
Towards a computer-assisted Computational Thinking (CT)
assessment system in higher education

Xiaoling Zhang, Marcus Specht

Delft University of Technology, Van Moori Broekmanweg 6, Delft, 2628XE, The Netherlands

Abstract
With the vision to promote CT to a wider group of audiences, this PhD project explores the

formative assessment of CT skills in Programming Education to support students to learn CT

skills in Higher Education. In this project, we plan to investigate the importance of CT in the

context of Higher Education, explore the relationship between CT skills and programming

skills, build a model to assess learners’ CT skills and develop a computer-assisted assessment

system with automated components to enhance students’ CT competences in Higher Education.

Mixed-method research methodologies will be employed in distinct phases of the project

accordingly. A system which allows formative assessment of CT skills will be iteratively

designed and constructed throughout the project. The outcome of the project should support the

CT learning process, make CT more visible for people from diverse backgrounds and empower

them with a CT mindset to embrace the digitalization of society.

Keywords 1
Computational Thinking, Computer-Assisted Assessment, Higher Education, Educational

Technology

1. Introduction
1.1. Digitalisation and
Computational Thinking

Living in an era of digitalisation, digital

elements is everywhere. For instance,

education, healthcare and governance,

fundamentals to a modern society, are

developing towards a digital direction [1-3].

This has a huge influence on employment and

skills, such as the increasing unemployment

rate, and the increasing demand for digital skills

in the labour market [4]. To empower people

the capability of living and working in such a

digitalized society, governments, and education

institutions from distinct levels world-wide

have been striving to promote education of

computer-based technologies and skills varying

from academy to industry. Among skills being

Proceedings of the Doctoral Consortium of Seventeenth European

Conference on Technology Enhanced Learning, September 12-16,

2022, Toulouse, France

EMAIL: x.zhang-14@tudelft.nl (A. 1); m.m.specht@tudelft.nl (A.

2);

ORCID: 0000-0003-0951-0771 (A. 1); 0000-0002-6086-8480 (A.

2);
©️ 2020 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

mentioned, digital skills, problem-solving

skills, and computational thinking (CT) are the

top few most mentioned skills and are regarded

as fundamental skills in workplaces [5-7, 28].

Computational Thinking is closely related to

the development of digitalisation in different

domains and changes the professional

competencies need for these professions. First

proposed by Papert as procedural thinking [8]

and then being promoted by Wing [9], a

considerable amount of research has been

conducted to define CT in the past few decades.

Though there is no agreed-upon theoretical or

operational definition so far, existing works

share main components of CT, which are

problem decomposition, abstraction, pattern

recognition and algorithm [9-15]. Besides

studying the operational and theoretical

definition of CT, massive amounts of studies

have been conducted globally to investigate

topics around CT education, such as

pedagogical contents, didactic strategies,

integration of CT into other disciplines [16-26].

People of almost all ages can be participants

in these studies, however, most of the existing

research focuses specifically on K-12 settings,

with an increasing number of studies conducted

in Higher Education over the last decade.

Existing work in K-12 settings has explored a

considerable range of topics regarding learning

and teaching CT in both science, technology,

engineering, and mathematics (STEM) and

non-STEM disciplines, results in a

flourishment of development in tools and

activities for teaching and learning CT, both

CS-unplugged such as bebras challenge and

Lego construction and CS oriented such as

programmable robotics, micro-bits, code.org,

Scratch, Alice [20]. While being regarded as

crucial competence for learners in higher

education, the development of CT, compared to

CT in K-12 setting, is still in its infancy.

Increased attention has been paid to CT in

Higher Education in recent years, most of

which are related to Computer Science (CS)

major, and few are in non-CS major disciplines

[26]. In their literature review, Lyon and

Magana identified several issues existing in

current CT education which makes it difficult

for students to understand CT, including

unclear definition, lack of assessment methods,

unclear use of CT in classrooms [26]. They also

stressed the necessity of a clearer definition of

CT and called for more implementation of CT

in Higher Education and studies.

With current insights into existing literature,

it is obvious to conclude that CT is closely

related to developments of digitalisation in

different domains and changes the professional

competencies needed for these professions.

However, it is still unclear how to embed CT in

different curricula and how to develop

transdisciplinary CT skills. Therefore,

researchers need to conduct studies to establish

a comprehensive and more complete system for

the purpose of enhancing people’s CT

competencies.

1.2. Computational Thinking and
Programming Education in Higher
Education

Learners of diverse backgrounds learn CT

with various purposes and learners’ target

objectives considering the proficiency level

also differ accordingly on learner’s level of

proficiency. Therefore, it is important to know

what the necessary skills are to be developed in

higher education, what proficiency level of CT

is expected for people from distinct domains

and in what way should CT be incorporated in

different domains in Higher Education.

Programming education is frequently used for

fostering CT in higher education; visual

programming in Scratch and Alice as well as

text programming in Python, C, C++, Java have

been used for teaching CT in K-12 settings as

well as in Higher Education settings [39-40].

However, it remains a controversial topic

whether everyone should learn to code. For

example, Shein acclaimed that “Not everyone

needs coding skills but learning how to think

like a programmer can be useful in many

disciplines” [35]. Therefore, it would be

important to study the role of Programming

Education.

CT and programming skills are closely

interlinked and are both challenging for novice

learners [29, 30]. However, a significant drop-

out rate can be found in programming education

on novice learners due to distinct difficulties

students meet during their learning process

[31]. Pane et al. [32] found that the ability to

solve problems using programming skills so

that the solution can be transformed and

executed by computing agents does not come

naturally for learners in CS studies.

Additionally, studies also suggest that the

absence of strategic tools can lead to deficient

performance in learning to program [33-34].

To overcome these challenges, it is

necessary to conduct research in both

programming skills and CT skills and the

relationship between them, which has been

seldom researched.

Through qualitative and quantitative

analyses, Selby [38] built a preliminary model

to reveal connections between CT skills and

programming activities using Bloom’s

taxonomy. However, it does not demonstrate in

detail how CT can be measured in

programming. Thus, it is necessary to carry out

studies on how to empower students to use CT

as a strategic tool for programming and gain CT

knowledge through learning to program.

In brief, the following questions should be

studied regarding CT and Programming

Education in Higher Education:

• What skills are necessary for students

in different domains in Higher Education?

• What is the role of Programming

Education for students from different domains

in Higher Education?

• How are programming skills and CT

skills related and how to foster CT skills via

programming?

1.3. Formative Assessment and
Feedback Generation

Novice programmers who are new to

programming are faced with challenges such as

misunderstanding the programming concepts,

misusing the language syntax, and

understanding poorly the feedback generated

from the interpreter or compiler [31].

Alternative approaches to overcome these

issues can be, for instance, enhancing teachers'

pedagogical content knowledge, developing

more effective didactic strategies, using

formative assessment to provide feedback.

Assessment and feedback are essential

elements in different learning theories which

are used to assist students in the learning

process [41]. Assessment is presented in two

categories in general, formative assessment and

summative assessment. Formative assessment

is defined as assessment for learning while

summative assessment as assessment of

learning [42]. Formative assessment generally

consists of teacher observation, conventional

assessment, oral presentation and so on.

According to Paul Black & Dylan Wiliam [43],

formative assessment remains incomplete until

it has resulted in feedback and action on the part

of the instructor and/or learner. Therefore, a

formative assessment is all about feedback.

According to Hattie and Timperley [45],

feedback is one of the most crucial factors for

efficient learning.

The development of formative assessment in

Programming Education is still at an early age

though there has been lots of research on

intelligent tutoring systems which assess

students’ solutions in recent years. Computer-

assisted learning environments provide the

opportunity to automate the assessment and

considerable work has been conducted to assess

works in STEM disciplines automatically [44].

In terms of Programming Education, Grover

[42], in the Raspberry Pi Foundation

Computing Education Research Seminar,

strived to promote the concept of formative

assessment in CS for K-12. In contrast, no

existing study explicitly facilitates formative

assessment either in computing education or in

Programming Education specifically in Higher

Education.

While most of the assessments being

conducted on CT and Programming Education

are summative, there is some work that applies

formative assessment measures in their

implementations. These implementations

focused on merely part of programming

education and none of these works incorporated

CT into programming education, making them

infeasible for assessing CT in Programming

Education. Meanwhile, some studies aimed at

supporting students in learning to program,

mostly in the form of automated assessment

systems and intelligent tutoring systems for

programming exercises. In their literature

review, Keuning et al. [47] reported that most

of the elaborate feedback provided by the

systems reviewed focus on the identification of

mistakes and no further suggestions on how to

proceed and fix the problem. This, however,

can impede students from enhancing their

performance according to the feedback model

defined by Hattie and Timperley [45].

Therefore, it is necessary to conduct research to

explore formative assessment of CT in

Programming Education in order to assist

students in the learning process to enhance their

CT in Programming Education.

With the vision to make CT skills more

accessible and tangible in the context of

Programming Education for learners from

different domains, this project aims to develop

formative assessment components to improve

students’ performance in learning to program

and gaining CT skills.

2. Theoretical Background

To address the questions mentioned in the

last section, theories on formative assessment

and theoretical models of CT and Programming

Education are crucial. Therefore, they are being

investigated to ensure the reliability of the

conduction of the project. CT and Programming

Education will be first introduced with a focus

on Brennan and Resnick’s operational

framework [16] and Bloom’s taxonomy on

Programming Education. Then follows theory

for formative assessment and feedback models

with a focus on Hattie’s feedback model and the

theory of formative assessment from Paul

Black & Dylan Wiliam [43]. The theories are

identified as the backbone in the

implementation of this project.

2.1. Computational thinking and
programming education (Bloom’s
Taxonomy)

Although there are no agreed-upon

operational and theoretical definitions,

definitions given by researchers and educators

share the same elements in their definition.

Wing defined CT operationally with the

concepts of abstraction and automation [9].

Having components used in Wing’s definition,

Barr and Stephenson [46] included also

problem decomposition, algorithmic thinking,

data collection, analysis and representation and

simulation to define CT. Similarly, Selby’s

definition of CT consists of abstraction,

decomposition, generalization, evaluation and

algorithmic design [38]. Four main components

of CT can be identified from existing

definitions: problem decomposition, pattern

recognition, abstraction and algorithmic design.

Deriving from the main CT components,

Brennan and Resnick [38] proposed an

operational framework of CT which is

frequently used in CT studies and the

framework relates quite close to programming

concepts and skills. Three dimensions

constitute the framework: computational

concepts, computational practices and

computational perspectives. These components

are recognizable in other disciplines and

practices as well, which is consistent with

Denning’s description CT: it is nothing new, it

is the way of thinking about the world shaped

by the current technologies [50]. This

framework considers elements

comprehensively from both a knowledge

perspective and a psychology perspective and it

is a framework that can be practically used for

setting learning objectives, designing

pedagogical contents, and assessing students’

performance [48].

CT concepts and CT practices involved in

this framework [48] are some of the indicators

that measure CT competences through

programming concepts and practices. Studies

have been conducted to map programming

skills and CT skills as well as using Bloom’s

taxonomy and SOLO taxonomy to differentiate

various levels of cognition for both CT and

programming skills [36, 37]. Assessment of CT

through assessing Scratch codes in Dr. Scratch

with the framework presented by Brennan [38]

is an example of how CT can be matched in

Programming Education [49]. Selby [39]

developed a model which discovers the

relationship between CT skills and

programming activities by using Bloom’s

taxonomy. This model can serve as the

backbone in fostering CT via programming and

vice versa.

2.2. Formative assessment and
feedback generation

Having a CT framework and a model which

maps CT to programming using cognitive

levels in Bloom’s taxonomy is insufficient for

this project as the aim of this project is to

enhance students’ CT skills via formative

assessment. Therefore, this subsection will

introduce theories on formative assessment and

models for generating feedback as formative

assessment is said to be all about feedback [42].

Assessment is identified as one of the

fundamental elements in all learning theories in

education [41]. Formative assessment is

defined as assessment for learning, and it is

expected to result in feedback and action on the

part of the instructor and/or learner if formative

assessment is implemented. Thus, feedback is

crucial in formative assessment, which is

consistent with “Feedback plays a crucial role

in learning” [27].

The efficiency of the feedback is influenced

by the kind of formative feedback provided and

the learner characteristics. Under the definition

given by Boud and Molloy [51], feedback is

formative, and it can be used to improve

learners’ performance. Another type of

feedback is summative feedback, typically

consists of grades or percentage of evaluation,

which informs the learner about the

performance. However, this type of feedback is

usually too superficial to be useful for learners.

Therefore, formative feedback is of more

importance for the purpose of improving

learning.

Different definitions and models have been

investigated regarding feedback generation

both in general and for studies in specific

domains. Boud and Molloy define feedback as

a process in which the learners improve their

work with the given information which presents

the discrepancy and similarities between

learners’ work and the expected standards [51].

Hattie and Timperley [45] described a model

for feedback which is also in a formative way.

The model aims to answer learners’ questions

about where they are, how they should proceed

and where they should arrive. In this model,

feedback is categorized into “task level”,

“process level”, “self-regulation level” and

“self-level”, with findings indicating self-level

the most ineffective one.

Having a model of feedback is insufficient

for generating the most effective feedback for

learners, extra facets should be considered

when generating feedback. In Le and

Pinkwart’s work [52], programming exercises

supported in learning environments were

categorized into three classes according to the

level of ill-definedness of the programming

problem. As Hattie and Timperley [45] pointed

out that feedback should target students at

appropriate levels, it would be necessary to also

consider Narciss’s [53] categorization of

feedback in computer-assisted learning

environments according to the aspects of the

instructional context. Narciss [53] has

identified eight types of feedback components,

five of them are elaborated feedback

component and are intended to “improve

learner’s performance”: knowledge about task

constraints (KTC), knowledge about concepts

(KC), knowledge about mistakes (KM),

knowledge about how to proceed (KH) and

knowledge about Meta-cognition (KMC).

Combining the context to be assessed, the type

of exercises to be assessed and the feedback

level to provide, a strategy for generating

feedback can be devised.

In sum, this project will first focus on

identification of the need for CT and the role of

Programming Education in different

disciplines. Then, the focus will be shifted to

the measurement of CT skills and programming

skills and the relationship between these two

sets of skills. Based on studies conducted, this

project will then explore feedback generation

and develop feedback generation strategies to

promote CT for students from different

domains and enhance their performance in CT

skills and programming skills. The following

definitions will be used for the remainder of the

proposal:

• CT competencies: according to

Brennan’s framework, CT competencies refer

to CT concepts, CT practices and CT

perspectives.

• Programming skills: including

conceptual knowledge, syntactic knowledge

and strategic knowledge and programming

style.

• Indicators for CT skills and

programming skills: Any features, instruments

that provide a sign or a signal of CT

competence and programming skills.

• Formative assessment: A kind of

assessment which provides feedback to the

learner and it is an assessment for learning.

3. Research Questions

The research will be guided by the following

research questions:

RQ1. How are CT skills and

programming skills being conceptualised

and measured?

1. What are indicators and assessment

methods for CT competence and programming

skills?

2. What systems and domains are using

the indicators and assessments for CT

competence and programming skills?

3. How to evaluate the validity of the

indicators/assessment?

After collecting the indicators for CT

competencies and assessment methods,

techniques used for formative assessment and

feedback generation and the effect of feedback

should be investigated to provide the basis for

design feedback generation strategies.

Therefore, the second research question is:

RQ2. How should feedback be provided

to support developing CT skills and

programming skills, and how should

formative assessment be implemented in this

process?

1. What formative assessment and

feedback generation strategies are used for the

development of programming skills and CT

competence?

2. What are the effects of different types

of feedback on motivation, learning gain, and

CT performance?

3. What empirical knowledge has been

established regarding the effect of providing

feedback on the development of CT

competence and programming skills??

4. How to use formative assessment and

generate feedback to support the development

of CT and programming skills?

Based on the results obtained by answering

the questions above, the next step is to

contextualize the feedback and thus employ

formative assessments for learners from

different educational backgrounds. To achieve

the goal, the following questions should be

studied:

RQ3. How can Programming Education

and learning of CT be contextualised and

embedded in different educational domains?

1. How important are links between

curricular tasks and CT skills?

2. What role can transfer learning play in

the contextualisation of CT?

3. What are the means to contextualise

and embed CT learning in different domains?

4. What is the impact of contextualised

teaching of CT skills on student motivation and

understanding?

4. Design and Methods

The research is organized in four phases. In

the first phase a desktop research/systematic

literature review will be used to identify

relevant works to get an overview of state-of-

the-art regarding the topic being studied in this

project - formative assessment for supporting

students from different disciplines in the

process of learning CT in the context of

Programming Education in Higher Education.

The following factors will be identified in this

phase: indicators used for assessment and

assessment methods for CT in Programming

Education; formative assessment and feedback

generation; empirical experiences of CT in

different domains. The indicators identified in

the first phase can then be used to develop an

assessment model for CT in the context of

Programming Education and a CT dashboard to

present learners’ progress and CT level.

Exploratory research in the form of formative

studies will be employed in this phase. Phase

three will focus on the development of

strategies for feedback generation and

formative assessment based on the assessment

model and the CT dashboard built in phase two.

In the last phase, an integrated study will be

conducted to evaluate the tool developed and

refine the system according to different needs

from people of different backgrounds. In

parallel, design and development of the

formative assessment tool for CT in the context

of Programming Education will be carried out

throughout the lifecycle of the project. In

addition to that, the design, development and

testing of the prototype will be iteratively

proceeded. The plan for the workflow is

provided in the diagram shown in Figure 1 (in

the Appendix.

Phase 1 Desktop research - Literature

review

In this phase, a systematic literature review

will be conducted to get a holistic overview of

formative assessments for supporting learners

in different disciplines to learn CT in the

context of Programming Education. This

process will follow the PRISMA statements

and the PRISMA diagram, including defining

research questions, collecting literature,

screening, checking eligibility of the literature,

data extraction and analysis of extracted results.

RQ1.1, RQ1.2, RQ2.1 and RQ3.1 will be

addressed in this phase. The outcome of this

phase will be indicators used for assessment

and assessment methods for CT in

Programming Education; a comprehensive

overview of formative assessment and feedback

generation; empirical experiences of CT in

different domains.

Phase 2 Exploratory research/ Formative

studies - Build up the assessment model and

a CT Dashboard

This phase begins with interviews with

different target groups. The aim of the interview

is to identify the necessity of CT skills and the

role of Programming Education for learners

with diverse backgrounds. In combination with

the indicators and assessment methods

identified in Phase 1, assessment models can

then be prototyped according to the result from

a qualitative analysis of the interviews. The

interviews should also clarify the embedding of

the CT skills in the different study contexts and

the relevance for student and educators’ goals

in the different curricula. According to the goals

and models a CT dashboard will be developed.

To ensure the usability of the models and the

CT dashboard, a usability study will be

conducted in a programming course for

students and the models and CT dashboard will

be refined accordingly. Once the usability of the

model is verified, quasi experimental studies

will then come into play to examine the effect

of using the assessment model and CT

dashboard.

In this phase, RQ1.3, RQ2.2 and RQ2.3 will

be studied, and an assessment model based on

the indicators and assessment methods found in

Phase 2 will be developed. This will include a

participatory design and prototype of a CT

dashboard. The design and the development of

the models and the CT dashboard will proceed

iteratively.

Phase 3 Develop feedback and formative

assessment based on assessment model and

CT Dashboard

This phase will focus on addressing RQ2.4,

which is about developing proper feedback

generation strategy to present to students their

CT competencies and programming skills

based on the strategies for feedback generation

and formative assessment identified in Phase 1

and the CT assessment prototype and CT

dashboard developed in Phase 2. Formative

studies will be conducted to iteratively develop

the feedback generation model. Student models

will be identified in this phase by using data

such as analysis of students’ code, student's

competence profile and analysis of students’

performance. At the end of this phase, strategies

for providing feedback and formative

assessment should be identified.

Phase 4 Evaluation - Integrated study on

the developed formative assessment tool

The result from Phase 3 will provide a basis

to address RQ3.2 to RQ3.4 in this phase.

Considering the factors which are important in

adapting feedback for learners from different

domains identified in phase 1, RQ3.2 to RQ 3.4

will be addressed by conducting an integrated

study which includes both case studies and an

evaluation study to contextualise the model

developed and embed it into different

educational domains and verify the validity and

the effectiveness of the designed system. This

integrated study aims to evaluate the tool

developed and refine the system according to

diverse needs from people of different

backgrounds such that CT can be promoted

further to a wider audience.

5. Acknowledgements

Xiaoling Zhang: Conceptualization,

Methodology, Data Collection, Analysis,

Writing - Original Draft, Writing – Review &

Edit, Visualization, Resources

Marcus Specht: Conceptualization,

Methodology, Writing – Review & Edit

This work is a part of a PhD project funded

by Center for Education and Learning at

Leiden-Erasmus-Delft Universities (LDE-

CEL).

6. References

[1] Dillenbourg, P. (2016). The Evolution of

Research on Digital Education. Int J Artif

Intell Educ 26, 544–560 (2016).

https://doi.org/10.1007/s40593-016-0106-

z.

[2] Duggal, R., Brindle, I., Bagenal, J. (2018,

January 15). Digital healthcare: regulating

the revolution. doi:

https://doi.org/10.1136/bmj.k6.

[3] Holzer, M., Kim, Seang-Tae. (2006)

Digital Governance in Municipalities

Worldwide (2005) : A Longitudinal

Assessment of Municipal Websites

Throughout the World. United Nations

Public Administration Network.

http://unpan1.un.org/intradoc/groups/publ

ic/documents/aspa/unpan022839.pdf.

[4] Schwab,K., Sala-i-Martín, X. (2013).The

Global Competitiveness Report 2013–

2014: Full Data Edition. URI:

http://hdl.handle.net/11146/223.

[5] D Barr, J Harrison, L Conery. (2011).

Computational thinking: A digital age skill

for everyone. Learning & Leading with

Technology, 2011 - ERIC.

[6] Francisco José García-Peñalvo, Antònio

José Mendes,Exploring the computational

thinking effects in pre-university

education,Computers in Human

Behavior,Volume 80,2018, Pages 407-

411, ISSN 0747-5632,

https://doi.org/10.1016/j.chb.2017.12.005.

[7] Anita JUŠKEVIČIENĖ, Valentina

DAGIENĖ. (2018). Computational

Thinking Relationship with Digital

Competence.

[8] Papert, S. Mindstorms: Children,

Computers, and Powerful Ideas. Basic

Books, 1980.

[9] Wing, J. Computational thinking,

Commun. ACM 49, 3 (Mar. 2006), 33–35.

[10] Wing, J. 2008. Computational thinking

and thinking about computing.

Philosophical Transactions of The Royal

Society A, 366, 3717-3725.

[11] Wing, J. 2011. Research Notebook:

Computational Thinking - What and Why?

The Link. Pittsburgh, PA: Carneige

Mellon.

[12] Computer Science Teachers Association

Task Force. 2011. K–12 Computer

Science Standards, New York, ACM.

[13] Hu, C. 2011. Computational thinking:

what it might mean and what we might do

about it. Proceedings of the 16th annual

joint conference on Innovation and

technology in computer science education.

Darmstadt, Germany: ACM.

[14] Guzdial, M. 2011. A Definition of

Computational Thinking from Jeannette

Wing. Computing Education Blog

[Online]. Available from:

http://computinged.wordpress.com/2011/

03/22/a-definition-of-computational-

thinking-from-jeanette-wing/ [Accessed

30-11-2020].

[15] Guzdial, M. 2012. A nice definition of

computational thinking, including risks

and cyber-security. Computing Education

Blog [Online]. Available from:

http://computinged.wordpress.com/2012/

04/06/a-nice-definition-of-computational-

thinking-including-risks-and- cyber-

security/ [Accessed 30-11-2020].

[16] Brennan, K., & Resnick, M. 2012, New

frameworks for studying and assessing the

development of computational thinking.

Paper presented at the Annual Meeting of

the American Educational Research

Association, Vancouver, BC.

[17] Z. Berkaliev et al., Initiating a

programmatic assessment report, Primus

24 (2014), 403–420.

https://doi.org/10.1080/10511970.2014.89

3939.

[18] P. Curzon et al., Developing

computational thinking in the classroom: a

framework, Comput. Sch. (2014),

http://eprints.soton.ac.uk/369594/10/Deve

lopingComputationalThinkingInTheClass

roomaFramework.pdf.

[19] C. Evia, M. R. Sharp, and M. A. Perez‐

Quinones, Teaching structured authoring

and DITA through rhetorical and

computational thinking, IEEE Trans. Prof.

Commun. 58 (2015), 328–343.

https://doi.org/10.1109/TPC.2016.251663

9.

[20] S. Grover and R. Pea, Computational

thinking in K‐12: A review of the state of

the field, Educ. Res. 42 (2013), 38–43.

https://doi.org/10.3102/0013189X124630

51.

[21] K. Jaipal‐jamani and C. Angeli, Effect of

robotics on elementary preservice

teachers' self‐efficacy, Sci. Learn.

Comput. Think. (2017), 175–192.

https://doi.org/10.1007/s10956‐016‐9663‐

z.

[22] Y. Jeon and T. Kim.The effects of the

computational thinking‐based

programming class on the computer

learning attitude of non‐major students in

the teacher training college, J. Theor.Appl.

Inf. Technol. 95 (2017), 4330–4339.

[23] B. Kim, T. Kim, and J. Kim, Paper‐and‐

pencil programming strategy toward

computational thinking for non‐majors:

Design your solution, J. Educ. Comput.

Res. 49 (2013), 437–459.

https://doi.org/10.2190/EC.49.4.b

[24] Y. Lan, Exploration on database teaching

based on computational thinking, Bol.

Tec. Bull. 55 (2017), 363–370.

https://www.scopus.com/inward/record.ur

i?eid=2‐s2.0‐

85038935540&partnerID=40&md5=010e

1ae2c24dbf9eaa18b000844ece22.

[25] C. Mouza et al., Resetting educational

technology coursework for pre‐service

teachers: A computational thinking

approach to the development of

technological pedagogical content

knowledge (TPACK), Australas. J. Educ.

Technol. 33 (2017).

https://doi.org/10.14742/ajet.3521.

[26] Lyon, J. & Magana, A. (2020).

Computational thinking in higher

education: A review of literature.

Computer Applications in Engineering

Education. 28. 10.1002/cae.22295.

[27] A. L. S. O. de Araujo, W. L. Andrade, and

D. D. S. Guerrero, “A systematic mapping

study on assessing computational thinking

abilities,” in Frontiers in Education

Conference (FIE), 2016 IEEE. IEEE,

2016, pp. 1–9.

[28] Francisco José García-Peñalvo, Antònio

José Mendes. Exploring computational

thinking effects in pre-university

education. Computers in Human Behavior.

Volume 80. 2018. Pages 407-411. ISSN

0747-5632.

https://doi.org/10.1016/j.chb.2017.12.005.

[29] M. Tedre. Many paths to computational

thinking. Paper presented at the TACCLE

3 final conference, Brussels, Belgium

(2017).

[30] P. Denning, M Tedre, P Yongpradit.

Misconceptions about computer science.

Communications of the ACM. Volume 60,

Number 3 (2017), Pages 31-33.

[31] Yizhou Qian and James Lehman. 2017.

Students’ Misconceptions and Other

Difficulties in Introductory Programming:

A Literature Review. ACM Trans.

Comput. Educ. 18, 1, Article 1 (December

2017), 24 pages. DOI

:https://doi.org/10.1145/3077618.

[32] Pane, J. F., Ratanamahatana, C. A. &

MYERS, B. A. 2001. Studying the

language and structure in non-

programmers' solutions to programming

problems. International Journal of Human-

Computer Studies, 54, 237-264.

[33] Robins, A., Rountree, J. & Rountree, N.

2003. Learning and Teaching

Programming: A Review and Discussion.

Computer Science Education, 13, 137 -

172.

[34] Saknini, V. & Hazzan, O. 2008. Reducing

Abstraction in High School Computer

Science Education: The Case of

Definition, Implementation, and Use of

Abstract Data Types. J. Educ. Resour.

Comput., 8, 1-13.

[35] Esther Shein. 2014. Should everybody

learn to code? Commun. ACM 57, 2

(February 2014), 16–18.

DOI:https://doi.org/10.1145/2557447.

[36] Susana Masapanta-Carrión and J. Ángel

Velázquez-Iturbide. 2018. A Systematic

Review of the Use of Bloom's Taxonomy

in Computer Science Education. In

Proceedings of the 49th ACM Technical

Symposium on Computer Science

Education (SIGCSE '18). Association for

Computing Machinery, New York, NY,

USA, 441–446.

DOI:https://doi.org/10.1145/3159450.315

9491.

[37] David Ginat and Eti Menashe. 2015.

SOLO Taxonomy for Assessing Novices'

Algorithmic Design. In Proceedings of the

46th ACM Technical Symposium on

Computer Science Education (SIGCSE

'15). Association for Computing

Machinery, New York, NY, USA, 452–

457.

DOI:https://doi.org/10.1145/2676723.267

7311.

[38] Cynthia C. Selby. 2012. Promoting

computational thinking with

programming. In Proceedings of the 7th

Workshop in Primary and Secondary

Computing Education (WiPSCE '12).

Association for Computing Machinery,

New York, NY, USA, 74–77.

DOI:https://doi.org/10.1145/2481449.248

1466.

[39] Cynthia C. Selby. 2014. How Can

Teaching of Programming Be Used to

Enhance Computational Thinking Skills?

University of Southampton, Faculty of

Social and Human Sciences, PhD Thesis,

pagination.

[40] Valerie J. Shute, Chen Sun, Jodi Asbell-

Clarke. Demystifying computational

thinking. Educational Research Review.

Volume 22. 2017. Pages 142-158. ISSN

1747-938X.

https://doi.org/10.1016/j.edurev.2017.09.0

03.

[41] Dale H. Schunk. (2012). Learning theories

an educational perspective sixth edition.

[42] Shuchi Grover. (2020). Formative

Assessment for Students in CS

Classrooms,

https://www.youtube.com/watch?v=0ZuS

qsJQRFg&feature=emb_title. [last access:

2020-11-16]

[43] Black, P., Wiliam, D. Developing the

theory of formative assessment. Educ Asse

Eval Acc 21, 5 (2009).

https://doi.org/10.1007/s11092-008-9068-

5.

[44] Barana, A., Conte, A., Fioravera, M.,

Marchisio, M., Rabellino, S.; A model of

formative automatic assessment and

interactive feedback for STEM. In:

Proceedings of 2018 IEEE 42nd Annual

Computer Software and Applications

Conference, pp. 1016–1025. IEEE

Computer Society Conference Publishing

Services (CPS), Tokyo, Japan (2018).

[45] Hattie, J., & Timperley, H. (2007). The

power of feedback. Review of educational

research, 77(1), 81-112.

[46] V. Barr and C. Stephenson, Bringing

computational thinking to K‐12: What is

involved and what is the role of the

computer science education community?

ACM Inroads 2 (2011), 48–54.

[47] Keuning, H., Jeuring, J. T., & Heeren, B.

J. (2019). A Systematic Literature Review

of Automated Feedback Generation for

Programming Exercises. ACM

Transactions on Computing Education,

19(1), [3].

https://doi.org/10.1145/3231711

[48] Yeni, S., & Hermans, F. (2019). Design of

CoTAS: Automated computational

thinking assessment system. In TACKLE

2019: 2nd Systems of Assessments for

Computational Thinking Learning

workshop: Proceedings of the 2nd Systems

of Assessments for Computational

Thinking Learning workshop (TACKLE

2019) (Vol. 2434). (CEUR Workshop

Proceedings).

[49] Jesús Moreno-León and Gregorio Robles.

2015. Dr. Scratch: a Web Tool to

Automatically Evaluate Scratch Projects.

In Proceedings of the Workshop in

Primary and Secondary Computing

Education (WiPSCE '15). Association for

Computing Machinery, New York, NY,

USA, 132–133.

DOI:https://doi.org/10.1145/2818314.281

8338.

[50] Peter J. Denning and Matti Tedre. (2019).

Computational Thinking.

[51] Boud, D., & Molloy, E. K. (2013).

Feedback in higher and professional

education: Understanding it and doing it

well. Routledge.

https://doi.org/10.4324/9780203074336.

[52] Sebastian Gross, Bassam Mokbel, Barbara

Hammer, and Niels Pinkwart. 2015.

Learning Feedback in Intelligent Tutoring

Systems. Künstliche Intelligenz 29, 4

(2015), 413–418.

[53] Susanne Narciss. 2008. Feedback

strategies for interactive learning tasks.

Handbook ofresearch on educational

communications and technology (2008),

125–144.

7. Appendix

Method: Systematic Literature Review Using
PRISMA Diagram

Method: Mixed Method

• Relationship between CT
and programming skills

• Indicators for CT competence

• Feedback generation strategies

• Systems / models / prototypes

• Empirical knowledge

• Assessment prototype & CT Dashboard

• Validated mapping of CT and programming
skills (consider different domains)

Objectives

Deliverable: Conference/ Journal paper

Objectives

Deliverable: Conference/ Journal paper

• Focus groups reflection on mapping of CT
and programming skills

• Usability of the prototype

Method: Mixed Method

• Student models from different disciplines

• Refinement of the assessment model built
in S2

Objectives

Deliverable: Conference/ Journal paper

• Feedback generation strategy for students
based on findings in S2

• Usability of the assessment component

Method: Mixed Method

• Validity and reliability of the assessment
component

Objectives

Deliverable: Conference/ Journal paper

• Usability of the developed assessment
component

RQ1: How are CT skills and programming
skills being conceptualised and measured?

RQ2: How should feedback be provided to support developing CT skills and programming
skills, and how should formative assessment be implemented in this process?

RQ3: How can Programming Education and learning of CT be
contextualised and embedded in different educational domains?

• Refinement of the component developed

Technical Development Track – Iterative design process, development, and test

Figure 1. The whole PhD research plan with the main goals presented for each year. The system for

providing feedback will be iteratively designed and developed throughout the project lifecycle.

