability is defined as the degree of 

effectiveness and efficiency in which it is 

possible to assess the effect on the product 

or system of the intended change in one or 

more parts, or to diagnose non-completion, 

the causes of failures, or to identify the parts 

to be modified. 

 Modification is the degree of effectiveness 

and efficiency in which a product or system 

can be modified without introducing defects 

or degrading the existing quality of the 

product. Modification is a combination of 

variability and stability. 

 Testability is the degree of effectiveness and 

efficiency to which test criteria can be 

established for a system, product, or 

component, and tests must be performed to 

determine whether those criteria have been 

met. 

3. Maintainability Model (SIG-MM) 

The model is independent of the 

programming language and software 



121 

architecture, has indicators that are easy to 

understand and explain, and is based on defined 

relationships of system-level quality 

characteristics defined by the ISO 9126-1 

standard [9] with the characteristics of the 

source code properties and their metric 

indicators. To a large extent, this approach is 

based on the need to identify causal 

relationships between source code properties 

and maintainability, because the latest is a 

complex and multi-component quality attribute. 

The simple symbolic scale ++ / + / o / – / –

– is used to rank the results of evaluating a 

particular property of the code. 

The size of the program is one of the simple 

and direct indicators of maintainability, 

because the larger the size, the more effort is 

required for cognitive perception, making 

changes, testing. 

The indicator is set for each language 

separately on the basis of research [13] that 

determine the relationship between the average 

number of lines of code (LOC) in a separate 

programming language per one functional point 

and the number of functional points that can be 

produced by one person in one month. 

For the purposes of the model under 

consideration, the size of the program is 

determined by the person-years required to 

create the program (Table 2). 

 

Table 2 
Ranking of the evaluation results of a separate 
property of the code 

Rank The number of person-years 

++ 0−8 
+ 8−30 
o 30−80 
– 80−160 

–– > 160 

 

Thus, a software product requiring 160 

person-years is considered too large, and for 

systems implemented in Java is equal to 1.3 

million lines of code or 2.6 for the COBOL 

language. 

The complexity per unit of the program is a 

property of the source code and is defined as the 

degree of internal complexity of the units of the 

source code that it consists of (Table 3). 

 

 

 

 

Table 3 
Cyclomatic complexity of the program 

Cyclomatic 
complexity 

Definition of risk 

1–10 Simple 
11–20 Complicated, moderate risk 
21–50 Complex, high risk 
> 50 Absence of testing, very high risk 

 

With further aggregation of complexity per 

program unit to determine the ratio of lines of 

code of each risk level as a percentage.  That is, 

if the program consists of 20,000 lines of code, 

and at the same time the sum of the lines of code 

of the program units with a high risk of 

complexity is 1,000 lines of code, the aggregate 

value for the high risk category will be 5% 

(Table 4). 

 

Table 4 
Volume with the final distribution relative to 
different risk levels for system ranking 

Rank The maximum relative amount 
of lines of code (LOC), % 

Moderate 
risk 

High risk Very high 
risk 

++ 25 0 0 
+ 30 5 0 
o 40 10 0 
– 50 15 5 

–– — — — 

 

Thus, for example, if the rank of the 

program is defined as “+”, the amount of lines 

of code with high risk does not exceed 5%, with 

high risk 15% and 50% of lines of code are 

within the limits of moderate risk. 

Duplication (or cloning of code) reduces the 

cognitive perception of the program, the 

possibility of making changes, and 

unmotivatedly increases the size of the 

program. And it is defined as the repetition of a 

block of code for more than 6 lines, while 

spaces at the beginning of the lines are not taken 

into account to determine the repetition 

(Table 5). 

 

 

 

 

 

 



122 

Table 5 
Programs duplication parameters 

Rank Duplication, % 

++ 0–3 
+ 3–5 
o 5–10 
– 10–20 

–– 20–100 

 

The size of the program unit is an important 

indicator, because large-sized program units 

require more costs to support, also, this 

indicator additionally indirectly displays the 

possible complexity. The indicator is defined as 

the number of lines of code (LOC) followed by 

size categorization and ranking similar to the 

definition of complexity per program unit. 

Module testing is calculated as a relative 

indicator of program coverage by program unit 

tests.  This practice is not static analysis and 

refers to dynamic code analysis. 

The calculation of the overall assessment of 

the system is carried out by the average 

weighting of the indicators of each property of 

the source code. 

For example: program size is rated as small 

“++”, with very high complexity per program 

unit “––”, high duplication and program unit 

size “–”, and moderate testing. Accordingly, the 

analyzability of such software as well as the 

stability are average, while variability and 

testability are low, which is averaged by a low 

“–” maintainability assessment. However, these 

results are more effective in determination of 

causal relationship. Thus, in order to increase 

maintainability, it is necessary to carry out 

refactoring aimed at program units of very high 

complexity with the aim of reducing it, and 

reducing the size of the program units, as well 

as removing duplications. 

4. A modified Model of Delta 
Maintainability of Object-
Oriented Software 

The Maintainability Model (SIG-MM) does 

not have certain disadvantages, but it is based 

on the measurement of the entire source code of 

the software product, which causes the weak 

representativeness of the measurement results 

with minor changes in the source code. 

An example of this is entry #402331 in the 

bug registration system of the Mozilla Rhino 

software product [14]. The specified defect was 

fixed by commit #262602 [15], which is in the 

measurements range from –5 to 5. The 

maintainability model (SIG-MM) has a rating 

of –0.007. The specified result does not show 

any significant changes in maintainability, 

which is not true, because the 200 lines of code 

introduced by the changes have a significant 

negative impact on maintainability. However, 

in relation to the size of all Mozilla Rhino code 

terms, compared to which the changes were 

validated, the indicator received an 

unrepresentative result [16]. 

There is a Delta Maintainability Model 

(DMM), which does not contain the above 

shortcomings, but does not take into account 

the specifics of the object-oriented 

programming paradigm. It is intended to 

compare and analyze partial changes to the 

source code, not the program as a whole. The 

model integrates with version control systems, 

allowing integration with DevOps tools for use 

in analyzing ongoing source code assessments. 

Risk ranking is based on the threshold values of 

the Maintainability Model (SIG-MM) [17]. 

This article proposes a modification of the 

delta Maintainability Model (DMM) by 

expanding the measurable properties of the 

source code, determining their relationship with 

the sub-characteristics of maintainability 

defined by ISO/IEC 25010:2016, and 

determining measurement methods and 

threshold values [11, 12]. 

Further the basic model is denoted by 

DMM, the resulting indicator is DMMS.  

References to the proposed model are denoted 

as DMM+, the indicator, respectively, DMMS+ 

The calculation takes place taking into 

account the order established for the Delta 

Maintainability Model (DMM) [18] with the 

following changes in definitions: 

RC = {low, high}; 

CP = {class Connectivity, class Difficulty, 

method Difficulty, the Number of methods, 

method Size, the Number of parameters, 

Dublication, module Dependency}. 

Philo, Tarsio G.S., and M. Bigonya [19] 

conducted a research of 111 software systems 

and proposed the determination of threshold 

values of object-oriented software metrics 

(Table 6). 

The practical validation of the proposed 

model was carried out by analyzing software 



123 

products with open source code, implemented 

using an object-oriented programming 

paradigm, a development process using version 

control systems and a significant number of 

participants in the development process and a 

long history of code changes. 

 

Table 6 
Software metrics Philo, Tarsio G.S., and M. 
Bigonya 

Metrics Level 

Better  Medium Bad 

WMC m ≤ 11 11 < m ≤ 34 m > 34 

NOC m ≤ 11 11 < m ≤ 28 m > 28 

NOM m ≤ 6 6 < m ≤ 14 m > 14 

MLOC m ≤ 10 10 < m ≤ 30 m > 30 

PAR m ≤ 2 2 <m ≤ 4 m> 4 

VG m ≤ 2 2 <m ≤ 4 m> 4 

 

Because the analysis of the source code of 

software products requires the study of the 

abstract syntax tree (AST), therefore, in order 

to simplify the implementation of the 

application intended for analysis, all software 

products are selected with the requirement of 

implementing the object-oriented part with a 

common programming language. 

For the comparative analysis, six software 

products of different functional purposes, with 

open source code, with the implementation of 

the object-oriented part in the Python 

programming language, were chosen. 

The scope of analysis covers only changes 

in files (modules) that contain instructions in 

the Python programming language and have the 

extension “*.py”, while changes to files with 

instructions for unit testing are not taken into 

account. 

In order to carry out research and 

measurements, a program was implemented 

with command line interface support and 

simultaneous measurement of DMM and 

DMM+ model indicators. 

According to the results of the analysis, a 

significant indicator of the Pearson correlation 

coefficient ranging from 0.77 to 0.86 

demonstrates a strong positive correlation 

between DMMS and DMMS+ values. Thus, 

DMMS+ metrics along with DMMS reflect the 

relationship to source code changes that affect 

maintainability. Values of DMMS indicators 

and validation were confirmed [20] in the 

course of empirical research. 

Correlation of DMMS and DMMS+ 

indicators according to the analysis of 1000 

changes made in the repository: 

1. Tensorflow r = 0.86. 

2. Sentry r = 0.8. 

3. Django r = 0.82. 

4. Odoo r = 0.84. 

5. Saleor r = 0.77. 

6. Zulip r = 0.77. 

Despite the positive correlation, the 

indicators show fluctuation according to the 

indicator of the absolute average difference. It 

is important to show the changes in the 

indicator of the absolute average difference 

between the indicators of DMMS and DMMS+ 

based on the results of the analysis of 1000 

changes made to each of the repositories 

(Fig. 3). 

 

 
Figure 3: Illustration of changes in absolute 
mean difference between DMMS and DMMS+ 

5. Conclusions 

Summarizing the above considerations, it 

should be noted that in this work, the analysis 

of existing models and measurement metrics of 

object-oriented software was carried out, their 

advantages and disadvantages were 

determined. 

A modified delta model of object-oriented 

software maintainability, by expanding the 

measurable properties of the source code, 

determining their relationship with the 

maintainability sub-characteristics defined by 

ISO/IEC 25010:2016. Measurement methods 

and threshold values are defined. Practical 

validation of the offered model was carried out 

by analyzing open source software products 

implemented using an object-oriented 

programming paradigm, a development process 

using version control systems and a significant 



124 

number of participants in the development 

process and a long history of code changes. 

The stability and effectiveness of measuring 

changes in object-oriented software has been 

demonstrated by means of a comparative 

analysis of changes made to the source code, 

which makes it possible to measure compliance 

in processes with methodological approaches of 

continuous delivery and uninterrupted 

integration. At the same time, the interpretation 

of the evaluation results makes it possible to 

establish a causal relationship and eliminate 

shortcomings. 

6. References 

[1] C. Jones, The Economics of Software 

Maintenance in the Twenty First Century, 

2006. 

[2] V. Grechaninov, et al., Decentralized 

Access Demarcation System Construction 

in Situational Center Network, in 

Workshop on Cybersecurity Providing in 

Information and Telecommunication 

Systems II, vol. 3188, no. 2, 2022, pp. 

197–206. 

[3] V. Buriachok, V. Sokolov, P. Skladannyi 

Security Rating Metrics for Distributed 

Wireless Systems, in 8th International 

Conference on “Mathematics. Information 

Tech-nologies. Education,” vol. 2386, 

2019, pp. 222–233. 

[4] Kipchuk, F., et al., Investigation of 

Availability of Wireless Access Points 

based on Embedded Systems, in IEEE 

International Scientific-Practical 

Conference Problems of 

Infocommunications, Science and 

Technology, 2019, pp. 246–250. doi: 

10.1109/picst47496.2019.9061551. 

[5] The Cost of Poor Software Quality in the 

US: A 2020 Report: The Consortium for 

Information & Software Quality (CISQ) 4. 

[6] A. J. Albrecht, Measuring Application 

Development Productivity, in Proceedings 

of the Joint SHARE, GUIDE, and IBM 

Application Development Symposium, 

1979, pp. 83–92. 

[7] J. McCall, P. Richards, G. Walters, 

Factors in Software Quality, vol. III, 

Preliminary Handbook on Software 

Quality for an Acquisiton Manager. 

[8] V. R. Basili, L. C. Briand, W. L. Melo, A 

validation of Object-Oriented Design 

Metrics as Quality Indicators, IEEE 

Transactions on Software Engineering, 

vol. 22, no. 10, 1996, pp. 751–761. 

[9] ISO/IEC 9126-2001. Software Enginee-

ring. Product Quality 1, Quality Model. 

[10] J. Bansiya, C. Davis, Class Cohesion 

Metric For Object-Oriented Designs, J. 

Object-Oriented Programming, vol. 11, 

no. 8, 1999, pp. 47–52. 

[11] S. Cohen, W. Nutt, Y. Sagic, Deciding 

Equivalances Among Conjunctive 

Aggregate Queries, J. ACM 54, 2007. doi: 

10.1145/1219092.1219093.  

[12] ISO/IEC 25010:2011 Systems and Soft-

ware Engineering. Systems and Software 

Quality Requirements and Evaluation. 

System and Software Quality Models. 

[13] ІSО/ІЕС 25010:2016 Systems and 

Software Engineering. Requirements for 

the Quality of Systems and Software Tools 

and its Evaluation (SQuaRE). Models of 

system and software quality` (in 

Ukrainian). 

[14] Rhino Graveyard. Bug 402331, 

https://bugzilla.mozilla.org/show_bug.cgi

?id=402331. 

[15] Mozilla / Rhino. Fix bug 402331, 

https://github.com/mozilla/rhino/commit/

262602. 

[16] Software Productivity Research LCC, 

Programming Languages Table, ver. 

2006b, 2006. 

[17] M. di Biase, et al., The Delta 

Maintainability Model: Measuring 

Maintainability of Fine-Grained Code 

Changes, in 2019 IEEE/ACM 

International Conference on Technical 

Debt (TechDebt), 2019, pp. 113–122. doi: 

10.1109/TechDebt.2019.00030. 

[18] I. Heitlager, T. Kuipers, J. Visser, A 

Practical Model for Measuring 

Maintainability, in 6th International 

Conference on the Quality of Information 

and Communications Technology, 2007, 

pp. 30–39. doi: 10.1109/QUATIC.2007.8. 

[19] M. di Biase, et al., The Delta 

Maintainability Model: Measuring 

Maintainability of Fine-Grained Code 

Changes Technical Report, J. Cohen (Ed.), 

Special issue: Digital Libraries, vol. 39, 

1996. 

[20] T. G. S. Filó, M. Bigonha. A Catalogue of 

Thresholds for Object-Oriented Software 

Metrics, 2015. 
 


