
Representing the Virtual: Using AAS to Expose Digital
Assets
Coen van Leeuwen1, Cornelis Bouter1, Rick Hindriks1 and Robert Wilterdink1

1TNO ICT, Anna van Buerenplein 1, Postbus 96800 2509 JE Den Haag, Netherlands

Abstract
The Industry 4.0 Asset Administration Shell provides a standardized mechanism for collaboration between
digital systems in the factory. Digital data within factories is typically stored in databases, we explore
the requirements of providing an AAS as an interface to the data contained within the aforementioned
databases. Based on these requirements, we describe and discuss a proof-of-concept implementation
where an AAS is used to publish data stored in a relational database.

Keywords
Asset Administration Shell, Industry 4.0, Databases, SQL, Digital Twinning

1. Introduction

Representing virtual assets in a standardized way is the next step towards the Industry 4.0
digital factory. The Industry 4.0 Asset Administration Shell (AAS) is an industry standard for
representing assets in factories, and allows the exposure of machine states in a standardized and
organized manner. Its core use-case is the communication between assets within a factory, or to
a management system, however the AAS also is very well suited for communication between
parties. In this paper we will propose a different way of using the AAS, namely to represent
digital or virtual assets instead of physical ones. The AAS specification explicitly gives a broad
definition of an asset, including both physical and virtual assets [1]. However in practice the
AAS has of yet always been applied for representing physical assets only. Using the AAS to
represent virtual assets such as contacts, invoices, work orders or any other virtual entity, allows
the industry to reason and communicate about these things. Moreover, such an approach allows
the automation of processes using methods which are comparable to the existing methods for
physical assets.

When the data is available as an AAS, that AAS can allow us to develop more meaningful
mechanisms to automate systems within a factory. For instance, for a machine to start working
we can use more standardized triggering mechanisms or signal an operator with a more infor-
mative message. As such, the AAS may serve as a driver for such processes in the factory as a

Third International Workshop On Semantic Digital Twins (SeDiT 2022), co-located with the 19th European Semantic
Web Conference (ESWC 2022), Hersonissos, Greece - 29 May 2022
$ coen.vanleeuwen@tno.nl (C. van Leeuwen); cornelis.bouter@tno.nl (C. Bouter); rick.hindriks@tno.nl
(R. Hindriks); robert.wilterdink@tno.nl (R. Wilterdink)
� https://coenvl.nl/ (C. van Leeuwen)
� 0000-0003-4384-1443 (C. van Leeuwen); 0000-0002-5448-0543 (C. Bouter); 0000-0001-8798-7132 (R. Hindriks)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

mailto:coen.vanleeuwen@tno.nl
mailto:cornelis.bouter@tno.nl
mailto:rick.hindriks@tno.nl
mailto:robert.wilterdink@tno.nl
https://coenvl.nl/
https://orcid.org/0000-0003-4384-1443
https://orcid.org/0000-0002-5448-0543
https://orcid.org/0000-0001-8798-7132
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Coen van Leeuwen et al. CEUR Workshop Proceedings 1–10

“motivation of work”.
Representing virtual assets, however, is not a straightforward process. In the factory business

process, it is day-to-day business that new virtual assets are added continuously. For instance,
in a healthy production cycle, work orders are expected to be added, updated, and eventually
removed. Although this may also happen for physical assets, for virtual ones this will happen
on a much more frequent basis. Current AAS system infrastructures are insufficiently equipped
to deal with the increased dynamicity of virtual AASs, yet alone for the expected increase in
their sheer volumes.

2. Background

The Asset Administration Shell (AAS) is the proposed implementation of a Digital Twin by the
German Plattform Industry 4.0. The normative documentation is available in three parts: 1) the
data model [1], 2) the API definition [2], and 3) the communication language among AASs [3].
Additional non-normative material has been published on AAS composition [4, 5], structuring
(sub)models [6], the various roles involved in AAS modelling [7] and examples [8].

Assigning semantics to AAS models has been recognised as a necessity to fully support
interoperability [9, 10]. The semanticID has been defined to assign semantics to an AAS
element, refering to an IRI for semantic web identification or IRDI eClass elements [1]. Two
complementary RDF serialisations of the AAS have been realised to make “full use of the
advantages of semantic technologies” [1]. The challenge nevertheless remains of providing
models that refer to formal ontologies or international standards despite the recognition of the
benefits semantics brings [11].

Some work exists on mapping established data specifications in AutomationML and OPC-UA
to the AAS, since the AAS specification already to those languages [1]. For example, in [12] a
mapping is constructed from the IEC 61131-3 PLC standard to a set of AAS submodels. The
same authors also reflect on mapping between OPC-UA models and AAS submodels [13, 14].
[15] presents a translation from both MES data to AAS models and from ERP data to AAS
models using an established AutomationML model for IEC 62264 [16]. In [17] AutomationML
is also used as the intermediate data format. Transformation of one AAS model to another is
covered in [18], who defined an AAS transformation language.

There is little research available on relational databases in an AAS context. The Data Admin-
istration Shell [19] adapts the AAS to a Digital Twin for datasets. It models only the metadata
and preprocessing steps in the AAS models, but only contains a reference to the actual data set.
The adequacy of the various types of SQL and NoSQL databases for the AAS is covered in [20].
Their literature study showed a lack of rigour in covering the employed data models. They also
identified a gap in the implementation of database solutions.

3. Publishing databases using AAS

In order to expose virtual assets as an AAS, the AAS server instance needs to have access to
the data underlying the virtual assets. In state-of-the-art factories several IT systems (e.g., ERP,
PLM, MES) from different providers are responsible for managing and storing virtual assets.

2



Coen van Leeuwen et al. CEUR Workshop Proceedings 1–10

Database

Proxying
AAS server

AAS user

Data query Data request

Figure 1: A schematic representation of a proxying AAS server, where the published data is fetched
from the underlying database only on requests from the user.

Our intention is to enhance the inter-operability of these systems by creating a set of AASs that
references data from all sources. The intention is not to replace the existing factory IT systems.
Access methods to the underlying data can roughly be split in two: API access and database
access. In this paper we explore database access, because in practice company IT administrators
have unlimited database access. To transform data from an existing database into AAS form,
the following aspects need to be taken into account:

3.1. Data authority

When designing factory IT systems, we typically strive to apply the principle of separation
of concerns. By this principle, we need to decide which system components are responsible
for which part(s) of the available data. When multiple components are responsible for the
same subset of data, this requires them to coordinate, leading to additional complexity in those
components. As such, the ideal case has only a single component responsible for each partition
of the data; a single source of truth.

In the case of an AAS, we are often adding an additional component to an existing IT system.
In order to facilitate collaboration between assets, existing data needed for this collaboration
which exists within the IT system needs to be collected and published as one or more submodels
on an AASs.

Given that the pre-existing IT system is and should remain the owner of the data, we need to
carefully design the used data collection and publication mechanism(s). Notably, we need to
ensure that we create as little additional copies of the data as possible, as this requires us to
maintain and synchronize each copy of the data. Failing to do so would lead to inconsistencies
between the system and AAS states.

A design pattern which prevents many of these problems is the proxy pattern, in which the
AAS server retrieves the underlying data only and only when it needs to serve a request. A
schematic example is shown in Figure 1. As a result, the underlying IT system remains the
ultimate owner of the data, and data integrity and freshness are maintained.

3.2. Common data sources

The use of databases is already a common practice in any modern factory, but there are different
implementations that will require different software to bind it to an AAS server. For most
factories, it will be preferable to keep the database as it is, and transform the data using a
“connector” component to connect the database to the AAS server instance. Different database
implementations that are commonly used can be separated in relational databases versus NoSQL

3



Coen van Leeuwen et al. CEUR Workshop Proceedings 1–10

Database

Event-based
AAS server

AAS user

Change data AAS events

Figure 2: A schematic representation of the event data with database specific change data on the left
side, and standardized AAS events on the right side.

databases. The difference between the two essentially means that in the first category data can
be represented as tables with rows and columns, whereas in the second category data can be
any format. Under the category of SQL databases there are for example: MySQL, PostgreSQL,
MariaDB, Oracle Database or Microsoft SQL. Examples of NoSQL databases are: MongoDB,
Cassandra, CouchDB or Neo4j. For a more in-depth comparison we refer the reader to [20].

3.3. Scaling

In the AAS servers that are currently operating, there are typically only a handful of AAS
instances, and this number stays constant throughout the lifetime of the server. When repre-
senting virtual assets, the purpose of the assets is to trace their life-cycle: the creation of new
ones, changing existing ones, and eventually removing assets that are no longer relevant.

For large factories, the expected number of assets that exists at any given time could be in
the order to thousands to tens of thousands. This requires a scalable solution which can scale
not only in storage size, but also in the processing capabilities of the compute nodes hosting
the AAS assets. Iterating over all known instances in the database is probably not feasible
while simultaneously keeping the AAS instances up-to-date with the underlying database. The
AASs that are served need to be synchronized with the database at any point in time, where a
delay greater than a couple of seconds is considered unacceptable. Instead, some kind of push
mechanism is preferable, which brings us to the next requirement: reactivity.

3.4. Reactivity

The virtual AASs are expected to continuously change, both in number and in content. In order
to keep the AASs synchronized with the underlying database, an event-based reactive system
is essential; however, there is currently no standard for events. An event-driven mechanism
makes sure that any changes in the underlying data source are actively pushed to the AAS
server. Most databases support this type of events in the form of change data capture or change
streams, hence this side of the data reactivity depends mostly on the backing data source, shown
on the left side of Figure 2.

On the other side of the server, a set of change events that apply to the changes in the AASs
needs to be published as well. This is the type of event on the right side of Figure 2 which is not
yet supported in the AAS specification, but we suggest that such a standardization is added (see
Section 5.1). With a standardized set of change events, the applications using the AAS can react
to changes in order to start a new process, trigger a machine to perform an operation or to
simply inform a user.

4



Coen van Leeuwen et al. CEUR Workshop Proceedings 1–10

3.5. Read/write operations

Apart from getting data from a database in order to put data into a standardized form, the
AAS/database integration can also be used to update the database. The AAS service specification
allows for writing data to, for instance, change parameters. These updated parameters could
be used to feed back into the database system. Although this is a feature which makes the
integration stronger, we suggest not to implement this, but instead keep the AAS as a façade for
the actual data. This not only limits the complexity of the implementation, but also makes sure
the database will always remain the single source of truth in the case of any failures.

Database software is generally designed to ensure that all transactions maintain ACID
properties: all operations must be atomic, consistent, isolated, and durable. Adding another
interface to feed data into the database should not interfere with these statements, but the
interaction with the database is already very reliable as it is, and it is not necessary to add
another method. Most importantly, the way that people or machines interact with the database
is already through the existing systems on the factory floor, adding another method to it would
only make things unnecessarily complicated.

3.6. Finding assets

In the current AAS standard, there is no mechanism described filtering AASs on an existing
AAS server based on some property; the only option is to list all available instances [2]. When
dealing with a large number of assets, which is guaranteed to occur when using virtual assets,
listing all available AASs is no longer a feasible option. Instead, a querying mechanism must be
available to search for AASs, for example by means of searching for a part of the asset name, a
keyword, a semantic id, or even a property.

4. Implementation example

As a proof-of-concept, we implemented an adapter for an existing AAS server implementation
as shown in Figure 3, that takes data from a sample of a database as is used on a factory floor.
We used a dataset containing work orders and the associated process steps of a week’s worth
of factory work. The database contained over 38.000 work orders with a total of 131.000
associated process steps.

4.1. Operation

Our adapter loads AASs with submodel templates, which contain qualifiers, as defined in [1],
that indicate how to get data from a database as shown in Table 1. These qualifiers provide the
necessary details to connect to the SQL database—a Microsoft SQL database in this example—and
perform queries to feed the properties and the submodel elements of the template AAS. An
alternative approach could be made by providing the connection detail in a separate file, but
using qualifiers makes the AAS as self-contained as possible, especially when multiple database
connections are required.

Using the template with these qualifiers, the adapter creates an AASProxy instance which
represents the data in the form of an AAS, including all descriptors. The proxy is responsible

5



Coen van Leeuwen et al. CEUR Workshop Proceedings 1–10

AAS User

Controller

«interface»
AAS API

AASDescriptorsProxy

AASProxy

«interface»
AAS

AASProxyFactory

AASTemplate

AASEventManager

QueryTTLCache

«interface»
JDBC

CDCFilter

*

Use

Creates

Use

Use

Use

Data change events

Invalidates

Database
SQL

CDC

AAS Server

AAS interface

AAS events

Figure 3: A graphical representation of the proposed AAS components to implement an AAS proxy for
data in a database. The parts highlighted in red were not developed, but are needed in order to develop
an event-based AAS interface.

Table 1
The different AAS Qualifiers used in the template to connect to the SQL backend.

SQL4AAS.Host The hostname or IP address of the SQL server.
SQL4AAS.Port The port where the SQL database is listening.
SQL4AAS.User The user name that is used for authorization.
SQL4AAS.Password The password of the user to authorize with.
SQL4AAS.Database The name of the database to use to on the server.
SQL4AAS.ListQuery A SQL query that lists all different instances (AAS /

submodel / submodel element) when executed.
SQL4AAS.ContentQuery A SQL query that retrieves data for an instance that

the list query returned.
SQL4AAS.IDColumn The column which uniquely identifies the row; used

to get a unique ID for the component.
SQL4AAS.NameColumn The column which holds a human readable name for

the row; when not used, the ID is used instead.

for retrieving the data of the AAS from the database, based on the qualifiers. Whenever a user
makes a query to the AAS server, the server’s controller forwards this request to the current
proxy, which translates this request into a set of SQL queries which are sent to the database.
When the database responds to the aforementioned queries, the data is serialized into the AAS
data format, and returned to the controller. Next, the controller responds to the user request,
basing the response data on the internal data.

4.2. Limitations of implementation approach

By implementing a SQL controller into an existing platform, we managed to obtain a proof-of-
concept, but there are some practical problems that make it infeasible for real-world application.

First and foremost, the large amount of changing data is a huge drain on the system resources.
This is obviously very implementation specific, and could possibly be improved upon, but for

6



Coen van Leeuwen et al. CEUR Workshop Proceedings 1–10

anything more than a few kilobytes per virtual AAS, but dealing with hundreds of thousands
of AASs, the amount of memory needed to store the example data from our database quickly
becomes in the order of gigabytes.

Even when that is handled properly, the amount of SQL queries that are required to retrieve
the data also leads to a serious bottleneck. In our example every AAS, submodel and submodel
element collection requires both a list query and a content query, which means that any asset
quickly requires five to fifteen queries, meaning that we require half a million queries to retrieve
the most recent state of all AASs. For any AAS structures that are more complex this number
grows even faster. This problem may be mitigated by using lazy querying, by only listing the
available objects, and only fetching their contents when a user retrieves the asset; but in this
way the AAS server becomes just another database—which is not our goal—, except with output
in standardized form. The above confirms our hypothesis that querying periodically is infeasible.
As such, an event-driven or data-capture mechanism is required to connect with the data source.

On the side of the server implementation, the interface towards the AAS user is a complicating
factor since there is currently no complete standard for disseminating information in an event-
based manner. The current AAS specification describes a data model for events, but provides
no mechanism for their real-time exchange. This means that with the current state of affairs,
the user must periodically query each AAS in order to stay synchronized. For example, in order
for a user to determine if an AAS has changed, and hence require action on the factory floor,
the user must first list all the AASs that exist on the server. Then for all relevant assets, list all
submodels, and for all relevant submodels list all submodel elements. This is a very tedious and
time consuming process, and realistically impossible to use in a real-life scenario.

5. Discussion

5.1. Recommendations to improve the AAS standard

As we have seen, disregarding implementation specifics, there are issues with the AAS standard
that make it infeasible to use as a motivating of work for other systems. In order to address this,
we propose the following changes.

At the time of writing, the current AAS specification contains insufficient specification for
Events, only describing their conceptual use and referring to underlying transport mechanisms
to implement them. Therefore we propose to add to the standard a mechanism to publish events
about changes in the assets. This mechanism should have at least the following properties:

• The mechanism should expose the events in a standardized format,

• the events inform users on about new, updated or removed objects,

• where objects can be any of the following: assets, submodels or submodel elements,

• a user can “subscribe” to all changes, but also to specific submodels or submodel elements.

Apart from the event mechanism, there should also still be a querying mechanism, that
supports searching for AASs as well as for specific individual submodels. A simple “keyword”

7



Coen van Leeuwen et al. CEUR Workshop Proceedings 1–10

querying mechanism would already be a very useful addition to the API. But a more elaborate
querying mechanism can provide even more functionality by using the semantic information
available in the AAS, allowing to search for submodels or keywords that match a certain
semantic search criterion.

Moreover, clients may not always be interested in events from complete assets. Sometimes
clients may even only be interested in a the value of single submodel element. To support such
use-cases, the aas event API should allow subscribing to a individual submodels and submodel
elements.

5.2. Event-based data interfaces

Above, we have described the requirements for event-based data exchange. Event-based data
interfaces allow clients to selectively be notified of updates to data. Given our implementation
scenario where we may have an AAS for each of the 38.000 work orders, an event-based system
would allow us to only be notified which AASs exist at some point, and afterwards when the list
of existing AASs changes. This requires less wasteful transfer of data which is unchanged, as
well as require less queries to the database system underlying the AASs. On a more fine-grained
perspective, an event-based interface allows clients to load a single AAS once, and then only be
notified of updates of the subset of data that it is interested in, again preventing the wasteful
exchange of unneeded data.

From a server perspective, an event-based AAS may also allow said server to provide virtual
or placeholder assets and data. In a mechanism similar to lazy loading, only when a client issues
a request for the placeholder data, the server will populate the actual AASs, submodels and
submodel elements, and provide them to the user. Such a mechanism would alleviate the need
for continuous inspection of the underlying database, as such inspection may be performed
when the user makes a request.

5.3. Concluding remarks

In order to explore the “motivation of work” for the Asset Administration Shell, we have
examined AAS-based interfaces to existing data sources. Based on our proof-of-concept im-
plementation, it turns out that the currently available mechanisms in the AAS specification
are lacking features which enable implementation in real-world scenarios. We have proposed
extensions to said specification where we introduce the concept of events which allows for a
more efficient and rapid interfaces to data and changes to that data.

Acknowledgments

This paper is based on work funded from the European Union’s Horizon 2020 research and
innovation programme within the DIMOFAC and MAS4AI project under grant agreements No.
870092 and No. 957204.

8

https://dimofac.eu
https://www.mas4ai.eu/


Coen van Leeuwen et al. CEUR Workshop Proceedings 1–10

References

[1] Plattform Industrie 4.0, ZVEI, Details of the asset administration shell - part 1, 2019. Version
2.0.

[2] Plattform Industrie 4.0, ZVEI, Details of the asset administration shell - part 2, 2020. Version
1.0.

[3] Plattform Industrie 4.0, ZVEI, Details of the asset administration shell - part 3, [to be
published].

[4] Plattform Industrie 4.0, ZVEI, Relationships between I4.0 components - Composite compo-
nents and smart production, 2017.

[5] Plattform Industrie 4.0, AAS reference modelling, 2021.
[6] Plattform Industrie 4.0, ZVEI, Structure of the asset administration shell, 2016.
[7] Plattform Industrie 4.0, Functional view of the asset administration shell in an Industrie

4.0 system environment, 2021.
[8] Plattform Industrie 4.0, Verwaltungsschale in der Praxis, 2020.
[9] Plattform Industrie 4.0, Describing capabilities of Industrie 4.0 components, 2020.

[10] I. Grangel-González, P. Baptista, L. Halilaj, S. Lohmann, M.-E. Vidal, C. Mader, S. Auer, The
Industry 4.0 standards landscape from a semantic integration perspective, in: International
Conference on Emerging Technologies and Factory Automation, IEEE, 2017, pp. 1–8.

[11] S. Beden, Q. Cao, A. Beckmann, Semantic asset administration shells in industry 4.0: A
survey, in: International Conference on Industrial Cyber-Physical Systems, 2021, pp. 31–38.
doi:10.1109/ICPS49255.2021.9468266.

[12] S. Cavalieri, M. G. Salafia, Asset administration shell for PLC representation based on IEC
61131–3, IEEE Access 8 (2020) 142606–142621.

[13] S. Cavalieri, M. G. Salafia, Insights into mapping solutions based on OPC UA information
model applied to the Industry 4.0 asset administration shell, Computers 9 (2020) 28.

[14] S. Cavalieri, S. Mulé, M. G. Salafia, OPC UA-based asset administration shell, in: Annual
Conference of the IEEE Industrial Electronics Society, 2019, pp. 2982–2989.

[15] X. Ye, M. Yu, W. S. Song, S. H. Hong, An asset administration shell method for data
exchange between manufacturing software applications, IEEE Access 9 (2021) 144171–
144178. doi:10.1109/ACCESS.2021.3122175.

[16] B. Wally, L. Lang, R. Włodarski, R. Šindelár, C. Huemer, A. Mazak, M. Wimmer, Gener-
ating structured automationml models from IEC 62264 information, Proceedings of the
AutomationML PlugFest (2019).

[17] A. Lüder, A.-K. Behnert, F. Rinker, S. Biffl, Generating Industry 4.0 asset administration
shells with data from engineering data logistics, in: International Conference on Emerging
Technologies and Factory Automation, IEEE, 2020, pp. 867–874. doi:10.1109/ETFA46521.
2020.9212149.

[18] T. Miny, M. Thies, U. Epple, C. Diedrich, Model transformation for asset administration
shells, in: Annual Conference of the IEEE Industrial Electronics Society, 2020, pp. 2207–
2212. doi:10.1109/IECON43393.2020.9254649.

[19] A. Löcklin, H. Vietz, D. White, T. Ruppert, N. Jazdi, M. Weyrich, Data administration
shell for data-science-driven development, in: Design Conference, 2021, pp. 115–120.
doi:10.1016/j.procir.2021.05.019.

9

http://dx.doi.org/10.1109/ICPS49255.2021.9468266
http://dx.doi.org/10.1109/ACCESS.2021.3122175
http://dx.doi.org/10.1109/ETFA46521.2020.9212149
http://dx.doi.org/10.1109/ETFA46521.2020.9212149
http://dx.doi.org/10.1109/IECON43393.2020.9254649
http://dx.doi.org/10.1016/j.procir.2021.05.019


Coen van Leeuwen et al. CEUR Workshop Proceedings 1–10

[20] V. F. de Oliveira, M. A. d. O. Pessoa, F. Junqueira, P. E. Miyagi, SQL and NoSQL databases
in the context of Industry 4.0, Machines 10 (2022) 20. doi:10.20944/preprints202111.
0019.v1.

10

http://dx.doi.org/10.20944/preprints202111.0019.v1
http://dx.doi.org/10.20944/preprints202111.0019.v1

	1 Introduction
	2 Background
	3 Publishing databases using AAS
	3.1 Data authority
	3.2 Common data sources
	3.3 Scaling
	3.4 Reactivity
	3.5 Read/write operations
	3.6 Finding assets

	4 Implementation example
	4.1 Operation
	4.2 Limitations of implementation approach

	5 Discussion
	5.1 Recommendations to improve the AAS standard
	5.2 Event-based data interfaces
	5.3 Concluding remarks


